Riemann-Hilbert Problem and Its Well-Posed-Ness for Elliptic Complex Equations of First Order in Multiply Connected Domains

Guochun WEN ${ }^{1}$, Liping WANG ${ }^{2, *}$
1. LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, P. R. China;
2. College of Mathematics and Information Science, Hebei Normal University,

Hebei 050024, P. R. China

Abstract

In this article, we first propose the Riemann-Hilbert problem for uniformly elliptic complex equations of first order and its well-posed-ness in multiply connected domains. Then we give the integral representation of solutions for modified Riemann-Hilbert problem of the complex equations. Moreover we shall obtain a priori estimates of solutions of the modified Riemann-Hilbert problem and verify its solvability. Finally the solvability results of the original boundary value problem can be obtained.

Keywords Riemann-Hilbert problems; quasilinear elliptic complex equations; multiply connected domains; priori estimates and existence of solutions.
MR(2010) Subject Classification 35J55; 35C15; 35B45

1. Formulation of Riemann-Hilbert problem for elliptic complex equations of first order and its well-posedness

Let D be an $N+1(N \geq 1)$-connected domain in \mathbb{C} with the boundary $\partial D=\cup_{j=0}^{N} \Gamma_{j} \in$ $C_{\mu}^{1}(0<\mu<1)$. Now we introduce the quasi-linear elliptic complex equation of first order

$$
\begin{equation*}
w_{\bar{z}}=Q_{1} w_{z}+Q_{2} \bar{w}_{\bar{z}}+A_{1} w+A_{2} \bar{w}+A_{3}, \quad z \in D \tag{1.1}
\end{equation*}
$$

where $z=x+i y, w_{\bar{z}}=\left[w_{x}+i w_{y}\right] / 2, Q_{j}=Q_{j}(z, w), j=1,2, A_{j}=A_{j}(z, w)(j=1,2,3)$. We assume that equation (1.1) satisfies the following conditions.

Condition C (1) The functions $Q_{j}=Q_{j}(z, w)(j=1,2), A_{j}=A_{j}(z, w)(j=1,2,3)$ are measurable in $z \in D$ for any continuous function $w(z)$ in \bar{D}, and satisfy

$$
\begin{equation*}
L_{p}\left[A_{j}(z, w), \bar{D}\right], \quad j=1,2,3 \tag{1.2}
\end{equation*}
$$

where $p, p_{0}\left(2<p_{0} \leq p\right), k_{0}, k_{1}$ are non-negative constants.
(2) The above functions are continuous in $w \in \mathbb{C}$ for almost every point $z \in D$, and $Q_{j}(z, w)=0, j=1,2, A_{j}(z, w)=0, j=1,2,3$ for $z \notin D$.

[^0](3) The complex equation (1.1) satisfies the uniform ellipticity condition
\[

$$
\begin{equation*}
\left|Q_{1}(z, w)\right|+\left|Q_{2}(z, w)\right| \leq q_{0} \tag{1.3}
\end{equation*}
$$

\]

in which $q_{0}(<1)$ is a non-negative constant.
Let D be an $N+1(N \geq 1)$-connected bounded domain in \mathbb{C} with the boundary $\partial D=$ $\Gamma=\cup_{j=0}^{N} \Gamma_{j} \in C_{\mu}^{1}(0<\mu<1)$. Without loss of generality, we assume that D is a circular domain in $|z|<1$, bounded by the $(N+1)$-circles $\Gamma_{j}:\left|z-z_{j}\right|=r_{j}, j=0,1, \ldots, N$ and $\Gamma_{0}=\Gamma_{N+1}:|z|=1, z=0 \in D$. In this article, the notations are the same as in [4-12]. Now we formulate the Riemann-Hilbert problem for equation (1.1) as follows.

Problem A The Riemann-Hilbert boundary value problem for (1.1) is to find a continuous solution $w(z)$ in \bar{D} satisfying the boundary condition:

$$
\begin{equation*}
\operatorname{Re}[\overline{\lambda(z)} w(z)]=c(z), \quad z \in \Gamma \tag{1.4}
\end{equation*}
$$

where $\lambda(z), c(z)$ satisfy the conditions

$$
\begin{equation*}
C_{\alpha}[\lambda(z), \Gamma] \leq k_{0}, \quad C_{\alpha}[c(z), \Gamma] \leq k_{2}, \tag{1.5}
\end{equation*}
$$

in which $\lambda(z)=a(z)+i b(z),|\lambda(z)|=1$ on Γ, and $\alpha(1 / 2<\alpha<1)$ is a positive constant. The index K of Problems A is defined as follows:

$$
\begin{equation*}
K=K_{1}+\cdots+K_{m}=\sum_{j=0}^{N} \frac{1}{2 \pi} \Delta_{\Gamma_{j}} \arg \lambda(z), \quad j=0,1, \ldots, N \tag{1.6}
\end{equation*}
$$

in which the partial indexes $K_{j}=\Delta_{\Gamma_{j}} \arg \lambda(z) / 2 \pi(j=0,1, \ldots, N)$ of $\lambda(z)$ are integers.
When the index $K<0$, Problem A is not certainly solved, and when $K \geq 0$, the solution of Problem A is not surely unique. Hence we put forward a well-posed-ness of Problem A with modified boundary conditions.

