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Abstract A new system of set-valued variational inclusions involving generalized H(·, ·)-
accretive mapping in real q-uniformly smooth Banach spaces is introduced, and then based on
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1. Introduction

In 1994, Hassouni and Moudafi [1] introduced and studied a class of variational inclusions

and developed a perturbed algorithm for finding approximate solutions of the variational inclu-

sion. Since then, Adly [2], Ding [3], Ding and Luo [4], Huang [5, 6], Huang et al. [7], Ahmad and

Ansari [8] have obtained some important extensions of the results in various different assump-

tions. For more details, we refer to [1–26] and the references therein.

In 2001, Huang and Fang [9] were the first to introduce the generalized m-accretive map-

ping and gave the definition of the resolvent operator for the generalized m-accretive mapping

in Banach spaces. Since then a number of researchers investigated several classes of generalized

m-accretive mappings such as H-accretive, (H, η)-accretive and (A, η)-accretive mappings, see

for example [4, 10–22]. Recently, Zou and Huang [23, 24] and Kazmi et al. [20] introduced and s-

tudied a class of H(·, ·)-accretive mappings in Banach spaces, a natural extension of M -monotone

mapping and studied variational inclusions involving these mappings. Luo and Huang [25] in-

troduced and studied a new class of B-monotone mappings in Banach spaces, an extension of

H-monotone mapping [13]. They showed some properties of the proximal-point mapping associ-
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ated with B-monotone mapping and obtained some applications for solving variational inclusions

in Banach spaces.

Recently, Kazmi et al. [26] introduced a class of accretive mappings called generalizedH(·, ·)-
accretive mappings, a natural generalizition of accretive (monotone) mapping studied in [13–

15, 22, 23, 25] in Banach spaces. They proved that the proximal-point mapping of the generalized

H(·, ·)-accretive mapping is single-valued and Lipschitz continuous and they also studied a system

of generalized variational inclusions involving generalized H(·, ·)-accretive mappings in real q-

uniformly smooth Banach spaces.

Motivated and inspired by the research work going on in this field, we introduce and study

a new system of set-valued variational inclusions involving generalized H(·, ·)-accretive mapping

in real q-uniformly smooth Banach spaces, which include many systems of variational inclusions

studied by others in recent years. By using the properties of the resolvent operator associated with

generalized H(·, ·)-accretive mappings, we explore the approximation solvability of the above-

mentioned system of set-valued variational inclusions. The results presented in this paper extend

and improve the corresponding results in the literature.

2. Preliminaries

Let E be a real Banach space with its norm ∥ · ∥, E∗ the topological dual of E, and d the

metric induced by the norm ∥ · ∥. We denote by 2E , ⟨·, ·⟩ and CB(E) the family of all nonempty

subsets of E, the dual pair of E and E∗, and the family of all nonempty closed bounded subsets

of E, respectively. Let D(·, ·) be the Hausdorff metric on CB(E) defined by

D(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(A, y)},

where d(x,B) = infy∈B d(x, y) and d(A, y) = infx∈A d(x, y).

The following concepts and results are needed in the sequel.

Definition 2.1 ([27]) For q > 1, a mapping Jq : E −→ 2E
∗
is said to be generalized duality

mapping, if it is defined by

Jq(x) = {f ∈ E∗ : ⟨x, f⟩ = ∥x∥q, ∥x∥q−1 = ∥f∥}, ∀x ∈ E.

In particular, J2 is the usual normalized duality mapping on E. It is well known that [2]

Jq(x) = ∥x∥q−2J2(x), ∀x(̸= 0) ∈ E.

Note that if E ≡ H, a real Hilbert space, then J2 becomes the identity mapping on H.

Definition 2.2 ([27]) A Banach space E is called smooth if, for every x ∈ E with ∥x∥ = 1,

there exists a unique f ∈ E∗ such that ∥f∥ = f(x) = 1.

The modulus of smoothness of E is the function ρE : [0,∞) −→ [0,∞), defined by

ρE(τ) = sup{∥x+ y∥+ ∥x− y∥
2

− 1 : x, y ∈ E, ∥x∥ = 1, ∥y∥ = τ}.

Definition 2.3 ([27]) The Banach space E is said to be
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(i) Uniformly smooth if limτ→0
ρE(τ)

τ = 0;

(ii) q-uniformly smooth, for q > 1, if there exists a constant c > 0 such that ρE(τ) ≤
cτ q, τ ∈ [0,∞).

It is well known that Lq(or lq) is [22]{
q-uniformly smooth, if 1 < q ≤ 2,

2-uniformly smooth, if q ≥ 2.

Note that if E is uniformly smooth, Jq becomes single-valued. In the study of characteristic

inequalities in q-uniformly smooth Banach space, Xu [27] established the following lemma.

Lemma 2.4 Let q > 1 be a real number and let E be a smooth Banach space. Then E is

q-uniformly smooth if and only if there exists a constant cq > 0 such that for every x, y ∈ E

∥x+ y∥q ≤ ∥x∥q + q⟨y, Jq(x)⟩+ cq∥y∥q.

