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Abstract In this paper, competitive neural networks with time-varying and distributed delays

are investigated. By utilizing Lyapunov functional methods, the global exponential stability of

periodic solutions of the neural networks is discussed on time scales. In addition, an example

is given to illustrate the effectiveness of the theoretical results.
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1. Introduction

Since Cohen and Grossberg proposed competitive neural networks (CNNs) as a new cellular

neural networks in 1983, CNNs have received a considerable interest and have been applied in

the image processing, pattern recognition, signal processing, optimization and control theory and

so on [1–13]. The interest of the study of the competitive neural networks lies in the fact that

models contain both the neural activity levels, the short-term memory (STM) representing rapid

changes in neuronal dynamics and the long-term memory (LTM) describing the slow dynamics

of the system.

The competitive neural networks (CNNs) was first studied by Cohen and Grossberg in [2].

Then the stability of CNNs attracted the attention of more researchers [3–13]. Undoubtedly,

Meyer-Baese made a huge contribution on studying the stability of CNNs [3–8]. The local

stability [3], the global stability [6], the robustness stability [7], the local uniform stability [4],

the local exponential stability [5] and the global exponential stability [8] of CNNs without delays

were studied by Meyer, respectively. In addition, the stability of CNNs was also studied by other

researchers [9–13]. Beyond that, the periodic behavior of competitive neural networks is also a

fast growing area of research [13].

Recently, many excellent results have been reported on stability of periodic solution of

several types of neural networks on time scales which not only unify the continuous-time and
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discrete-time domains but also “between” them [14–17]. However, there is still little work ded-

icated to studying the stability of periodic solutions for CNNs on time scales. Motivated by

all the above, in this paper, we will discuss global exponential stability of periodic solution for

competitive neural networks with time-varying and distributed delays on time scales.

To the best of our knowledge, this is the first time that investigation is carried out on

the stability problem for competitive neural networks on time scales. Consequently, the results

derived in this paper extend some previously existing results. In addition, by considering the

model with time-varying and distributed delays, a novel Lyapunov functional is proposed in our

paper, which leads to smaller computational burden. Compared with existing relevant results,

the criteria in this paper tend to be less conservative, such as, our results remove the requirement

that the activation functions are bounded and zero at the zero which are supposed in [14] and

[15], respectively. Therefore, our work is helpful to rich the results on the stability of neural

networks in academic circles.

In this paper, the model is described by the following form:

STM : x∆i (t) = −αi(t)xi(t) +
N∑
j=1

Dij(t)fj(xj(t)) +
N∑
j=1

Dτ
ij(t)fj(xj(t− τij(t))+

N∑
j=1

D̄ij(t)

∫ +∞

0

Kij(u)fj(xj(t− u))∆u+Bi(t)Si(t) + Ii(t),

LTM : S∆
i (t) = −ci(t)Si(t) + Ei(t)fi(xi(t)) + Ji(t)

(1.1)

with the initial values

xi(s) = ϕi(s), s ∈ (−∞, 0]T ,

Si(s) = ψi(s), s ∈ (−∞, 0]T

where i, j = 1, . . . , N , xi(t) is the neuron current activity level, αi(t), ci(t) are the time vari-

able of the neuron, fj(xj(t)) is the output of neurons, Dij(t) and Dτ
ij(t), D̄ij(t) represent the

connection weight and the synaptic weight of delayed feedback between the ith neuron and the

jth neuron respectively, Bi(t) is the strength of the external stimulus, Ei(t) denotes disposable

scale, transmission delays τij(t) satisfies 0 < τij(t) 6 τij , τ
∆
ij (t) ≤ τ < 1 (τij and τ are constants).

T is an ω-periodic time scale, and ϕi(·), ψi(·) are rd-continuous. For i = 1, . . . , N ; j =

1, . . . , N , we denote

µ̄ = max
t∈[0,ω]T

|µ(t)|, Dij = max
t∈[0,ω]T

|Dij(t)|, Dτ
ij = max

t∈[0,ω]T
|Dτ

ij(t)|,

D̄ij = max
t∈[0,ω]T

|D̄ij(t)|, Bi = max
t∈[0,ω]T

|Bi(t)|, Ei = max
t∈[0,ω]T

|Ei(t)|.