Problem B Find a continuous solution $w(z)$ of the complex equation (1.6) in D satisfying the boundary condition

$$
\begin{equation*}
\operatorname{Re}[\overline{\lambda(z)} w(z)]=r(z)+h(z), \quad z \in \Gamma \tag{1.7}
\end{equation*}
$$

where

$$
h(z)=\left\{\begin{array}{ll}
0, z \in \Gamma, & \text { if } K \geq N, \tag{1.8}\\
0, z \in \Gamma_{j}, j=1, \ldots, K+1, \\
h_{j}, z \in \Gamma_{j}, j=K+2, \ldots, N+1,
\end{array}\right\} \quad \text { if } 0 \leq K<N,
$$

in which $h_{j}(j=0,1, \ldots, N+1), h_{m}^{ \pm}(m=1, \ldots,-K-1)$ are undetermined real constants; we must give the attention that the boundary circles $\Gamma_{j}(j=0,1, \ldots, N)$ of the domain D are moved round the positive direction. In addition, we may assume that the solution $w(z)$ satisfies the
following point conditions

$$
\operatorname{Im}\left[\overline{\lambda\left(a_{j}\right)} w\left(a_{j}\right)\right]=b_{j}, j \in J=\left\{\begin{array}{l}
1, \ldots, 2 K-N+1, \text { if } K \geq N \tag{1.9}\\
1, \ldots, K+1, \text { if } 0 \leq K<N
\end{array}\right.
$$

where $a_{j} \in \Gamma_{j}(j=1, \ldots, N), a_{j+N} \in \Gamma_{0}(j=1, \ldots, 2 K-N+1, K \geq N)$ and $a_{j} \in \Gamma_{j-1}(j=$ $1, \ldots, K+1,0 \leq K<N)$ are distinct points, and $b_{j}(j \in J)$ are all real constants satisfying the conditions

$$
\begin{equation*}
\left|b_{j}\right| \leq k_{3}, \quad j \in J \tag{1.10}
\end{equation*}
$$

herein k_{3} is a non-negative constant. Problem B with $A_{3}(z, w)=0$ in $D, r(z)=0$ on Γ and $b_{j}=0(j \in J)$ is called Problem B_{0}. The condition $0<K<N$ is called the singular case, which only occurs in the case of multiply connected domains, and is not easy to handle.

In order to prove the solvability of Problem B for the complex equation (1.1), we need to give a representation theorem for Problem B.

2. Integral representation of solutions for modified Riemann-Hilbert problem of elliptic complex equations

Now we transform the boundary condition (1.7) into the standard form and first find a solution $S(z)$ of the modified Dirichlet problem with the boundary condition

$$
\begin{gather*}
\operatorname{Re} S(z)=S_{1}(z)-\theta(t), S_{1}(t)=\left\{\begin{array}{l}
\arg \lambda(t)-K \arg t, t \in \Gamma_{0}, \\
\arg \lambda(t), t \in \Gamma_{j}, j=1, \ldots, N,
\end{array}\right. \\
\theta(t)=\left\{\begin{array}{l}
0, t \in \Gamma_{0}, \\
\theta_{j}, t \in \Gamma_{j}, j=1, \ldots, N,
\end{array} \quad \operatorname{Im}[S(1)]=0,\right. \tag{2.1}
\end{gather*}
$$

where $\theta_{j}(j=1, \ldots, N)$ are real constants. Thus the boundary condition (1.7) can be transformed into the standard boundary condition

$$
\begin{gather*}
\operatorname{Re}[\overline{\lambda(t)} w(t)]=\operatorname{Re}[\overline{\Lambda(t)} \Psi(t)]=r(t)+h(t), \quad t \in \Gamma \\
\Lambda(t)=\lambda(t) \overline{e^{i S(t)}}=\left\{\begin{array}{l}
t^{K}, t \in \Gamma_{0}, \\
e^{i \theta_{j}}, t \in \Gamma_{j}, j=1, \ldots, N,
\end{array} \quad w(z)=e^{i S(z)} \Psi(z),\right. \tag{2.2}
\end{gather*}
$$

where the index of $\Lambda(z)$ is also equal to K, and the point constant (1.9) is also equal to

$$
\begin{equation*}
\operatorname{Im}\left[\overline{\Lambda\left(a_{j}\right)} \Psi\left(a_{j}\right)\right]=b_{j}, \quad j \in J \tag{2.3}
\end{equation*}
$$

and $\Psi(z)$ satisfies the complex equation

$$
\begin{align*}
\Psi_{\bar{z}}= & Q_{1}(z) \Psi_{z}+e^{-2 i \operatorname{ReS}(z)} Q_{2}(z) \bar{\Psi}_{\bar{z}}+\left[A_{1}(z)+e^{-i S(z)}\left(e^{i S(z)}\right)^{\prime} Q_{1}\right] \Psi+ \\
& {\left[A_{2} e^{-2 i \operatorname{ReS} S(z)}+e^{-i S(z)} \overline{\left(e^{i S(z)}\right)^{\prime}} Q_{2}\right] \bar{\Psi}+e^{-i S(z)} A_{3}, \quad z \in D . } \tag{2.4}
\end{align*}
$$

The above boundary value problem will be called Problem B^{\prime}. It is easy to see the equivalence of Problem B with the boundary conditions (1.7), (1.9) for (1.6) and Problem B^{\prime} with the boundary
conditions (2.2), (2.3) for (2.4).
Theorem 2.1 Under the above conditions, Problem B with the index $K \geq 0$ for analytic functions has a solution.

Proof We first find the solution of Problem B^{\prime}, and then obtain the solution of Problem B. By using the formula (2.54), Chapter II, [6], we can introduce

$$
\begin{gather*}
P_{0}(z, t)=P_{N+1}(z, t)=\left\{\begin{array}{l}
\frac{z^{K} e^{i S(z)} \lambda(t)(t+z) r(t)}{t^{K} e^{i S(t)}(t-z) t}, t \in \Gamma_{0}, \\
0, t \in \Gamma_{j}, j=1, \ldots, N,
\end{array}\right. \\
P_{j}(z, t)=\left\{\begin{array}{l}
\frac{e^{i \theta_{j}} e^{i S(z)} \lambda(t) r(t)\left(t+z-2 z_{j}\right)}{e^{i S(t)}(t-z)\left(t-z_{j}\right)}, t \in \Gamma_{j}, \\
0, t \in \Gamma \backslash \Gamma_{j}, j=1, \ldots, N,
\end{array}\right. \tag{2.5}
\end{gather*}
$$