Definition 2.5 ([4]) Let E be a real uniformly smooth Banach space, A : E → CB(E). A

mapping N : E×E → E is said to be α-strongly accretive with respect to A in the first argument

if there exists a constant α > 0 such that

⟨N(w1, ·)−N(w2, ·), Jq(u− v)⟩ ≥ α∥u− v∥q, ∀u, v ∈ E,w1 ∈ A(u), w2 ∈ A(v).

Similarly, we can define β-strongly accretive with respect to A in the second argument.

Lemma 2.6 ([28]) Suppose that q > 1. Then the following inequality holds

ab ≤ 1

q
aq +

q − 1

q
b

q−1
q

for arbitrary positive real numbers a, b.

Definition 2.7 A set-valued mapping s : E → 2E is said to be ξ-D-Lipschitz continuous if there

exists ξ > 0 such that

D(s(x), s(y)) ≤ ξ∥x− y∥, ∀x, y ∈ E.

Throughout the rest of the paper unless otherwise stated, we assume that E is q-uniformly

smooth Banach space.

Definition 2.8 A mapping A : E → E is said to be

(i) Accretive if ⟨Ax−Ay, Jq(x− y)⟩ ≥ 0, ∀x, y ∈ E;

(ii) Strictly accretive if ⟨Ax−Ay, Jq(x− y)⟩ > 0, ∀x, y ∈ E and equality holds if and only

if x = y;

(iii) δ-strongly accretive if there exists a constant δ > 0 such that ⟨Ax− Ay, Jq(x− y)⟩ ≥
δ∥x− y∥q, ∀x, y ∈ E.

Definition 2.9 ([23]) Let A,B : E → E be single-valued mappings and H : E × E → E be

mapping.

(i) H(A, ·) is said to be α-strongly accretive with respect to A if there exists a constant

α > 0 such that ⟨H(Ax, u)−H(Ay, u), Jq(x− y)⟩ ≥ α∥x− y∥q, ∀x, y ∈ E;
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(ii) H(·, B) is said to be β-relaxed accretive with respect to B if there exists a constant

β > 0 such that ⟨H(u,Bx)−H(u,By), Jq(x− y)⟩ ≥ −β∥x− y∥q, ∀x, y ∈ E;

(iii) H(·, ·) is said to be αβ-symmetric accretive with respect to A and B, if H(A, ·) is

α-strongly accretive with respect to A and H(·, B) is β-relaxed accretive with respect to B with

α ≥ β, and α = β if and only if x = y, ∀x, y, u ∈ E;

(iv) H(·, ·) is said to ξ-Lipschitz continuous with respect to the first argument if there exists

a constant ξ > 0 such that ∥H(x, u)−H(y, u)∥ ≤ ξ∥x− y∥, ∀x, y, u ∈ E;

(v) H(·, ·) is said to η-Lipschitz continuous with respect to the second argument if there

exists a constant η > 0 such that ∥H(u, x)−H(u, y)∥ ≤ η∥x− y∥, ∀x, y, u ∈ E.

Definition 2.10 ([25]) Let T : E → 2E ,M : E × E → 2E be set-valued mappings, and

f, g : E → E be single-valued mappings.

(i) T is accretive if ⟨u− v, Jq(x− y)⟩ ≥ 0, ∀x, y ∈ E, ∀u ∈ Tx, v ∈ Ty;

(ii) T is strictly accretive if ⟨u− v, Jq(x− y)⟩ > 0, ∀x, y ∈ E, ∀u ∈ Tx, v ∈ Ty and equality

holds if and only if x = y;

(iii) T is r-strongly accretive if there exists a constant r > 0 such that ⟨u− v, Jq(x− y)⟩ ≥
r∥x− y∥q, ∀x, y ∈ E, ∀u ∈ Tx, v ∈ Ty;

(iv) T is s-relaxed accretive if there exists a constant s > 0 such that ⟨u− v, Jq(x− y)⟩ ≥
−s∥x− y∥q, ∀x, y ∈ E, ∀u ∈ Tx, v ∈ Ty;

(v) M(f, ·) is said to be α-strongly accretive with respect to f if there exists a constant

α > 0 such that ⟨u− v, Jq(x− y)⟩ ≥ α∥x− y∥q, ∀x, y, w ∈ E, ∀u ∈ M(f(x).w), v ∈ M(f(y), w);

(vi) M(·, g) is said to be β-relaxed accretive with respect to g if there exists a constant

β > 0 such that ⟨u− v, Jq(x− y)⟩ ≥ −β∥x− y∥q, ∀x, y, w ∈ E, ∀u ∈ M(w, g(x)), v ∈ M(w, g(y));

(vii) M(·, ·) is said to be αβ-symmetric accretive with respect to f and g, if M(f, ·) is

α-strongly accretive with respect to f and M(·, g) is β-relaxed accretive with respect to g with

α ≥ β, and α = β if and only if x = y.

Now, we define the following concept.

Definition 2.11 ([26]) Let A,B, f, g : E → E and H : E × E → E be single-valued mappings.

Let M : E × E → 2E be a set-valued mapping. The mapping M is said to be generalized αβ-

H(·, ·)-accretive with respect to A,B, f and g, if M(f, g) is αβ-symmetric accretive with respect

to f and g, and (H(A,B) + λM(f, g))(E) = E for every λ > 0.

