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Abstract In this article, we first propose the Riemann-Hilbert problem for uniformly ellip-

tic complex equations of first order and its well-posed-ness in multiply connected domains.

Then we give the integral representation of solutions for modified Riemann-Hilbert problem

of the complex equations. Moreover we shall obtain a priori estimates of solutions of the

modified Riemann-Hilbert problem and verify its solvability. Finally the solvability results of

the original boundary value problem can be obtained.
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1. Formulation of Riemann-Hilbert problem for elliptic complex equa-
tions of first order and its well-posedness

Let D be an N + 1 (N ≥ 1)-connected domain in C with the boundary ∂D = ∪N
j=0Γj ∈

C1
µ (0 < µ < 1). Now we introduce the quasi-linear elliptic complex equation of first order

wz̄ = Q1wz +Q2wz̄ +A1w +A2w +A3, z ∈ D, (1.1)

where z = x + iy, wz̄ = [wx + iwy]/2, Qj = Qj(z, w), j = 1, 2, Aj = Aj(z, w) (j = 1, 2, 3). We

assume that equation (1.1) satisfies the following conditions.

Condition C (1) The functions Qj = Qj(z, w) (j = 1, 2), Aj = Aj(z, w) (j = 1, 2, 3) are

measurable in z ∈ D for any continuous function w(z) in D, and satisfy

Lp[Aj(z, w),D], j = 1, 2, 3, (1.2)

where p, p0 (2 < p0 ≤ p), k0, k1 are non-negative constants.

(2) The above functions are continuous in w ∈ C for almost every point z ∈ D, and

Qj(z, w) = 0, j = 1, 2, Aj(z, w) = 0, j = 1, 2, 3 for z /∈ D.

Received April 22, 2013; Accepted February 24, 2014

Supported by the National Natural Science Foundation of China (Grant No. 11171349) and the Science Foundation

of Hebei Province (Grant No.A2010000346).

* Corresponding author

E-mail address: wengc@math.pku.edu.cn (Guochun WEN); wlpxjj@163.com (Liping WANG)



436 Guochun WEN and Liping WANG

(3) The complex equation (1.1) satisfies the uniform ellipticity condition

|Q1(z, w)|+ |Q2(z, w)| ≤ q0, (1.3)

in which q0 (< 1) is a non-negative constant.

Let D be an N + 1 (N ≥ 1)-connected bounded domain in C with the boundary ∂D =

Γ = ∪N
j=0Γj ∈ C1

µ (0 < µ < 1). Without loss of generality, we assume that D is a circular

domain in |z| < 1, bounded by the (N + 1)-circles Γj : |z − zj | = rj , j = 0, 1, . . . , N and

Γ0 = ΓN+1 : |z| = 1, z = 0 ∈ D. In this article, the notations are the same as in [4–12]. Now we

formulate the Riemann-Hilbert problem for equation (1.1) as follows.

Problem A The Riemann-Hilbert boundary value problem for (1.1) is to find a continuous

solution w(z) in D satisfying the boundary condition:

Re[λ(z)w(z)] = c(z), z ∈ Γ, (1.4)

where λ(z), c(z) satisfy the conditions

Cα[λ(z),Γ] ≤ k0, Cα[c(z),Γ] ≤ k2, (1.5)

in which λ(z) = a(z) + ib(z), |λ(z)| = 1 on Γ, and α (1/2 < α < 1) is a positive constant. The

index K of Problems A is defined as follows:

K = K1 + · · ·+Km =
N∑
j=0

1

2π
∆Γj arg λ(z), j = 0, 1, . . . , N, (1.6)

in which the partial indexes Kj = ∆Γj arg λ(z)/2π (j = 0, 1, . . . , N) of λ(z) are integers.

When the index K < 0, Problem A is not certainly solved, and when K ≥ 0, the solution

of Problem A is not surely unique. Hence we put forward a well-posed-ness of Problem A with

modified boundary conditions.