and find a solution of the boundary value problem with the boundary conditions

$$
\begin{align*}
& \operatorname{Re}\left[\overline{\Lambda(z)} P_{*}(z, t)\right]=-\operatorname{Re}[\overline{\Lambda(z)} Q(z, t)]+h(z, t), \quad z \in \Gamma \\
& Q(z, t)=\sum_{m=1, m \neq j}^{N+1} P_{m}(z, t), \quad z \in \Gamma_{j}, j=1, \ldots, N+1, \\
& \operatorname{Im}\left[\overline{\Lambda\left(a_{j}\right)} P_{*}\left(a_{j}, t\right)\right]=-\operatorname{Im}\left[\overline{\Lambda\left(a_{j}\right)} Q\left(a_{j}, t\right)\right], \quad a_{j} \in \Gamma \\
& j \in J=\left\{\begin{array}{l}
1, \ldots, 2 K-N+1, \text { if } K>N-1, \\
1, \ldots, K+1, \text { if } 0 \leq K \leq N-1 .
\end{array}\right. \tag{2.6}\\
& \qquad P(z, t)=\sum_{j=1}^{N+1} P_{j}(z, t)+P_{*}(z, t), t \in \Gamma \tag{2.7}
\end{align*}
$$

is the Schwarz kernel of Problem B^{\prime}. Thus we get the representation of solutions of Problem B^{\prime} as follows:

$$
\begin{equation*}
\Psi(z)=\frac{1}{2 \pi i} \int_{\Gamma} P(z, t) r(t) \mathrm{d} t+\Psi_{0}(z) \tag{2.8}
\end{equation*}
$$

in which $\Psi_{0}(z)$ is the solution of corresponding homogeneous problem, which can be determined by some point conditions

$$
\begin{equation*}
\operatorname{Im}\left[\overline{\Lambda\left(a_{j}\right)} \Psi_{0}\left(a_{j}\right)\right]=b_{j}-\operatorname{Im}\left[\frac{\overline{\Lambda\left(a_{j}\right)}}{2 \pi i} \int_{\Gamma} P\left(a_{j}, t\right) r(t) \mathrm{d} t\right], \quad j \in J \tag{2.9}
\end{equation*}
$$

Thus the solution of original boundary value problem (Problem B) can be expressed as

$$
\begin{equation*}
w(z)=\Phi(z)=\Psi(z) e^{i S(z)}=\frac{1}{2 \pi i} \int_{\Gamma} T(z, t) r(t) \mathrm{d} t+\Phi_{0}(z) \tag{2.10}
\end{equation*}
$$

where $T(z, t)=P(z, t) e^{i S(z)}, T(z, t)$ is the Schwarz kernel, and $w_{0}(z)=\Phi_{0}(z)=\Psi_{0}(z) e^{i S(z)}$ is a solution of Problem B with the point conditions

$$
\begin{equation*}
\operatorname{Im}\left[\overline{\lambda\left(a_{j}\right)} \Phi_{0}\left(a_{j}\right)\right]=b_{j}-\operatorname{Im}\left[\frac{\overline{\lambda\left(a_{j}\right)}}{2 \pi i} \int_{\Gamma} T\left(a_{j}, t\right) r(t) \mathrm{d} t\right], \quad j \in J \tag{2.11}
\end{equation*}
$$

Theorem 2.2 Under the above conditions, Problem B with the index $K<0$ for analytic functions has a solution.

Proof Similarly to the proof of Theorem 2.1, we first find the solution of Problem B' . If $K<0$, similarly to Theorem 2.1, we introduce

$$
\begin{gather*}
P_{0}(z, t)=P_{N+1}(z, t)= \begin{cases}\frac{2 z^{|K|} e^{i S(z)} \lambda(t) r(t)}{e^{i S(t)}(t-z) t^{|K|}}, & t \in \Gamma_{0}, \\
0, \quad t \in \Gamma_{j}, j=1, \ldots, N,\end{cases} \\
P_{j}(z, t)= \begin{cases}\frac{e^{i \theta_{j}} e^{i S(z)} \lambda(t) r(t)\left(t+z-2 z_{j}\right)}{e^{i S(t)}(t-z)\left(t-z_{j}\right)}, & t \in \Gamma_{j}, \\
0, \quad t \in \Gamma \backslash \Gamma_{j}, j=1, \ldots, N .\end{cases} \tag{2.12}
\end{gather*}
$$

Similarly to the proof of Theorem 2.1, we can find a solution of the boundary value problem with the boundary conditions

$$
\begin{align*}
& \operatorname{Re}\left[\overline{\Lambda(z)} P_{*}(z, t)\right]=-\operatorname{Re}[\overline{\Lambda(z)} Q(z, t)]+h(z, t), \quad z \in \Gamma \\
& Q(z, t)=\sum_{m=1, m \neq j}^{N+1} P_{m}(z, t), \quad z \in \Gamma_{j}, \quad j=1, \ldots, N+1, \tag{2.13}
\end{align*}
$$

and

$$
\begin{equation*}
P(z, t)=\sum_{j=1}^{N+1} P_{j}(z, t)+P_{*}(z, t), \quad t \in \Gamma \tag{2.14}
\end{equation*}
$$

is the Schwarz kernel of Problem B'. Thus we get the representation of solutions of Problem B ${ }^{\prime}$ as follows:

$$
\begin{equation*}
\Psi(z)=\frac{1}{2 \pi i} \int_{\Gamma} P(z, t) r(t) \mathrm{d} t . \tag{2.15}
\end{equation*}
$$

Thus the solution of original boundary value problem (Problem B) can be expressed as

$$
\begin{equation*}
w(z)=\Phi(z)=\Psi(z) e^{i S(z)}=\frac{1}{2 \pi i} \int_{\Gamma} T(z, t) r(t) \mathrm{d} t \tag{2.16}
\end{equation*}
$$

in which $T(z, t)=P(z, t) e^{i S(z)}, T(z, t)$ is the Schwarz kernel. In the above discussion, we have to use the $N-2 K-1$ solvability conditions of Problem B, if $K<0$.