Lemma 2.12 ([26]) Let A,B, f, g : E → E; let H : E × E → E be α′β′-symmetric accretive

mapping with respect to A and B and α′ > β′, and let M : E × E → 2E be a generalized

αβ−H(·, ·)-accretive mapping with respect to mappings A,B, f and g. If the following inequality:

⟨u−v, Jq(x−y)⟩ ≥ 0, holds for all (v, y) ∈ Graph(M(f, g)), then (u, x) ∈ Graph(M(f, g)), where

Graph(M(f, g)) = {(u, x) ∈ E × E : (u, x) ∈ M(f(x), g(x))}.

Lemma 2.13 ([26]) Let A,B, f, g : E → E and let H : E×E → E be α′β′-symmetric accretive

mapping with respect to A and B. Let M : E × E → 2E be a generalized αβ-H(·, ·)-accretive
mapping with respect to mappings A,B, f and g. Then the mapping (H(A,B) + λM(f, g))−1
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is single-valued for all λ > 0.

Definition 2.14 ([26]) Let A,B, f, g : E → E be single-valued mappings and let H : E×E → E

be α′β′-symmetric accretive mapping with respect to A and B. Let M : E × E → 2E be

generalized αβ-H(·, ·)-accretive mapping with respect to mappings A,B, f and g. The proximal-

point mapping R
H(·,·)
M(·,·),λ : E → E is defined by

R
H(·,·)
M(·,·),λ(x) = (H(A,B) + λM(f, g))−1(x), ∀x ∈ E.

Lemma 2.15 ([26]) Let A,B, f, g : E → E and let H : E×E → E be α′β′-symmetric accretive

mapping with respect to A and B. Suppose that M : E × E → 2E is a generalized αβ-H(·, ·)-
accretive mapping with respect to mappings A,B, f and g. Then the proximal-point mapping

R
H(·,·)
M(·,·),λ : E → E is Lipschitz continuous with constant L, that is,

∥RH(·,·)
M(·,·),λ(x

∗)−R
H(·,·)
M(·,·),λ(y

∗)∥ ≤ L∥x∗ − y∗∥, ∀x∗, y∗ ∈ E,

where L = 1
[λ(α−β)+(α′−β′)] .

3. System of set-valued variational inclusions and convergence analysis

Throughout the rest of the paper unless otherwise stated, we assume that, for each i =

1, 2, Ei− is qi-uniformly smooth Banach space with norm ∥ · ∥i.
Let A1, B1, f1, g1 : E1 → E1, A2, B2, f2, g2 : E2 → E2,m : E2 → E1, n : E1 → E2 be

nonlinear mappings, and G : E1 → 2E1 , Q : E2 → 2E2 , U : E1 → 2E1 and V : E2 → 2E2 any four

set-valued mappings. Let F1,H1 : E1×E2 → E1, F2,H2 : E1×E2 → E2 be nonlinear mappings,

and let M1 : E1×E1 → 2E1 and M2 : E2×E2 → 2E2 be generalized α1β1−H1(·, ·)-accretive and
generalized α2β2 − H2(·, ·)-accretive mappings, respectively. We consider the following system

of set-valued variational inclusions (SSVI): find (x, y) ∈ E1 × E2, (s, v) ∈ G(x) × Q(y), (u, t) ∈
U(x)× V (y) such that  m(y) ∈ F1(s, v) +M1(f1(x), g1(x))

n(x) ∈ F2(u, t) +M2(f2(y), g2(y))

We remark that for suitable choices of the mappings m, n, G, U , V , A1, A2, B1, B2,

f1, f2, F1, F2, g1, g2, H1, H2, M1, M2 and the spaces E1, E2 reduce to various classes of

system of variational inclusions and system of variational inequalities, see for example [11, 13–

17, 19, 21, 22, 26] and the references therein.

Theorem 3.1 (x, y) ∈ E1×E2, (s, v) ∈ G(x)×Q(y), (u, t) ∈ U(x)×V (y) are solutions of (SSVI)

if and only if (x, y, u, v, s, t) satisfies x = R
H1(·,·)
M1(·,·),λ1

[H1(A1, B1)(x)− λ1F1(s, v) + λ1m(y)]

y = R
H2(·,·)
M2(·,·),λ2

[H2(A2, B2)(y)− λ2F2(u, t) + λ2n(x)]
(3.1)

where λ1, λ2 > 0 are constants;

R
H1(·,·)
M1(·,·),λ1

(x) = (H1(A1, B1) + λ1M1(f1, g1))
−1(x);
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R
H2(·,·)
M2(·,·),λ2

(y) = (H2(A2, B2) + λ2M2(f2, g2))
−1(y),∀x ∈ E1, y ∈ E2.

Proof This is an immediate consequence of the definitions of R
H1(·,·)
M1(·,·),λ1

, R
H2(·,·)
M2(·,·),λ2

, and hence,

is omitted.

The relation (3.1) and Nadler [29] allow us to suggest the following iterative algorithm.

Algorithm 3.2 Let

z′ = H1(A1, B1)(x)− λ1(F1(s, v)−m(y))

and

z′′ = H2(A2, B2)(y)− λ2(F2(u, t)− n(x))

for convenience.