Problem B Find a continuous solution w(z) of the complex equation (1.6) in D satisfying the

boundary condition

Re[λ(z)w(z)] = r(z) + h(z), z ∈ Γ, (1.7)

where

h(z)=



0, z ∈ Γ, if K ≥ N,

0, z ∈ Γj , j = 1, . . . ,K + 1,

hj , z ∈ Γj , j = K + 2, . . . , N + 1,

}
if 0 ≤ K < N,

hj , z ∈ Γj , j = 1, . . . , N, j = 1, . . . , N,

h0 +Re
∑−K−1

m=1 (h+m + ih−m)zm, z ∈ Γ0,

}
if K < 0,

(1.8)

in which hj (j = 0, 1, . . . , N + 1), h±m (m = 1, . . . ,−K − 1) are undetermined real constants; we

must give the attention that the boundary circles Γj (j = 0, 1, . . . , N) of the domain D are moved

round the positive direction. In addition, we may assume that the solution w(z) satisfies the
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following point conditions

Im[λ(aj)w(aj)] = bj , j ∈ J =

 1, . . . , 2K −N + 1, if K ≥ N,

1, . . . ,K + 1, if 0 ≤ K < N,
(1.9)

where aj ∈ Γj (j = 1, . . . , N), aj+N ∈ Γ0 (j = 1, . . . , 2K − N + 1,K ≥ N) and aj ∈ Γj−1 (j =

1, . . . ,K + 1, 0 ≤ K < N) are distinct points, and bj (j ∈ J) are all real constants satisfying the

conditions

|bj | ≤ k3, j ∈ J, (1.10)

herein k3 is a non-negative constant. Problem B with A3(z, w) = 0 in D, r(z) = 0 on Γ and

bj = 0 (j ∈ J) is called Problem B0. The condition 0 < K < N is called the singular case, which

only occurs in the case of multiply connected domains, and is not easy to handle.

In order to prove the solvability of Problem B for the complex equation (1.1), we need to

give a representation theorem for Problem B.

2. Integral representation of solutions for modified Riemann-Hilbert
problem of elliptic complex equations

Now we transform the boundary condition (1.7) into the standard form and first find a

solution S(z) of the modified Dirichlet problem with the boundary condition

ReS(z) = S1(z)− θ(t), S1(t)=

{
arg λ(t)−K arg t, t ∈ Γ0,

arg λ(t), t ∈ Γj , j = 1, . . . , N,

θ(t) =

{
0, t ∈ Γ0,

θj , t ∈ Γj , j = 1, . . . , N,
Im[S(1)] = 0, (2.1)

where θj (j = 1, . . . , N) are real constants. Thus the boundary condition (1.7) can be transformed

into the standard boundary condition

Re[λ(t)w(t)] = Re[Λ(t)Ψ(t)] = r(t) + h(t), t ∈ Γ,

Λ(t) = λ(t)eiS(t) =

{
tK , t ∈ Γ0,

eiθj , t ∈ Γj , j=1, . . . , N,
w(z) = eiS(z)Ψ(z), (2.2)

where the index of Λ(z) is also equal to K, and the point constant (1.9) is also equal to

Im[Λ(aj)Ψ(aj)] = bj , j ∈ J, (2.3)

and Ψ(z) satisfies the complex equation

Ψz̄ =Q1(z)Ψz + e−2iReS(z)Q2(z)Ψz̄ + [A1(z)+e
−iS(z)(eiS(z))′Q1]Ψ+

[A2e
−2iReS(z) + e−iS(z)(eiS(z))′Q2]Ψ + e−iS(z)A3, z ∈ D. (2.4)

The above boundary value problem will be called Problem B′. It is easy to see the equivalence of

Problem B with the boundary conditions (1.7), (1.9) for (1.6) and Problem B′ with the boundary
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conditions (2.2), (2.3) for (2.4).

Theorem 2.1 Under the above conditions, Problem B with the index K ≥ 0 for analytic

functions has a solution.

Proof We first find the solution of Problem B′, and then obtain the solution of Problem B. By

using the formula (2.54), Chapter II, [6], we can introduce

P0(z, t) = PN+1(z, t) =


zKeiS(z)λ(t)(t+ z)r(t)

tKeiS(t)(t− z) t
, t ∈ Γ0,

0, t ∈ Γj , j = 1, . . . , N,

Pj(z, t) =


eiθjeiS(z)λ(t)r(t)(t+ z − 2zj)

eiS(t)(t− z)(t− zj)
, t ∈ Γj ,

0, t ∈ Γ \Γj , j = 1, . . . , N,

(2.5)