We first consider the homogeneous modified Riemann-Hilbert problem (Problem B_{0}) for the complex equation (1.6), and give the integral representation of solutions of Problem B_{0} for (1.1).

According to (2.65)-(2.74), Chapter I, [6], we introduce the two double integral operator of homogeneous modified Riemann-Hilbert problem (Problem B_{0}) for $w_{\bar{z}}=F$ in the domain D as follows

$$
\begin{aligned}
& \tilde{T} F=-\frac{2}{\pi} \iint_{D}[P(z, \zeta) F(\zeta)+Q(z, \zeta) \overline{F(\zeta)}] \mathrm{d} \sigma_{\zeta}=T F+\sum_{j=1}^{N+1} T_{j} F+T_{*} F, \\
& P(z, \zeta)=\frac{1}{2}\left[G_{1}(z, \zeta)+G_{2}(z, \zeta)+H_{1}(z, \zeta)-H_{2}(z, \zeta)\right], \quad z, \zeta \in \bar{D} \\
& Q(z, \zeta)=\frac{1}{2}\left[G_{1}(z, \zeta)-G_{2}(z, \zeta)+H_{1}(z, \zeta)+H_{2}(z, \zeta)\right], \quad z, \zeta \in \bar{D}
\end{aligned}
$$

$$
\begin{align*}
& G_{1}(z, \zeta)=\frac{1}{\zeta-z}+\sum_{j=1}^{N+1} g_{j}(z, \zeta), G_{2}(z, \zeta)=\frac{1}{\zeta-z}-\sum_{j=1}^{N+1} g_{j}(z, \zeta), \quad z, \zeta \in D \\
& g_{0}(z, \zeta)=g_{N+1}(z, \zeta)=\frac{z}{1-\bar{\zeta} z}, g_{j}(z, \zeta)=\frac{e^{2 i \theta_{j}}\left(z-z_{j}\right)}{r_{j}^{2}-\left(\overline{\zeta-z_{j}}\right)\left(z-z_{j}\right)}, \quad j=1, \ldots, N \tag{2.17}
\end{align*}
$$

where $H_{1}(t, \zeta), H_{2}(t, \zeta)$ are the solution with some boundary conditions.
Theorem 2.3 Let the complex equation (1.6) satisfy Condition C. Then any solution $w(z)\left(w_{\bar{z}} \in\right.$ $\left.L_{p_{0}}(\bar{D}), 2<p_{0} \leq p\right)$ of Problem B with the index $K=0$ for (1.6) possesses the representation

$$
\begin{equation*}
w(z)=\Phi(z)+\tilde{T} F, \tag{2.18}
\end{equation*}
$$

where $F(z)=w_{\bar{z}}, \Phi(z)$ is an analytic function as stated in (2.10) with $K=0$ in D, and $\tilde{T} F$ is as stated in (2.17), and $\Phi(z)$ satisfies the estimates

$$
\begin{equation*}
C_{\beta}[\Phi(z), \bar{D}] \leq M_{1}, L_{p_{0}}\left[\Phi^{\prime}(z), \bar{D}\right] \leq M_{2} \tag{2.19}
\end{equation*}
$$

in which $\beta=\min \left(1-2 / p_{0}, \alpha\right), M_{j}=M_{j}\left(p_{0}, \beta, k, D\right), j=1,2, k=k\left(k_{0}, k_{1}, k_{2}, k_{3}\right)$. Moreover $\tilde{T} F$ satisfies the homogeneous boundary condition of Problem B, and $\tilde{S} F=(\tilde{F})_{z}$ possesses the properties

$$
\begin{equation*}
\|\tilde{S} F\|_{L_{p_{0}}(\bar{D})} \leq \tilde{\Lambda}\|F\|_{L_{p_{0}}(\bar{D})}, \quad \tilde{\Lambda} \leq 1, \text { if } K=0 \tag{2.20}
\end{equation*}
$$

and for a positive number $q_{0}<1$ there exists a constant $2<p_{0} \leq p$ such that

$$
\begin{equation*}
q_{0} \tilde{\Lambda}_{p_{0}}<1 \tag{2.21}
\end{equation*}
$$

Proof By using (3.6), Chapter I, [1], Theorems 2.1 and 2.2, we can get (2.19), and (2.20), (2.21) can be obtained by the method of Theorem 3.5, Chapter I, [4], Lemma 2.7, Chapter II, [6] and Theorem 3.1, [12].

3. Estimates of solutions for modified Riemann-Hilbert problem of elliptic complex equation in multiply connected domains

First of all, we give the estimates of solutions of Problem B for the equation (1.6).
Theorem 3.1 Suppose that the first order complex equation (1.6) satisfies Condition C. Then any solution $w(z)$ of Problem B for the complex equation (1.6) satisfies the conditions

$$
\begin{equation*}
C_{\beta}[w(z), \bar{D}]<M_{3}, \quad L_{p_{0}}\left[\left|w_{\bar{z}}\right|+\left|w_{z}\right|, \bar{D}\right] \leq M_{4}, \tag{3.1}
\end{equation*}
$$

in which $\beta=\min \left(1-2 / p_{0}, \alpha\right), k=k\left(k_{0}, k_{1}, k_{2}, k_{3}\right), M_{j}=M_{j}\left(q_{0}, p_{0}, \beta, k, D\right)(j=3,4)$ are positive constants.