For given (x0, y0) ∈ E1 × E2, (s0, v0) ∈ G(x0) × Q(y0), (u0, t0) ∈ U(x0) × V (y0), (z
′
0, z

′′
0 ) ∈

E1 × E2, compute

z′1 = H1(A1, B1)(x0)− λ1(F1(s0, v0))−m(y0)),

z′′1 = H2(A2, B2)(y0)− λ2(F2(u0, t0)− n(x0)).

For (z′1, z
′′
1 ) ∈ E1 × E2, we take (x1, y1) ∈ E1 × E2 such that x1 = R

H1(·,·)
M1(·,·),λ1

(z′1), y1 =

R
H2(·,·)
M2(·,·),λ2

(z′′1 ).

Then, by Nadler [29], there exist (s1, v1) ∈ G(x1) × Q(y1), (u1, t1) ∈ U(x1) × V (y1) such

that

∥u1 − u0∥ ≤ (1 + 1)D(U(x1), U(x0)),

∥v1 − v0∥ ≤ (1 + 1)D(Q(y1), Q(y0)),

∥s1 − s0∥ ≤ (1 + 1)D(G(x1), G(x0)),

∥t1 − t0∥ ≤ (1 + 1)D(V (y1), V (y0)),

where D(·, ·) is the Hausdorff metric on CB(E1) (for the sake of convenience we also denote by

D(·, ·) the Hausdorff metric on CB(E2)).

Compute

z′2 = H1(A1, B1)(x1)− λ1(F1(s1, v1))−m(y1)),

z′′2 = H2(A2, B2)(y1)− λ2(F2(u1, t1)− n(x1)).

By introduction, we can obtain sequences (xk, yk) ∈ E1×E2, (sk, vk) ∈ G(xk)×Q(yk), (uk, tk) ∈
U(xk)× V (yk), (z

′
k, z

′′
k ) ∈ E1 × E2 by the iterative scheme:

xk = R
H1(·,·)
M1(·,·),λ1

(z′k), yk = R
H2(·,·)
M2(·,·),λ2

(z′′k ).

uk ∈ U(xk), ∥uk+1 − uk∥ ≤ (1 +
1

k + 1
)D(U(xk+1), U(xk)),

vk ∈ Q(yk), ∥vk+1 − vk∥ ≤ (1 +
1

k + 1
)D(Q(yk+1), Q(yk)),

sk ∈ G(xk), ∥sk+1 − sk∥ ≤ (1 +
1

k + 1
)D(G(xk+1), G(xk)),
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tk ∈ V (yk), ∥tk+1 − tk∥ ≤ (1 +
1

k + 1
)D(V (yk+1), V (yk)),

z′k+1 = H1(A1, B1)(xk)− λ1(F1(sk, vk)−m(yk)),

z′′k+1 = H2(A2, B2)(yk)− λ2(F2(uk, tk)− n(xk))

for k = 0, 1, 2, . . . . We now study the convergence analysis of Algorithm 3.2.

Theorem 3.3 For each i = 1, 2, let Ei be qi-uniformly smooth Banach space; let Ai, Bi, fi, gi :

Ei → Ei be single-valued mappings. Let Hi : E1 × E2 → Ei be (αi, δi) mixed Lipschitz

continuous and α′
iβ

′
i-symmetric accretive mappings with respect to Ai and Bi, which is ξi, ηi

Lipschitz continuous.

Let M1 : E1 × E1 → 2E1 be generalized α1β1 −H1(·, ·)-accretive mappings with respect to

A1, B1, f1 and g1, and M2 : E2 × E2 → 2E2 be generalized α2β2 − H2(·, ·)-accretive mappings

with respect to A2, B2, f2 and g2.

Fi : E1 × E2 → Ei is Lipschitz continuous in both arguments with constants λFi and λFi ,

respectively. G : E1 → CB(E1), Q : E2 → CB(E2), U : E1 → CB(E1), V : E2 → CB(E2) be

D− Lipschitz continuous mappings with constants λDG, λDQ, λDU and λDV , respectively. Let

m : E2 → E1, n : E1 → E2 be Lipschitz continuous with constants λm and λn, respectively. F1

is ω1−strongly accretive with respect to G in the first argument and F2 is ω2-strongly accretive

with respect to V in the second argument. If there exist λ1 > 0 and λ2 > 0, such that 0 < (s′ + σ′ + q1
√
σ′ + τ ′ + q2

√
τ ′)L1 < 1

0 < (s′′ + σ′ + q1
√
σ′ + τ ′ + q2

√
τ ′)L2 < 1

(3.2)

where s′ = (1 − q1(α
′
1 − β′

1) + cq1(α1ξ1 + δ1η1)
q1)

1
q1 , s′′ = (1 − q2(α

′
2 − β′

2) + cq2(α2ξ2 +

δ2η2)
q2)

1
q2 , L1 = 1

[λ1(α1−β1)+(α′
1−β′

1)]
, L2 = 1

[λ2(α2−β2)+(α′
2−β′

2)]
, σ′ = max{1−λ1q1ω1+λ1λmq1−

λ1λm, λ1λm, θ1, θ2}, τ ′ = max{1−λ2q2ω2+λ2λnq2−λ2λn, λ2λn, θ3, θ4}, and θ1 = q1
√
cq1λ1λF1λDG,

θ2 = q1
√
cq1(λ1λF1λDQ + λ1λm), θ3 = q2

√
cq2(λ2λF2λDU + λn), θ4 = q2

√
cq2λ2λF2λDV .