and find a solution of the boundary value problem with the boundary conditions

Re[Λ(z)P∗(z, t)] = −Re[Λ(z)Q(z, t)] + h(z, t), z ∈ Γ,

Q(z, t) =
N+1∑

m=1,m̸=j

Pm(z, t), z ∈ Γj , j = 1, . . . , N + 1,

Im[Λ(aj)P∗(aj , t)] = −Im[Λ(aj)Q(aj , t)], aj ∈ Γ,

j ∈ J =

{
1, . . . , 2K −N + 1, if K > N − 1,

1, . . . ,K + 1, if 0 ≤ K ≤ N − 1.
(2.6)

P (z, t) =
N+1∑
j=1

Pj(z, t) + P∗(z, t), t ∈ Γ (2.7)

is the Schwarz kernel of Problem B′. Thus we get the representation of solutions of Problem B′

as follows:

Ψ(z) =
1

2πi

∫
Γ

P (z, t)r(t)dt+Ψ0(z), (2.8)

in which Ψ0(z) is the solution of corresponding homogeneous problem, which can be determined

by some point conditions

Im[Λ(aj)Ψ0(aj)] = bj − Im
[Λ(aj)

2πi

∫
Γ

P (aj , t)r(t)dt
]
, j ∈ J. (2.9)

Thus the solution of original boundary value problem (Problem B) can be expressed as

w(z) = Φ(z) = Ψ(z)eiS(z) =
1

2πi

∫
Γ

T (z, t)r(t)dt+Φ0(z), (2.10)

where T (z, t) = P (z, t)eiS(z), T (z, t) is the Schwarz kernel, and w0(z) = Φ0(z) = Ψ0(z)e
iS(z) is a

solution of Problem B with the point conditions

Im[λ(aj)Φ0(aj)] = bj − Im
[λ(aj)

2πi

∫
Γ

T (aj , t)r(t)dt
]
, j ∈ J. � (2.11)
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Theorem 2.2 Under the above conditions, Problem B with the index K < 0 for analytic

functions has a solution.

Proof Similarly to the proof of Theorem 2.1, we first find the solution of Problem B′. If K < 0,

similarly to Theorem 2.1, we introduce

P0(z, t) = PN+1(z, t) =


2z|K|eiS(z)λ(t)r(t)

eiS(t)(t− z)t|K| , t ∈ Γ0,

0, t ∈ Γj , j = 1, . . . , N,

Pj(z, t) =


eiθjeiS(z)λ(t)r(t)(t+ z − 2zj)

eiS(t)(t− z)(t− zj)
, t ∈ Γj ,

0, t ∈ Γ\Γj , j = 1, . . . , N.

(2.12)

Similarly to the proof of Theorem 2.1, we can find a solution of the boundary value problem

with the boundary conditions

Re[Λ(z)P∗(z, t)] = −Re[Λ(z)Q(z, t)] + h(z, t), z ∈ Γ,

Q(z, t) =
N+1∑

m=1,m̸=j

Pm(z, t), z ∈ Γj , j = 1, . . . , N + 1, (2.13)

and

P (z, t) =
N+1∑
j=1

Pj(z, t) + P∗(z, t), t ∈ Γ (2.14)

is the Schwarz kernel of Problem B′. Thus we get the representation of solutions of Problem B′

as follows:

Ψ(z) =
1

2πi

∫
Γ

P (z, t)r(t)dt. (2.15)

Thus the solution of original boundary value problem (Problem B) can be expressed as

w(z) = Φ(z) = Ψ(z)eiS(z) =
1

2πi

∫
Γ

T (z, t)r(t)dt, (2.16)

in which T (z, t) = P (z, t)eiS(z), T (z, t) is the Schwarz kernel. In the above discussion, we have

to use the N − 2K − 1 solvability conditions of Problem B, if K < 0.

We first consider the homogeneous modified Riemann-Hilbert problem (Problem B0) for the

complex equation (1.6), and give the integral representation of solutions of Problem B0 for (1.1).