Proof Since the solution $w(z)$ of Problem B for the complex equation (1.6) can be expressed as (2.18), and the analytic function $\Phi(z)$ possesses the properties in (2.19), it is necessary to consider any solution $W(z)=\tilde{T} \omega$ of the complex equation:

$$
\left.\begin{array}{l}
W_{\bar{z}}=Q_{1}(z) W_{z}+Q_{2}(z) \bar{W}_{\bar{z}}+A_{1}(z) W+A_{2}(z) \bar{W}+A(z) \tag{3.2}\\
A(z)=Q_{1}(z) \Phi^{\prime}(z)+Q_{2}(z) \overline{\Phi^{\prime}(z)}+A_{1}(z) \Phi(z)+A_{2}(z) \overline{\Phi(z)}+A_{3}(z)
\end{array}\right\} z \in D
$$

where $A(z) \in L_{p_{0}}(\bar{D})$.
We first verify the uniqueness of solutions of the homogeneous problem B_{0} with the index $K \geq 0$, i.e., the solution $W(z) \equiv 0$ of the homogeneous problem B_{0} for the homogeneous equation

$$
\begin{equation*}
W_{\bar{z}}=Q_{1}(z) W_{z}+Q_{2}(z) \bar{W}_{\bar{z}}+A_{1}(z) W+A_{2}(z) \bar{W} \text { in } D \tag{3.3}
\end{equation*}
$$

with the index $K \geq 0$. The solution $W(z)$ of (3.3) can be expressed as

$$
\begin{equation*}
W(z)=\Psi[\zeta(z)] e^{\phi(z)} \text { in } D, \tag{3.4}
\end{equation*}
$$

where $\zeta(z)=\eta(\chi(z))$ is a homeomorphism in \bar{D}, which quasiconformally maps D onto the $N+1-$ connected circular domain G with boundary $L=\zeta(\Gamma)$ in $\{|\zeta|<1\}$, such that three points on Γ are mapped onto three points on L respectively, $\Psi(\zeta)$ is an analytic function in $G, \phi(z)=i \tilde{T}_{1} g(z)$, $\chi(z)=z+T h$ are the solutions of the complex equations

$$
\begin{equation*}
\phi(z)=i \tilde{T}_{1} g, \quad \chi(z)=z+T h \tag{3.5}
\end{equation*}
$$

of the complex equations

$$
\begin{gather*}
\phi_{\bar{z}}=\left[Q_{1}+Q_{2} \overline{W_{z}} / W_{z}\right] \phi_{z}+A_{1}+A_{2} \bar{W} / W, \text { in } D, \\
\chi_{\bar{z}}=\left[Q_{1}+Q_{2} \overline{W_{z}} / W_{z}\right] \chi_{z} \text { in } D, \tag{3.6}
\end{gather*}
$$

respectively, $\tilde{T}_{1} g$ is a double integral satisfying the modified Dirichlet boundary condition in D, $\chi(z)$ is a homeomorphism in $\bar{D}, \zeta=\eta(\chi)$ is a univalent analytic function, which conformally maps $E=\chi(D)$ onto the domain $G, \zeta(z)=\eta[\chi(z)]$ in D, and $\Psi(\zeta)$ is an analytic function in G. Since $\tilde{S} h=[\tilde{T} h]_{z}$ possesses the properties in (2.20) and (2.21), and $\tilde{S} h$ has the similar properties, we can get

$$
\begin{aligned}
& L_{p_{0}}[g(z), \bar{D}] \leq L_{p_{0}}\left[\left|A_{1}\right|+\left|A_{2}\right|, \bar{D}\right] /\left(1-q_{0} \tilde{\Lambda}_{p_{0}}\right), \\
& L_{p_{0}}[h(z), \bar{D}] \leq L_{p_{0}}\left[\left|A_{1}\right|+\left|A_{2}\right|, \bar{D}\right] /\left(1-q_{0} \Lambda_{p_{0}}\right) .
\end{aligned}
$$

By the principle of contract mapping, we can obtain that $\psi(z), \chi(z)$ of the equations in (3.6), and $\psi(z), \chi(z), \zeta(z)$ satisfy the estimates

$$
\begin{gather*}
C_{\beta}[\phi, \bar{D}] \leq k_{4}, L_{p_{0}}\left[\left|\phi_{\bar{z}}\right|+\left|\phi_{z}\right|, \bar{D}\right] \leq k_{4}, L_{p_{0}}\left[\left|\chi_{\bar{z}}\right|+\left|\chi_{z}\right|, \bar{D}\right] \leq k_{5}, \\
C_{\beta}[\zeta(z), \bar{D}] \leq k_{4}, C_{\beta}[z(\zeta), \bar{G}] \leq k_{4}, \tag{3.7}
\end{gather*}
$$

in which $\beta=\min \left(\alpha, 1-2 / p_{0}\right), p_{0}\left(2<p_{0} \leq p\right), k_{j}=k_{j}\left(q_{0}, p_{0}, \beta, k_{0}, k_{1}, D\right)(j=4,5)$ are nonnegative constants dependent on $q_{0}, p_{0}, \beta, k_{0}, k_{1}, D$, and $\Psi[\zeta(z)]=\tilde{T} \omega$ satisfies the the boundary condition

$$
\begin{equation*}
\operatorname{Re}[\overline{\lambda(z(\zeta))} \Psi(\zeta)]=h(z(\zeta)) \text { in } L \tag{3.8}
\end{equation*}
$$

of homogeneous Problem B for analytic functions. According to Theorem 6.2, Chapter V, [6], it follows $\Psi(\zeta) \equiv 0$ in G.

If the index $K<0$, we can use the method of Theorem 4.1, Chapter II, [4] to verify Problem B_{0} at most has a solution.