Then the problem (SSVI) admits a solution (x, y, u, v, s, t) and the iterative sequences

{xk}, {yk}, {uk}, {vk}, {sk} and {tk} generalized by Algorithm 3.2 converge to x, y, u, v, s and

t, respectively.

Proof From Algorithm 3.2 we have

∥z′k+1 − z′k∥

= ∥H1(A1, B1)(xk)− λ1(F1(sk, vk))−m(yk))−

[H1(A1, B1)(xk−1)− λ1(F1(sk−1, vk−1)−m(yk−1))]∥

≤ ∥H1(A1, B1)(xk)−H1(A1, B1)(xk−1)− (xk − xk−1)∥+

∥xk − xk−1 − λ1[F1(sk, vk)−m(yk)− (F1(sk−1, vk−1)−m(yk−1))]∥. (3.3)

Since, for i = 1, 2, Hi is α′
iβ

′
i-symmetric with respect to Ai and Bi, and (αi, δi) mixed

Lipschitz continuous, and Ai, Bi is ξi, ηi Lipschitz continuous, we have

∥H1(A1, B1)(xk)−H1(A1, B1)(xk−1)− (xk − xk−1)∥q1
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≤ ∥xk − xk−1∥q1 − q1⟨H1(A1, B1)(xk)−H1(A1, B1)(xk−1), Jq1(xk − xk−1)⟩+

cq1∥H1(A1, B1)(xk)−H1(A1, B1)(xk−1)∥q1

≤ (1− q1(α
′
1 − β′

1) + cq1(α1ξ1 + δ1η1)
q1)∥xk − xk−1∥q1 . (3.4)

Since F1 is Lipschitz continuous in both arguments, G,Q are D-Lipschitz continuous, and

m is Lipschitz continuous, we have

∥F1(sk, vk)−m(yk)− (F1(sk−1, vk−1)−m(yk−1))∥

= ∥F1(sk, vk)− F1(sk−1, vk) + F1(sk−1, vk)− F1(sk−1, vk−1)− (m(yk)−m(yk−1))∥

≤ ∥F1(sk, vk)− F1(sk−1, vk)∥+ ∥F1(sk−1, vk)− F1(sk−1, vk−1)∥+ ∥m(yk)−m(yk−1)∥

≤ λF1∥sk − sk−1∥+ λF1∥vk − vk−1∥+ λm∥yk − yk−1∥

≤ λF1(1 +
1

k
)D(G(xk), G(xk−1)) + λF1(1 +

1

k
)D(Q(yk), Q(yk−1)) + λm∥yk − yk−1∥

≤ (1 +
1

k
)λF1λDG∥xk − xk−1∥+ (1 +

1

k
)λF1λDQ∥yk − yk−1∥+ λm∥yk − yk−1∥

= (1 +
1

k
)λF1λDG∥xk − xk−1∥+ [(1 +

1

k
)λF1λDQ + λm]∥yk − yk−1∥. (3.5)

Again, since F1 is ω1-strongly accretive with respect to G in the first argument, utilizing

(3.3) and Lemmas 2.4, 2.6, we have

∥xk − xk−1 − λ1[F1(sk, vk)−m(yk)− (F1(sk−1, vk−1)−m(yk−1))]∥q1

≤ ∥xk − xk−1∥q1 − λ1q1⟨F1(sk, vk)−m(yk)− (F1(sk−1, vk−1)−m(yk−1)), Jq1(xk − xk−1)⟩+