According to (2.65)–(2.74), Chapter I, [6], we introduce the two double integral operator of

homogeneous modified Riemann-Hilbert problem (Problem B0) for wz̄ = F in the domain D as

follows

T̃F = − 2

π

∫∫
D

[P (z, ζ)F (ζ) +Q(z, ζ)F (ζ)]dσζ = TF +

N+1∑
j=1

TjF + T∗F,

P (z, ζ) =
1

2
[G1(z, ζ) +G2(z, ζ) +H1(z, ζ)−H2(z, ζ)], z, ζ ∈ D,

Q(z, ζ) =
1

2
[G1(z, ζ)−G2(z, ζ) +H1(z, ζ) +H2(z, ζ)], z, ζ ∈ D,



440 Guochun WEN and Liping WANG

G1(z, ζ)=
1

ζ−z
+

N+1∑
j=1

gj(z, ζ), G2(z, ζ)=
1

ζ−z
−

N+1∑
j=1

gj(z, ζ), z, ζ ∈ D,

g0(z, ζ) = gN+1(z, ζ) =
z

1− ζz
, gj(z, ζ) =

e2iθj (z − zj)

r2j − (ζ − zj)(z − zj)
, j = 1, . . . , N, (2.17)

where H1(t, ζ), H2(t, ζ) are the solution with some boundary conditions. �

Theorem 2.3 Let the complex equation (1.6) satisfy Condition C. Then any solution w(z) (wz ∈
Lp0(D), 2 < p0 ≤ p) of Problem B with the index K = 0 for (1.6) possesses the representation

w(z) = Φ(z) + T̃F, (2.18)

where F (z) = wz̄, Φ(z) is an analytic function as stated in (2.10) with K = 0 in D, and T̃F is

as stated in (2.17), and Φ(z) satisfies the estimates

Cβ [Φ(z), D] ≤M1, Lp0 [Φ
′(z), D] ≤M2, (2.19)

in which β = min(1 − 2/p0, α), Mj = Mj(p0, β, k,D), j = 1, 2, k = k(k0, k1, k2, k3). Moreover

T̃F satisfies the homogeneous boundary condition of Problem B, and S̃F = (F̃ )z possesses the

properties

∥S̃F∥Lp0 (D) ≤ Λ̃∥F∥Lp0 (D), Λ̃ ≤ 1, if K = 0. (2.20)

and for a positive number q0 < 1 there exists a constant 2 < p0 ≤ p such that

q0Λ̃p0 < 1. (2.21)

Proof By using (3.6), Chapter I, [1], Theorems 2.1 and 2.2, we can get (2.19), and (2.20), (2.21)

can be obtained by the method of Theorem 3.5, Chapter I, [4], Lemma 2.7, Chapter II, [6] and

Theorem 3.1, [12]. �

3. Estimates of solutions for modified Riemann-Hilbert problem of el-
liptic complex equation in multiply connected domains

First of all, we give the estimates of solutions of Problem B for the equation (1.6).

Theorem 3.1 Suppose that the first order complex equation (1.6) satisfies Condition C. Then

any solution w(z) of Problem B for the complex equation (1.6) satisfies the conditions

Cβ [w(z), D] < M3, Lp0 [|wz̄|+ |wz|,D] ≤M4, (3.1)

in which β = min(1 − 2/p0, α), k = k(k0, k1, k2, k3), Mj = Mj(q0, p0, β, k,D) (j = 3, 4) are

positive constants.

Proof Since the solution w(z) of Problem B for the complex equation (1.6) can be expressed

as (2.18), and the analytic function Φ(z) possesses the properties in (2.19), it is necessary to

consider any solution W (z) = T̃ ω of the complex equation:

Wz̄ = Q1(z)Wz +Q2(z)W z̄ +A1(z)W +A2(z)W̄ +A(z),

A(z) = Q1(z)Φ
′(z) +Q2(z)Φ′(z) +A1(z)Φ(z) +A2(z)Φ(z) +A3(z),

}
z ∈ D, (3.2)
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where A(z) ∈ Lp0(D).