Denote $4 d=\min _{z \in \Gamma}|z|$ and $D_{1}=\{|z| \leq d\}, D_{2}=\{d<|z| \leq 2 d\}, D_{3}=\{2 d<|z| \leq$ $3 d\}, D_{4}=\{3 d<|z| \leq 4 d\}$, and construct two continuously differential functions

$$
\tau_{1}(z)=\left\{\begin{array}{l}
0 \text { in } D_{1}, \\
1 \text { in } \bar{D} \backslash\left\{D_{1} \cup D_{2}\right\}, \quad \tau_{2}(z)=\left\{\begin{array}{l}
1 \text { in } D_{1} \cup D_{2} \\
0 \text { in } \bar{D} \backslash\left\{D_{1} \cup D_{2} \cup D_{3}\right\} \\
\tau_{1}(z) \text { in } D_{2}
\end{array},\right.
\end{array}\right.
$$

where $0 \leq \tau_{1}(z) \leq 1$ in D_{2} and $0 \leq \tau_{2}(z) \leq 1$ in D_{3}. From (3.2), we see that two functions $\tilde{W}(z)=\tau_{1}(z) z^{-K} W(z)$ and $\hat{W}(z)=\tau_{2}(z) W(z)$ are the solutions of following complex equations

$$
\begin{align*}
& \tilde{W}_{\bar{z}}=Q_{1} \tilde{W}_{z}+Q_{2} \overline{\tilde{W}}_{\bar{z}}+A_{1}(z) \tilde{W}+\left[A_{2}(z) \tau_{1} z^{-K} / \overline{\tau_{1} z^{-K}}\right] \tilde{W}+\tilde{A} \\
& \tilde{A}=\left[\left(\tau_{1} z^{-K}\right)_{\bar{z}}-Q_{1}\left(\tau_{1} z^{-K}\right)_{z}\right] W-Q_{2} \overline{\left(\tau_{1} z^{-K}\right)_{z}} \bar{W}+\tau_{1} z^{-K} A(z) \text { in } D, \\
& \hat{W}_{\bar{z}}=Q_{1} \hat{W}_{z}+Q_{2} \hat{W}_{\bar{z}}+A_{1}(z) \hat{W}+\left[A_{2}(z) \tau_{2}(z) / \overline{\tau_{2}(z)}\right] \hat{W}+\hat{A}, \\
& \hat{A}=\left[\tau_{1 \bar{z}}-Q_{1} \tau_{1 z}\right] W-Q_{2} \overline{\tau_{1 z}} \bar{W}+\tau_{2}(z) A(z) \text { in } D, \tag{3.9}
\end{align*}
$$

and satisfy the boundary conditions

$$
\begin{equation*}
\operatorname{Re}[\overline{\Lambda(z)} \tilde{W}(z)]=h(z) \text { on } \Gamma, \operatorname{Re}[\overline{\Lambda(z)} \hat{W}(z)]=0 \text { on } \Gamma, \tag{3.10}
\end{equation*}
$$

respectively. The indexes of above boundary value problems are equal to $K=0$, and the function $W(z)$ is bounded in \bar{D} from (2.19), (2.20), (3.4) and (3.7). Moreover by using Theorem 4.3, Chapter II, [4], we can obtain the estimates

$$
\begin{aligned}
& C_{\beta}[\tilde{W}(z), \bar{D}] \leq M_{5}, L_{p_{0}}\left[\left|\tilde{W}_{\bar{z}}\right|+\left|\tilde{W}_{z}\right|, \bar{D}\right] \leq M_{6} \\
& C_{\beta}[\hat{W}(z), \bar{D}] \leq M_{7}, L_{p_{0}}\left[\left|\hat{W}_{\bar{z}}\right|+\left|\hat{W}_{z}\right|, \bar{D}\right] \leq M_{8}
\end{aligned}
$$

where $M_{j}=M_{j}\left(q_{0}, p, \beta, k, D\right)(j=5,6,7,8)$ are positive constants. In particular we have

$$
\begin{aligned}
& C_{\beta}\left[W(z), \bar{D} \backslash\left\{D_{1} \cup D_{2}\right\}\right] \leq M_{5}, L_{p_{0}}\left[\left|W_{\bar{z}}\right|+\left|W_{z}\right|, \bar{D} \backslash\left\{D_{1} \cup D_{2}\right\}\right] \leq M_{6}, \\
& C_{\beta}\left[W(z), D_{1} \cup D_{2}\right] \leq M_{7}, L_{p_{0}}\left[\left|W_{\bar{z}}\right|+\left|W_{z}\right|, D_{1} \cup D_{2}\right] \leq M_{8}
\end{aligned}
$$

Combining the above estimates, we get

$$
\begin{gather*}
C_{\beta}[W(z), \bar{D}] \leq M_{9}=M_{9}\left(M_{5}, M_{7}, \tau_{1}, \tau_{2}, D\right), \\
L_{p_{0}}\left[\left|W_{\bar{z}}\right|+\left|W_{z}\right|, \bar{D}\right] \leq M_{10}=M_{10}\left(M_{6}, M_{8}, \tau_{1}, \tau_{2}, D\right) . \tag{3.11}
\end{gather*}
$$

4. The solvability of modified Riemann-Hilbert problem for elliptic complex equations in multiply connected domains

Finally we prove the solvability of Problem B for the equation (1.1).
Theorem 4.1 Under the conditions in Theorem 3.1, Problem B for (1.6) is solvable.
Proof We introduce the quasi-linear elliptic complex equation with the parameter $t \in[0,1]$:

$$
\begin{equation*}
w_{\bar{z}}-t F\left(z, w, w_{z}\right)=A(z) \tag{4.1}
\end{equation*}
$$

where $A(z)$ is any measurable function in D and $A(z) \in L_{p_{0}}(\bar{D})\left(2<p_{0} \leq p\right)$. When $t=0$, it is not difficult to see that there exists a unique solution $w(z)$ of Problem B for the complex equation (4.1), which possesses the form

$$
\begin{equation*}
w(z)=\Phi(z)+\psi(z), \psi(z)=\tilde{T} A \tag{4.2}
\end{equation*}
$$

where $\tilde{T} A$ is stated as in (2.20), $\Phi(z)$ is an analytic function in D and satisfies the boundary conditions

$$
\begin{align*}
& \operatorname{Re}[\overline{\lambda(z)} \Phi(z)]=r(z)-\operatorname{Re}[\overline{\lambda(z)} \psi(z)]+h(z), z \in \Gamma, \\
& \operatorname{Im}\left[\overline{\lambda\left(a_{j}\right)} \Phi\left(a_{j}\right)\right]=b_{j}-\operatorname{Im}\left[\overline{\lambda\left(a_{j}\right)} \psi\left(a_{j}\right)\right], j \in J . \tag{4.3}
\end{align*}
$$