cq1λ
q1
1 ∥F1(sk, vk)−m(yk)− (F1(sk−1, vk−1)−m(yk−1))∥q1

= ∥xk − xk−1∥q1 − λ1q1⟨F1(sk, vk)− F1(sk−1, vk−1), Jq1(xk − xk−1)⟩+

λ1q1⟨m(yk)−m(yk−1), Jq1(xk − xk−1)⟩+

cq1λ
q1
1 ∥F1(sk, vk)−m(yk)− (F1(sk−1, vk−1)−m(yk−1))∥q1

≤ ∥xk − xk−1∥q1 − λ1q1ω1∥xk − xk−1∥q1 + λ1q1∥m(yk)−m(yk−1)∥ · ∥xk − xk−1∥q1+

cq1λ
q1
1 ∥F1(sk, vk)−m(yk)− (F1(sk−1, vk−1)−m(yk−1))∥q1

≤ (1− λ1q1ω1)∥xk − xk−1∥q1 + λ1q1λm∥yk − yk−1∥ · ∥xk − xk−1∥q1+

cq1λ
q1
1 ∥F1(sk, vk)−m(yk)− (F1(sk−1, vk−1)−m(yk−1))∥q1

≤ (1− λ1q1ω1)∥xk − xk−1∥q1 + λ1q1λm(
1

q1
∥yk − yk−1∥q1 +

q1 − 1

q1
∥xk − xk−1∥q1)+

cq1λ
q1
1 {(1 + 1

k
)λF1λDG∥xk − xk−1∥+ [(1 +

1

k
)λF1λDQ + λm]∥yk − yk−1∥}q1

= (1− λ1q1ω1 + λ1λm(q1 − 1))∥xk − xk−1∥q1 + λ1λm∥yk − yk−1∥q1+

{ q1
√
cq1λ1(1 +

1

k
)λF1λDG∥xk − xk−1∥+ q1

√
cq1λ1[(1 +

1

k
)λF1λDQ + λm]∥yk − yk−1∥}q1

≤ [(σ + q1
√
σ)∥xk − xk−1∥+ (σ + q1

√
σ)∥yk − yk−1∥]q1

which implies that

∥xk − xk−1 − λ1[F1(sk, vk)−m(yk)− (F1(sk−1, vk−1)−m(yk−1))]∥
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≤ (σ + q1
√
σ)∥xk − xk−1∥+ (σ + q1

√
σ)∥yk − yk−1∥, (3.6)

where

σ = max{1− λ1q1ω1 + λ1λmq1 − λ1λm, λ1λm, q1
√
cq1λ1(1 +

1

k
)λF1λDG,

q1
√
cq1λ1[(1 +

1

k
)λF1λDQ + λm]}.

Note that limk→∞ q1
√
cq1λ1(1+

1
k )λF1λDG = θ1, limk→∞ q1

√
cq1λ1[(1+

1
k )λF1λDQ+λm] = θ2,

where θ1 = q1
√
cq1λ1λF1λDG and θ2 = q1

√
cq1(λ1λF1λDQ + λ1λm). Utilizing (3.4) and (3.6), we

deduce from (3.3) that

∥z′k+1 − z′k∥ ≤ (s′ + σ + q1
√
σ)∥xk − xk−1∥+ (σ + q1

√
σ)∥yk − yk−1∥, (3.7)

where s′ = (1− q1(α
′
1 − β′

1) + cq1(α1ξ1 + δ1η1)
q1)

1
q1 .

On the other hand, again from Algorithm 3.2, we have

∥z′′k+1 − z′′k∥

= ∥H2(A2, B2)(yk)− λ2(F2(uk, tk))− n(xk))−

[H2(A2, B2)(yk−1)− λ2(F2(uk−1, tk−1)− n(xk−1))]∥

≤ ∥H2(A2, B2)(yk)−H2(A2, B2)(yk−1)− (yk − yk−1)∥+

∥yk − yk−1 − λ2[F2(uk, tk)− n(xk)− (F2(uk−1, tk−1)− n(xk−1))]∥. (3.8)

Utilizing the same arguments as those for (3.5), we have

∥H2(A2, B2)(yk)−H2(A2, B2)(yk−1)− (yk − yk−1)∥q2

≤ ∥yk − yk−1∥q2 − q2⟨H2(A2, B2)(yk)−H2(A2, B2)(yk−1), Jq2(yk − yk−1)⟩+

cq2∥H2(A2, B2)(yk)−H2(A2, B2)(yk−1)∥q2

≤ (1− q2(α
′
2 − β′

2) + cq2(α2ξ2 + δ2η2)
q2)∥yk − yk−1∥q2 . (3.9)

Since F2 is Lipschitz continuous in both arguments, U, V are D-Lipschitz continuous, and

n is Lipschitz continuous, we have

∥F2(uk, tk)− n(xk)− (F2(uk−1, tk−1)− n(xk−1))∥

= ∥F2(uk, tk)− F2(uk−1, tk) + F2(uk−1, tk)− F2(uk−1, tk−1)− (n(xk)− n(xk−1))∥

≤ ∥F2(uk, tk)− F2(uk−1, tk)∥+ ∥F2(uk−1, tk)− F2(uk−1, tk−1)∥+ ∥n(xk)− n(xk−1)∥

≤ λF2∥uk − uk−1∥+ λF2∥tk − tk−1∥+ λn∥xk − xk−1∥

≤ λF2(1 +
1

k
)D(U(xk), U(xk−1)) + λF2(1 +

1

k
)D(V (yk), V (yk−1)) + λn∥xk − xk−1∥

≤ (1 +
1

k
)λF2λDU∥xk − xk−1∥+ (1 +

1

k
)λF2λDV ∥yk − yk−1∥+ λn∥xk − xk−1∥

= [(1 +
1

k
)λF2λDU + λn]∥xk − xk−1∥+ (1 +

1

k
)λF2λDV ∥yk − yk−1∥. (3.10)

It follows that F2 is ω2-strongly accretive with respect to the first argument. Utilizing (3.10)

and Lemmas 2.4, 2.6 gives

∥yk − yk−1 − λ2[F2(uk, tk)− n(xk)− (F2(uk−1, tk−1)− n(xk−1))]∥q2
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≤ ∥yk − yk−1∥q2 − λ2q2⟨F2(uk, tk)− n(xk)− (F2(uk−1, tk−1)− n(xk−1)), Jq2(yk − yk−1)⟩+