We first verify the uniqueness of solutions of the homogeneous problem B0 with the index

K ≥ 0, i.e., the solutionW (z) ≡ 0 of the homogeneous problem B0 for the homogeneous equation

Wz̄ = Q1(z)Wz +Q2(z)W z̄ +A1(z)W +A2(z)W in D (3.3)

with the index K ≥ 0. The solution W (z) of (3.3) can be expressed as

W (z) = Ψ[ζ(z)]eϕ(z) in D, (3.4)

where ζ(z) = η(χ(z)) is a homeomorphism in D, which quasiconformally maps D onto the N+1-

connected circular domain G with boundary L = ζ(Γ) in {|ζ| < 1}, such that three points on Γ

are mapped onto three points on L respectively, Ψ(ζ) is an analytic function in G, ϕ(z) = iT̃1g(z),

χ(z) = z + Th are the solutions of the complex equations

ϕ(z) = iT̃1g, χ(z) = z + Th (3.5)

of the complex equations

ϕz̄ = [Q1 +Q2Wz/Wz]ϕz +A1 +A2W/W, in D,

χz̄ = [Q1 +Q2Wz/Wz]χz in D, (3.6)

respectively, T̃1g is a double integral satisfying the modified Dirichlet boundary condition in D,

χ(z) is a homeomorphism in D, ζ = η(χ) is a univalent analytic function, which conformally

maps E = χ(D) onto the domain G, ζ(z) = η[χ(z)] in D, and Ψ(ζ) is an analytic function in G.

Since S̃h = [T̃ h]z possesses the properties in (2.20) and (2.21), and S̃h has the similar properties,

we can get

Lp0 [g(z), D] ≤ Lp0 [|A1|+ |A2|,D]/(1− q0Λ̃p0),

Lp0 [h(z), D] ≤ Lp0 [|A1|+ |A2|, D]/(1− q0Λp0).

By the principle of contract mapping, we can obtain that ψ(z), χ(z) of the equations in (3.6),

and ψ(z), χ(z), ζ(z) satisfy the estimates

Cβ [ϕ,D] ≤ k4, Lp0 [|ϕz̄|+ |ϕz|, D] ≤ k4, Lp0 [|χz̄|+ |χz|, D] ≤ k5,

Cβ [ζ(z),D] ≤ k4, Cβ [z(ζ), G] ≤ k4, (3.7)

in which β = min(α, 1 − 2/p0), p0 (2 < p0 ≤ p), kj = kj(q0, p0, β, k0, k1, D) (j = 4, 5) are non-

negative constants dependent on q0, p0, β, k0, k1, D, and Ψ[ζ(z)] = T̃ ω satisfies the the boundary

condition

Re[λ(z(ζ))Ψ(ζ)] = h(z(ζ)) in L (3.8)

of homogeneous Problem B for analytic functions. According to Theorem 6.2, Chapter V, [6], it

follows Ψ(ζ) ≡ 0 in G.

If the index K < 0, we can use the method of Theorem 4.1, Chapter II, [4] to verify Problem

B0 at most has a solution.
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Denote 4d = minz∈Γ |z| and D1 = {|z| ≤ d}, D2 = {d < |z| ≤ 2d}, D3 = {2d < |z| ≤
3d}, D4 = {3d < |z| ≤ 4d}, and construct two continuously differential functions

τ1(z) =


0 in D1,

1 in D\{D1 ∪D2},

τ1(z) in D2,

τ2(z) =


1 in D1 ∪D2,

0 in D\{D1 ∪D2 ∪D3},

τ2(z) in D3,

where 0 ≤ τ1(z) ≤ 1 in D2 and 0 ≤ τ2(z) ≤ 1 in D3. From (3.2), we see that two functions

W̃ (z) = τ1(z)z
−KW (z) and Ŵ (z) = τ2(z)W (z) are the solutions of following complex equations

W̃z̄ = Q1W̃z +Q2W̃ z̄ +A1(z)W̃ + [A2(z)τ1z
−K/τ1z−K ]W̃ + Ã,

Ã = [(τ1z
−K)z̄ −Q1(τ1z

−K)z]W −Q2(τ1z−K)zW + τ1z
−KA(z) in D,

Ŵz̄ = Q1Ŵz +Q2Ŵ z̄ +A1(z)Ŵ + [A2(z)τ2(z)/τ2(z)]Ŵ + Â,

Â = [τ1z̄ −Q1τ1z]W −Q2τ1zW + τ2(z)A(z) in D, (3.9)

and satisfy the boundary conditions

Re[Λ(z)W̃ (z)] = h(z) on Γ, Re[Λ(z)Ŵ (z)] = 0 on Γ, (3.10)

respectively. The indexes of above boundary value problems are equal to K = 0, and the

function W (z) is bounded in D from (2.19), (2.20), (3.4) and (3.7). Moreover by using Theorem