From Theorem 3.1, we see that $w(z) \in B=C_{\beta}(\bar{D}) \cap W_{p_{0}}^{1}(D)$. Suppose that when $t=t_{0}\left(0 \leq t_{0}<\right.$ 1), Problem B for the complex equation (4.1) has a unique solution, we shall prove that there exists a neighborhood of $t_{0}: E=\left\{\left|t-t_{0}\right| \leq \delta, 0 \leq t \leq 1\right\}, \delta(>0)$ is a small positive constant, so that for every $t \in E$ and any function $A(z) \in L_{p_{0}}(\bar{D})$, Problem B for (4.1) is solvable. In fact, the complex equation (4.1) can be written in the form

$$
\begin{equation*}
w_{\bar{z}}-t_{0} F\left(z, w, w_{z}\right)=\left(t-t_{0}\right) F\left(z, w, w_{z}\right)+A(z) . \tag{4.4}
\end{equation*}
$$

We arbitrarily select a function $w_{0}(z) \in B=C_{\beta}(\bar{D}) \cap W_{p_{0}}^{1}(D)$, in particular $w_{0}(z)=0$ on \bar{D}. Let $w_{0}(z)$ be replaced into the position of $w(z)$ in the right hand side of (4.4). By Condition C, it is obvious that

$$
\begin{equation*}
B_{0}(z)=\left(t-t_{0}\right) F\left(z, w_{0}, w_{0 z}\right)+A(z) \in L_{p_{0}}(\bar{D}) \tag{4.5}
\end{equation*}
$$

Note that (4.4) has a solution $w_{1}(z) \in B$. Applying the successive iteration, we can find out a sequence of functions: $w_{n}(z) \in B, n=1,2, \ldots$, which satisfy the complex equations

$$
\begin{equation*}
w_{n+1 \bar{z}}-t_{0} F\left(z, w_{n+1}, w_{n+1 z}\right)=\left(t-t_{0}\right) F\left(z, w_{n}, w_{n z}\right)+A(z), n=1,2, \ldots \tag{4.6}
\end{equation*}
$$

The difference of the above equations for $n+1$ and n is as follows:

$$
\begin{align*}
& \left(w_{n+1}-w_{n}\right)_{\bar{z}}-t_{0}\left[F\left(z, w_{n+1}, w_{n+1 z}\right)-F\left(z, w_{n}, w_{n z}\right)\right] \\
& \quad=\left(t-t_{0}\right)\left[F\left(z, w_{n}, w_{n z}\right)-F\left(z, w_{n-1}, w_{n-1 z}\right)\right], \quad n=1,2, \ldots \tag{4.7}
\end{align*}
$$

From Condition C, it can be seen that

$$
\begin{aligned}
& F\left(z, w_{n+1}, w_{n+1 z}\right)-F\left(z, w_{n}, w_{n z}\right) \\
& \quad=F\left(z, w_{n+1}, w_{n+1 z}\right)-F\left(z, w_{n+1}, w_{n z}\right)+\left[F\left(z, w_{n+1}, w_{n z}\right)-F\left(z, w_{n}, w_{n z}\right)\right] \\
& \quad=\tilde{Q}_{n+1}\left(w_{n+1}-w_{n}\right)_{z}+\tilde{A}_{n+1}\left(w_{n+1}-w_{n}\right), \\
& \\
& \left|\tilde{Q}_{n+1}\right| \leq q_{0}<1, \tilde{A}_{n+1} \in L_{p_{0}}(\bar{D}), n=1,2, \ldots, \\
& L_{p_{0}}\left[F\left(z, w_{n}, w_{n z}\right)-F\left(z, w_{n-1}, w_{n-1 z}\right), \bar{D}\right] \\
& \quad \leq q_{0} L_{p_{0}}\left[\left(w_{n}-w_{n-1}\right)_{z}, \bar{D}\right]+k_{0} C\left[w_{n}-w_{n-1}, \bar{D}\right] \\
& \quad \leq\left(q_{0}+k_{0}\right)\left[C_{\beta}\left[w_{n}-w_{n-1}, \bar{D}\right]+L_{p_{0}}\left[\left|\left(w_{n}-w_{n-1}\right)_{\bar{z}}\right|+\right.\right. \\
& \left.\quad\left|\left(w_{n}-w_{n-1}\right)_{z}\right|, \bar{D}\right]=\left(q_{0}+k_{0}\right) L_{n} .
\end{aligned}
$$

Moreover, $w_{n+1}(z)-w_{n}(z)$ satisfies the homogeneous boundary conditions

$$
\begin{align*}
& \operatorname{Re}\left[\overline{\lambda(z)}\left(w_{n+1}(z)-w_{n}(z)\right)\right]=h(z), z \in \Gamma, \\
& \operatorname{Im}\left[\overline{\lambda\left(a_{j}\right)}\left(w_{n+1}\left(a_{j}\right)-w_{n}\left(a_{j}\right)\right)\right]=0, j \in J . \tag{4.8}
\end{align*}
$$

On the basis of Theorem 3.1, we have
$L_{n+1}=C_{\beta}\left[w_{n+1}-w_{n}, \bar{D}\right]+L_{p_{0}}\left[\left|\left(w_{n+1}-w_{n}\right)_{z}\right|+\left|\left(w_{n+1}-w_{n}\right)_{z}\right|, \bar{D}\right] \leq M_{11}\left|t-t_{0}\right|\left(q_{0}+k_{0}\right) L_{n}$, where $M_{11}=M_{3}+M_{4}, M_{3}, M_{4}$ is as stated in (3.1). Provided $\delta(>0)$ is small enough, so that $\eta=\delta M_{11}\left(q_{0}+k_{0}\right)<1$, it can be obtained that

$$
\begin{equation*}
L_{n+1} \leq \eta L_{n} \leq \eta^{n} L_{1}=\eta^{n}\left[C_{\beta}\left(w_{1}, \bar{D}\right)+L_{p_{0}}\left(\left|w_{1 \bar{z}}\right|+\left|w_{1 z}\right|, \bar{D}\right)\right] \tag{4.9}
\end{equation*}
$$