cq2λ
q2
2 ∥F2(uk, tk)− n(xk)− (F2(uk−1, tk−1)− n(xk−1))∥q2

≤ ∥yk − yk−1∥q2 − λ2q2⟨F2(uk, tk)− F2(uk−1, tk−1), Jq2(yk − yk−1)⟩+

λ2q2⟨n(xk)− n(xk−1), Jq2(yk − yk−1)⟩+

cq2λ
q2
2 ∥F2(uk, tk)− n(xk)− (F2(uk−1, tk−1)− n(xk−1))∥q2

≤ ∥yk − yk−1∥q2 − λ2q2ω2∥yk − yk−1∥q2 + λ2q2∥n(xk)− n(xk−1)∥ · ∥yk − yk−1∥q2−1+

cq2λ
q2
2 ∥F2(uk, tk)− n(xk)− (F2(uk−1, tk−1)− n(xk−1))∥q2

≤ (1− λ2q2ω2)∥yk − yk−1∥q2 + λ2q2λn(
1

q2
∥xk − xk−1∥q2 +

q2 − 1

q2
∥yk − yk−1∥q2)+

cq2λ
q2
2 {[(1 + 1

k
)λF2λDU + λn]∥xk − xk−1∥+ (1 +

1

k
)λF2λDV ∥yk − yk−1∥}q2

= (1− λ2q2ω2 + λ2λn(q2 − 1))∥yk − yk−1∥q2 + λ2λn∥xk − xk−1∥q2+

{ q2
√
cq2λ2[(1 +

1

k
)λF2λDU + λn]∥xk − xk−1∥+ q2

√
cq2λ2(1 +

1

k
)λF2λDV ∥yk − yk−1∥}q2

≤ [(τ + q2
√
τ)∥xk − xk−1∥+ (τ + q2

√
τ)∥yk − yk−1∥]q2

which implies that

∥yk − yk−1 − λ2[F2(uk, tk)− n(xk)− (F2(uk−1, tk−1)− n(xk−1))]∥

≤ (τ + q2
√
τ)∥xk − xk−1∥+ (τ + q2

√
τ)∥yk − yk−1∥, (3.11)

where

τ = max{1− λ2q2ω2 + λ2λnq2 − λ2λn, λ2λn, q2
√
cq2λ2[(1 +

1

k
)λF2λDU + λn],

q2
√
cq2λ2(1 +

1

k
)λF2λDV }.

Note that limk→∞ q2
√
cq2λ2[(1+

1
k )λF2λDU +λn] = θ3, limk→∞ q2

√
cq2λ2(1+

1
k )λF2λDV = θ4,

where θ3 = q2
√
cq2λ2(λF2λDU + λn) and θ4 = q2

√
cq2λ2λF2λDV . Utilizing (3.9) and (3.11), we

deduce from (3.8) that

∥z′′k+1 − z′′k∥ ≤ (s′′ + τ + q2
√
τ)∥yk − yk−1∥+ (τ + q2

√
τ)∥xk − xk−1∥, (3.12)

where s′′ = (1− q2(α
′
2 − β′

2) + cq2(α2ξ2 + δ2η2)
q2)

1
q2 .

Adding (3.7) and (3.12), we have

∥z′k+1 − z′k∥+ ∥z′′k+1 − z′′k∥

≤ (s′ + σ + q1
√
σ)∥xk − xk−1∥+ (σ + q1

√
σ)∥yk − yk−1∥+

(s′′ + τ + q2
√
τ)∥yk − yk−1∥+ (τ + q2

√
τ)∥xk − xk−1∥

≤ (s′ + σ + q1
√
σ + τ + q2

√
τ)∥xk − xk−1∥+

(s′′ + τ + q2
√
τ + σ + q1

√
σ)∥yk − yk−1∥. (3.13)

Also from the iterative scheme, we have

∥xk − xk−1∥ = ∥RH1(·,·)
M1(·,·),λ1

(z′k)−R
H2(·,·)
M2(·,·),λ2

(z′k−1)∥ ≤ L1∥z′k − z′k−1∥ (3.14)
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where L1 = 1
[λ1(α1−β1)+(α′

1−β′
1)]

, and

∥yk − yk−1∥ = ∥RH2(·,·)
M2(·,·),λ2

(z′′k )−R
H2(·,·)
M2(·,·),λ2

(z′′k−1)∥ ≤ L2∥z′′k − z′′k−1∥ (3.15)

where L2 = 1
[λ2(α2−β2)+(α′

2−β′
2)]

.

Utilizing (3.14) and (3.15), we conclude from (3.13) that

∥z′k+1 − z′k∥+ ∥z′′k+1 − z′′k∥

≤ [(s′ + σ + q1
√
σ + τ + q2

√
τ)L1]∥z′k − z′k−1∥+

[(s′′ + τ + q2
√
τ + σ + q1

√
σ)L2]∥z′′k − z′′k−1∥. (3.16)

Observe that

lim
k→∞

σ = σ′ = max{1− λ1q1ω1 + λ1λmq1 − λ1λm, λ1λm, θ1, θ2}, (3.17)

lim
k→∞

τ = τ ′ = max{1− λ2q2ω2 + λ2λnq2 − λ2λn, λ2λn, θ3, θ4}. (3.18)

By (3.2), we know that 0 < s < 1, where

s = max{(s′ + σ′ +
q1
√
σ′ + τ ′ +

q2
√
τ ′)L1, (s

′′ + σ′ +
q1
√
σ′ + τ ′ +

q2
√
τ ′)L2}.