4.3, Chapter II, [4], we can obtain the estimates

Cβ [W̃ (z), D] ≤M5, Lp0 [|W̃z̄|+ |W̃z|, D] ≤M6,

Cβ [Ŵ (z), D] ≤M7, Lp0 [|Ŵz̄|+ |Ŵz|, D] ≤M8,

where Mj =Mj(q0, p, β, k,D) (j = 5, 6, 7, 8) are positive constants. In particular we have

Cβ [W (z),D\{D1 ∪D2}] ≤M5, Lp0 [|Wz̄|+ |Wz|, D\{D1 ∪D2}] ≤M6,

Cβ [W (z), D1 ∪D2] ≤M7, Lp0 [|Wz̄|+ |Wz|, D1 ∪D2] ≤M8.

Combining the above estimates, we get

Cβ [W (z), D] ≤M9 =M9(M5,M7, τ1, τ2, D),

Lp0 [|Wz̄|+ |Wz|,D] ≤M10 =M10(M6,M8, τ1, τ2, D). (3.11)

�

4. The solvability of modified Riemann-Hilbert problem for elliptic
complex equations in multiply connected domains

Finally we prove the solvability of Problem B for the equation (1.1).

Theorem 4.1 Under the conditions in Theorem 3.1, Problem B for (1.6) is solvable.

Proof We introduce the quasi-linear elliptic complex equation with the parameter t ∈ [0, 1]:

wz̄ − tF (z, w,wz) = A(z), (4.1)
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where A(z) is any measurable function in D and A(z) ∈ Lp0(D) (2 < p0 ≤ p). When t = 0,

it is not difficult to see that there exists a unique solution w(z) of Problem B for the complex

equation (4.1), which possesses the form

w(z) = Φ(z) + ψ(z), ψ(z) = T̃A, (4.2)

where T̃A is stated as in (2.20), Φ(z) is an analytic function in D and satisfies the boundary

conditions

Re[λ(z)Φ(z)] = r(z)− Re[λ(z)ψ(z)] + h(z), z ∈ Γ,

Im[λ(aj)Φ(aj)] = bj − Im[λ(aj)ψ(aj)], j ∈ J. (4.3)

From Theorem 3.1, we see that w(z) ∈ B = Cβ(D)∩W 1
p0
(D). Suppose that when t = t0(0 ≤ t0 <

1), Problem B for the complex equation (4.1) has a unique solution, we shall prove that there

exists a neighborhood of t0 : E = {|t − t0| ≤ δ, 0 ≤ t ≤ 1}, δ (> 0) is a small positive constant,

so that for every t ∈ E and any function A(z) ∈ Lp0(D), Problem B for (4.1) is solvable. In fact,

the complex equation (4.1) can be written in the form

wz̄ − t0F (z, w,wz) = (t− t0)F (z, w,wz) +A(z). (4.4)

We arbitrarily select a function w0(z) ∈ B = Cβ(D) ∩W 1
p0
(D), in particular w0(z) = 0 on D.

Let w0(z) be replaced into the position of w(z) in the right hand side of (4.4). By Condition C,

it is obvious that

B0(z) = (t− t0)F (z, w0, w0z) +A(z) ∈ Lp0(D). (4.5)

Note that (4.4) has a solution w1(z) ∈ B. Applying the successive iteration, we can find out a

sequence of functions: wn(z) ∈ B, n = 1, 2, . . . , which satisfy the complex equations

wn+1z̄ − t0F (z, wn+1, wn+1z) = (t− t0)F (z, wn, wnz) +A(z), n = 1, 2, . . . . (4.6)

The difference of the above equations for n+ 1 and n is as follows:

(wn+1 − wn)z̄ − t0[F (z, wn+1, wn+1z)− F (z, wn, wnz)]

= (t− t0)[F (z, wn, wnz)− F (z, wn−1, wn−1z)], n = 1, 2, . . . . (4.7)

From Condition C, it can be seen that

F (z, wn+1, wn+1z)− F (z, wn, wnz)

= F (z, wn+1, wn+1z)− F (z, wn+1, wnz) + [F (z, wn+1, wnz)− F (z, wn, wnz)]