Throughout this paper, we make the following assumptions:

(H1) αi(t),ci(t), Dij(t), D
τ
ij(t), D̄ij(t), Bi(t), Ei(t), τij(t), Ii(t), Ji(t) are continuous ω-

periodic functions with ω > 0, and there exist positive numbers αi, αi, ci, ci such that αi ≤
αi(·) ≤ αi, ci ≤ ci(·) ≤ ci, for i, j = 1, . . . , N .
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(H2) The delay kernels Kij(s) : [0,+∞) → [0,+∞) are continuous integral functions, and

satisfy ∫ +∞

0

Kij(s)∆s = 1,

∫ +∞

0

Kij(s)eη(s, t)∆s <∞, for i, j = 1, . . . , N. (1.2)

(H3) The functions fi ∈ C(R,R) are Lipschitz functions, that is, there exist positive

constants ki > 0, such that for all x, y ∈ R

|fi(x)− fi(y)| ≤ ki|x− y|. (1.3)

2. Preliminary

In this part, some useful definitions and lemmas are introduced.

Definition 2.1 ([18]) A time scale T is an arbitrary nonempty closed subset of the real set R

with the topology and ordering inherited from R. The graininess of the time scale T is determined

by the formula µ(t) = σ(t)− t, σ(t) = inf{s ∈ T, s > t}.

Definition 2.2 ([18]) For f : T → R and t ∈ T k, if for any ε > 0 there is an N -neighborhood

of t such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|, for all s ∈ N,

then we call f∆(t) the Delta derivative of f at t.

Definition 2.3 ([18]) For s, t ∈ T , if p is a regressive function, then we define the exponential

function ep(t, s) by

ep(t, s) = exp
(∫ t

s

ξµ(τ)(p(τ))∆τ
)
, ξh(z) =


Log(1 + zh)

h
, h ̸= 0

z, h = 0
.

Definition 2.4 The periodic solution Z∗(t) = (x∗1(t), x
∗
2(t), . . . , x

∗
N (t), S∗

1 (t), . . . , S
∗
N (t))T of

system (1) is said to be globally exponentially stable if there exists a positive constant ε and

N = N(ε) > 1 such that all solutions Z(t) = (x1(t), x2(t), . . . , xN (t), S1(t), . . . , SN (t))T of system

(1) satisfy

N∑
i=1

|xi(t)− x∗i (t)|+
N∑
i=1

|Si(t)− S∗
i (t)|

≤ N(ε)e⊖ε(t, 0)
( N∑

i=1

sup
u∈(−∞,0]T

|xi(u)− x∗i (u)|+
N∑
i=1

sup
u∈(−∞,0]T

|Si(u)− S∗
i (u)|

)
, for t ∈ T+.

Lemma 2.5 ([18]) If p, q ∈ R, t, r, s ∈ T , then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(t, s) =
1

ep(s,t)
= e⊖p(s, t);

(iii) ep(t, s)ep(s, r) = ep(t, r);

(iv) e∆p (t, t0) = p(t)ep(t, t0);
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(v) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s).

3. Global exponential stability of periodic solution

In this section, a suitable Lyapunov functional is constructed to study the global exponential

stability of periodic solution of system (1.1).

Theorem 3.1 Assume that assumptions (H1)–(H3) hold. Further, assume that

(H4) For i = 1, 2, . . . , N ;

Pi = Bi − ci < 0,

Qi = −αi + kiEi +

N∑
j=1

(
Djiki +

1

1− τ
Dτ

jiki + D̄jiki
)
< 0. (3.1)

Then the ω-periodic solution of system (1.1) is globally exponentially stable.

Proof Assume that the system (1.1) has an ω-periodic solution Z∗(t) =
(
x∗1(t), . . . , x

∗
N (t), S∗

1 (t), . . .,

S∗
N (t)

)T
. Suppose that Z(t) = (x1(t), x2(t), . . . , xN (t), S1(t), . . . , SN (t))T is an arbitrary solution

of system (1.1). By (4), there exists a small positive constant η, such that

η − ci + (1 + ηµ̄)Bi < 0,

η − αi + (1 + ηµ̄)kiEi + (1 + ηµ̄)
N∑
j=1

(
Djiki +

1

1− τ
Dτ

jiki + D̄jiki
)
< 0. (3.2)

Consider the following Lyapunov functional

V (t) =
N∑
i=1

(
Vi1(t) + Vi2(t) + Vi3(t) + Vi4(t)

)
, (3.3)

where

Vi1(t) = |xi(t)− x∗i (t)|eη(t, 0),

Vi2(t) =
1

1− τ

N∑
j=1

Dτ
ijkj

∫ t

t−τij(t)

|xj(s)− x∗j (s)|eη(σ(s+ τij), 0)∆s,

Vi3(t) =

N∑
j=1

D̄ijkj

∫ +∞

0

∫ t

t−u

Kij(u)|xj(s)− x∗j (s)|eη(σ(s+ u), 0)∆s∆u,

Vi4(t) = |Si(t)− S∗
i (t)|eη(t, 0).