Now we take a fixed s0 ∈ (0, 1) arbitrarily. Then from (3.17) and (3.18) it follows that there

exists an integer k ≥ 1 such that for all k ≥ k,

(s′ + σ + q1
√
σ + τ + q2

√
τ)L1 < s0, (s′′ + σ + q1

√
σ + τ + q2

√
τ)L2 < s0, (3.19)

so, we obtain from (3.16) that

∥z′k+1 − z′k∥+ ∥z′′k+1 − z′′k∥ ≤ s0(∥z′k − z′k−1∥+ ∥z′′k − z′′k−1∥), ∀k ≥ k, (3.20)

which implies that {z′k} and {z′′k} are both Cauchy sequences. Thus, there exist z′ ∈ E1 and

z′′ ∈ E2 such that z′k → z′ and z′′k → z′′ as k → ∞.

From (3.14) and (3.15) it follows that {xk} and {yk} are also Cauchy sequences in E1 and

E2, respectively, that is, there exist x ∈ E1, y ∈ E2, such that xk → x and yk → y as k → ∞.

Also from the iterative scheme, we have

∥uk+1 − uk∥ ≤ (1 +
1

k + 1
)D(U(xk+1), U(xk)) ≤ (1 +

1

k + 1
)λDU∥xk+1 − xk∥,

∥vk+1 − vk∥ ≤ (1 +
1

k + 1
)D(Q(yk+1), Q(yk)) ≤ (1 +

1

k + 1
)λDQ∥yk+1 − yk∥,

∥sk+1 − sk∥ ≤ (1 +
1

k + 1
)D(G(xk+1), G(xk)) ≤ (1 +

1

k + 1
)λDG∥xk+1 − xk∥,

∥tk+1 − tk∥ ≤ (1 +
1

k + 1
)D(V (yk+1), V (yk)) ≤ (1 +

1

k + 1
)λDV ∥yk+1 − yk∥,

and hence {uk}, {vk}, {sk} and {tk} are also Cauchy sequences. Accordingly, there exist u, s ∈ E1

and v, t ∈ E2, such that uk → u, vk → v, sk → s and tk → t, respectively.

Now, we will show that u ∈ U(x), v ∈ Q(y), s ∈ G(x) and t ∈ V (y). Indeed, since uk ∈ U(xk)

and

d(uk, U(x)) ≤ max{d(uk, U(x)), sup
ω1∈U(x)

d(U(xk), ω1)}
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≤ max{ sup
ω2∈U(xk)

d(ω2, U(x)), sup
ω1∈U(x)

d(U(xk), ω1)}

= D(U(xk), U(x)),

we have

d(u,U(x)) ≤ ∥u− uk∥+ d(uk, U(x)) ≤ ∥u− uk∥+D(U(xk), U(x))

≤ ∥u− uk∥+ λDU∥xk − x∥ → 0, as k → ∞,

which implies that d(u,U(x)) = 0.

Taking into account that U(x) ∈ CB(E1), we deduce that u ∈ U(x). Similarly, we can show

that v ∈ Q(y), s ∈ G(x) and t ∈ V (y).

By the continuity ofH1,H2, A1, A2, B1, B2,m, n,R
H1(·,·)
M1(·,·),λ1

, R
H2(·,·)
M2(·,·),λ2

,G,Q,U, V, F1, F2 and

Algorithm 3.2, we know that x, y, u, v, s, t satisfy the following relation: x = R
H1(·,·)
M1(·,·),λ1

[H1(A1, B1)(x)− λ1F1(s, v) + λ1m(y)]

y = R
H2(·,·)
M2(·,·),λ2

[H2(A2, B2)(y)− λ2F2(u, t) + λ2n(x)]

By Theorem 3.1, (x, y, u, v, s, t) is a solution of problem (SSVI). This completes the proof.

�

4. An application

Condition (3.2) in Theorem 3.3 holds for some suitable value of constants, for example, we

now apply the results of Theorem 3.3 to Lp spaces. Assume p = 3 and tp is the unique solution

of the equation (p − 2)tp−1 + (p − 1)tp−2 − 1 = 0, 0 < t < 1, then Cp = (1 + tp−1
p )(1 + tp)

1−p.

Let q1 = q2 = 3, Cq1 = Cq2 = 2 −
√
2, α1 = α2 = α′

1 = α′
2 = 0.4, β1 = β2 = β′

1 = β′
2 = 0.1,

ξ1 = δ1 = η1 = 0.1, ξ2 = δ2 = η2 = 0.1, λ1 = λ2 = 10, ω1 = ω2 = 0.03, λm = λn = 0.01,

λF1
= λDG = λF1

= λDQ = 0.01, λF2
= λDU = λF2

= λDV = 0.01. Thus, if all the conditions

for Theorem 3.3 are satisfied, one can apply Theorem 3.3 to the approximation-solvability of the

following system of set-valued variational inclusion problem:

find (x, y) ∈ L3 × L3, (s, v) ∈ G(x)×Q(y), (u, t) ∈ U(x)× V (y) such that m(y) ∈ F1(s, v) +M1(f1(x), g1(x))

n(x) ∈ F2(u, t) +M2(f2(y), g2(y))

where corresponding mappings are above mentioned.
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