= Q̃n+1(wn+1 − wn)z + Ãn+1(wn+1 − wn),

|Q̃n+1| ≤ q0 < 1, Ãn+1 ∈ Lp0(D), n = 1, 2, . . . ,

Lp0 [F (z, wn, wnz)− F (z, wn−1, wn−1z), D]

≤ q0Lp0 [(wn − wn−1)z,D] + k0C[wn − wn−1, D]

≤ (q0 + k0)[Cβ [wn − wn−1,D] + Lp0 [|(wn − wn−1)z̄|+

|(wn − wn−1)z|, D] = (q0 + k0)Ln.
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Moreover, wn+1(z)− wn(z) satisfies the homogeneous boundary conditions

Re[λ(z)(wn+1(z)− wn(z))] = h(z), z ∈ Γ,

Im[λ(aj)(wn+1(aj)− wn(aj))] = 0, j ∈ J. (4.8)

On the basis of Theorem 3.1, we have

Ln+1 = Cβ [wn+1 − wn, D] + Lp0 [|(wn+1 − wn)z|+ |(wn+1 − wn)z|, D] ≤M11|t− t0|(q0 + k0)Ln,

where M11 = M3 +M4, M3, M4 is as stated in (3.1). Provided δ (> 0) is small enough, so that

η = δM11(q0 + k0) < 1, it can be obtained that

Ln+1 ≤ ηLn ≤ ηnL1 = ηn[Cβ(w1, D) + Lp0(|w1z̄|+ |w1z|,D)] (4.9)

for every t ∈ E. Thus

S(wn − wm) = Cβ [wn − wm, D] + Lp0 [|(wn − wm)z̄|+ |(wn − wm)z|, D]

≤ Ln + Ln−1 + · · ·+ Lm+1 ≤ (ηn−1 + ηn−2 + · · ·+ ηm)L1

= ηm(1 + η + · · ·+ ηn−m−1)L1 ≤ ηN+1 1− ηn−m

1− η
L1 ≤ ηN+1

1− η
L1 (4.10)

for n ≥ m > N, where N is a positive integer. This shows that S(wn − wm) → 0 as n,m → ∞.

Following the completeness of the Banach space B = Cβ(D) ∩ W 1
p0
(D), there is a function

w∗(z) ∈ B, such that when n→ ∞,

S(w − w∗) = Cβ [wn − w∗, D] + Lp0 [(wn − w∗)z̄|+ |(wn − w∗)z|, D] → 0.

By Condition C, from (3.1) it follows that w∗(z) is a solution of Problem B for (4.4), i.e., (4.1)

for t ∈ E. It is easy to see that the positive constant δ is independent of t0 (0 ≤ t0 < 1). Hence

from that Problem B for the complex equation (4.4) with t = t0 = 0 is solvable, we can derive

that when t = δ, 2δ, . . . , [1/δ]δ, 1, Problem B for (4.4) are solvable, especially Problem B for (4.4)

with t = 1 and A(z) = 0, namely Problem B for (1.6) has a unique solution. �

Theorem 4.2 Let the complex equation (1.1) satisfy Condition C. Then Problem A for (1.1)

possesses the following solvability results.

(1) If the index K > N − 1, then Problem A for (1.1) is solvable, and its general solution

includes 2K −N + 1 arbitrary real constants.

(2) If 0 ≤ K ≤ N − 1, then Problem A has N −K solvability conditions, and its general

solution is dependent on K + 1 arbitrary real constants.

(3) If K < 0, then Problem A has N − 2K − 1 solvability conditions.

Proof Let the solution w(z) of Problem B for (1.6) be substituted into the boundary condition

(1.7). If the function h(z) = 0, z ∈ Γ, i.e.,{
hj = 0, j = 1, . . . , N, if K ≥ 0,

hj = 0, j = 0, 1, . . . , N, h±m = 0, m = 1, . . . ,−K − 1, if K < 0,

then the function w(z) is just a solution of Problem A for (1.1). Hence the total number of
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above equalities is the total of solvability conditions as stated in this theorem. Also note that

the real constants bj (j ∈ J) in (1.9) are arbitrarily chosen. This shows that the general solution

of Problem A for (1.1) includes the number of arbitrary real constants as stated in the theorem.

�
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