for every $t \in E$. Thus

$$
\begin{align*}
& S\left(w_{n}-w_{m}\right)=C_{\beta}\left[w_{n}-w_{m}, \bar{D}\right]+L_{p_{0}}\left[\left|\left(w_{n}-w_{m}\right)_{\bar{z}}\right|+\left|\left(w_{n}-w_{m}\right)_{z}\right|, \bar{D}\right] \\
& \quad \leq L_{n}+L_{n-1}+\cdots+L_{m+1} \leq\left(\eta^{n-1}+\eta^{n-2}+\cdots+\eta^{m}\right) L_{1} \\
& \quad=\eta^{m}\left(1+\eta+\cdots+\eta^{n-m-1}\right) L_{1} \leq \eta^{N+1} \frac{1-\eta^{n-m}}{1-\eta} L_{1} \leq \frac{\eta^{N+1}}{1-\eta} L_{1} \tag{4.10}
\end{align*}
$$

for $n \geq m>N$, where N is a positive integer. This shows that $S\left(w_{n}-w_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$. Following the completeness of the Banach space $B=C_{\beta}(\bar{D}) \cap W_{p_{0}}^{1}(D)$, there is a function $w_{*}(z) \in B$, such that when $n \rightarrow \infty$,

$$
S\left(w-w_{*}\right)=C_{\beta}\left[w_{n}-w_{*}, \bar{D}\right]+L_{p_{0}}\left[\left(w_{n}-w_{*}\right)_{\bar{z}}\left|+\left|\left(w_{n}-w_{*}\right)_{z}\right|, \bar{D}\right] \rightarrow 0\right.
$$

By Condition C, from (3.1) it follows that $w_{*}(z)$ is a solution of Problem B for (4.4), i.e., (4.1) for $t \in E$. It is easy to see that the positive constant δ is independent of $t_{0}\left(0 \leq t_{0}<1\right)$. Hence from that Problem B for the complex equation (4.4) with $t=t_{0}=0$ is solvable, we can derive that when $t=\delta, 2 \delta, \ldots,[1 / \delta] \delta, 1$, Problem B for (4.4) are solvable, especially Problem B for (4.4) with $t=1$ and $A(z)=0$, namely Problem B for (1.6) has a unique solution.

Theorem 4.2 Let the complex equation (1.1) satisfy Condition C. Then Problem A for (1.1) possesses the following solvability results.
(1) If the index $K>N-1$, then Problem A for (1.1) is solvable, and its general solution includes $2 K-N+1$ arbitrary real constants.
(2) If $0 \leq K \leq N-1$, then Problem A has $N-K$ solvability conditions, and its general solution is dependent on $K+1$ arbitrary real constants.
(3) If $K<0$, then Problem A has $N-2 K-1$ solvability conditions.

Proof Let the solution $w(z)$ of Problem B for (1.6) be substituted into the boundary condition (1.7). If the function $h(z)=0, z \in \Gamma$, i.e.,

$$
\left\{\begin{array}{l}
h_{j}=0, j=1, \ldots, N, \text { if } K \geq 0, \\
h_{j}=0, j=0,1, \ldots, N, h_{m}^{ \pm}=0, m=1, \ldots,-K-1, \text { if } K<0,
\end{array}\right.
$$

then the function $w(z)$ is just a solution of Problem A for (1.1). Hence the total number of
above equalities is the total of solvability conditions as stated in this theorem. Also note that the real constants $b_{j}(j \in J)$ in (1.9) are arbitrarily chosen. This shows that the general solution of Problem A for (1.1) includes the number of arbitrary real constants as stated in the theorem.

References

[1] I. N. VEKUA. Generalized Analytic Functions. Pergamon, Oxford, 1962.
[2] M. A. LAVRENT'EV, B. V. SHABAT. Methods of Function Theory of a Complex Variable. GITTL, Moscow, 1958. (in Russian)
[3] A. V. BITSADZE. Some Classes of Partial Differential Equations. Gordon and Breach, New York, 1988.
[4] Guochun WEN, H. BEGEHR. Boundary Value Problems for Elliptic Equations and Systems. Longman Scientific and Technical Company, Harlow, 1990.
[5] Guochun WEN. Conformal Mappings and Boundary Value Problems, Translations of Mathematics Monographs. Amer. Math. Soc., Providence, RI, 1992.
[6] Guochun WEN. Linear and Nonlinear Elliptic Complex Equations. Shanghai Scientific and Technical Publishers, Shanghai, 1986. (in Chinese)
[7] Guochun WEN, Zhongwei DAI, Maoying TIAN. Function Theoretic Methods of Free Boundary Problems and Their Applications to Mechanics. Higher Education Press, Beijing, 1996. (in Chinese)
[8] Sha HUANG, Yuying QIAO, Guochun WEN. Real and Complex Clifford Analysis. Springer, 2005.
[9] Guochun WEN. Approximate Methods and Numerical Analysis for Elliptic Complex Equations. Gordon and Breach, Amsterdam, 1999.
[10] Guochun WEN. Recent Progress in Theory and Applications of Modern Complex Analysis. Science Press, Beijing, 2010.
[11] Guochun WEN, Dechang CHEN, Zuoliang XU. Nonlinear Complex Analysis and Its Applications. Mathematics Monograph Series 12, Science Press, Beijing, 2008.
[12] Guochun WEN. The Poincaré problem with negative index for linear elliptic systems of second order in a multiply connected domain. J. Math. Res. Exposition, 1982, 1(1): 61-76. (in Chinese)

[^0]: Received April 22, 2013; Accepted February 24, 2014
 Supported by the National Natural Science Foundation of China (Grant No. 11171349) and the Science Foundation of Hebei Province (Grant No. A2010000346).

 * Corresponding author

 E-mail address: wengc@math.pku.edu.cn (Guochun WEN); wlpxjj@163.com (Liping WANG)