Calculating the right upper derivatives D+V ∆
im(t) of Vim(t), for m = 1, 2, 3, 4, we have

D+V ∆
i1 (t) =ηeη(t, 0)|xi(t)− x∗i (t)|+ eη(σ(t), 0)D

+|xi(t)− x∗i (t)|∆

≤ηeη(t, 0)|xi(t)− x∗i (t)|+ eη(σ(t), 0)
{
− αi|xi(t)− x∗i (t)|+

N∑
j=1

Dijkj |xj(t)− x∗j (t)|+
N∑
j=1

Dτ
ijkj

∣∣xj(t− τij(t))− x∗j (t− τij(t))
∣∣+
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N∑
j=1

D̄ijkj

∫ +∞

0

Kij(u)|xj(t− u)− x∗j (t− u)|∆u+

Bi|Si(t)− S∗
i (t)|

}
,

D+V ∆
i2 (t) =

1

1− τ

N∑
j=1

Dτ
ijkj

{
|xj(t)− x∗j (t)|eη(σ(t+ τij), 0)− (1− τ∆ij (t))

|xj(t− τij(t))− x∗j (t− τij(t))|eη(σ(t− τij(t) + τij), 0)
}

≤
N∑
j=1

Dτ
ijkj

{ 1

1− τ
|xj(t)− x∗j (t)|eη(σ(t+ τij), 0)−

|xj(t− τij(t))− x∗j (t− τij(t))|eη(σ(t), 0)
}
,

D+V ∆
i3 (t) =

N∑
j=1

D̄ijkj

∫ +∞

0

Kij(u)
{
|xj(t)− x∗j (t)|eη(σ(t+ u), 0)−

|xj(t− u)− x∗j (t− u)|eη(σ(t), 0)
}
∆u,

D+V ∆
i4 (t) =ηeη(t, 0)|Si(t)− S∗

i (t)|+ eη(σ(t), 0)D
+|Si(t)− S∗

i (t)|∆

≤
[
ηeη(t, 0)− cieη(σ(t), 0)

]
|Si(t)− S∗

i (t)|+

kiEieη(σ(t), 0)|xi(t)− x∗i (t)|.

Noting that 1 ≤ eη(σ(t), 0) ≤ (1 + ηµ̄)eη(t, 0), in view of (3.2), we have

D+V ∆(t) =

N∑
i=1

(
D+V ∆

i1 (t) +D+V ∆
i2 (t) +D+V ∆

i3 (t) +D+V ∆
i4 (t)

)
≤

N∑
i=1

{[
ηeη(t, 0) + (kiEi − αi)eη(σ(t), 0)

]
|xi(t)− x∗i (t)|+

N∑
j=1

{
Dijkjeη(σ(t), 0) +

1

1− τ
Dτ

ijkjeη(σ(t+ τij), 0)+

D̄ijkj

∫ +∞

0

Kij(u)eη(σ(t+ u), 0)∆u
}
|xj(t)− x∗j (t)|

}
+

N∑
i=1

{
Bieη(σ(t), 0) + ηeη(t, 0)− cieη(σ(t), 0)

}
|Si(t)− S∗

i (t)|

≤
N∑
i=1

{
η − αi + (1 + ηµ̄)ki

{
Ei +

N∑
j=1

(
Dji +

1

1− τ
Dτ

ji + D̄ji

)}}
eη(t, 0)|xi(t)− x∗i (t)|+
N∑
i=1

{
η − ci + (1 + ηµ̄)Bi

}
eη(t, 0)|Si(t)− S∗

i (t)|

≤0, t > 0.

It follows that V (t) ≤ V (0) for t > 0. Hence,
∑N

i=1(Vi1(t) + Vi4(t)) ≤ V (0). Letting Ai(t) =



472 Yang LIU, Yongqing YANG, Tian LIANG and et al.∑N
i=1 |xi(t)− x∗i (t)|+

∑N
i=1 |Si(t)− S∗

i (t)|, we have

Ai(t) =e⊖η(t, 0)

N∑
i=1

(Vi1(t) + Vi4(t))

≤e⊖η(t, 0)

{
N∑
i=1

(
|xi(0)− x∗i (0)|eη(0, 0) + |Si(0)− S∗

i (0)|eη(0, 0)+

N∑
j=1

Dτ
ijkj

∫ 0

−τij(0)

|xj(s)− x∗j (s)|eη(σ(s+ τij), 0)∆s+

N∑
j=1

D̄ijkj

∫ +∞

0

∫ 0

−u

Kij(u)|xj(s)− x∗j (s)|eη(σ(s+ u), 0)∆s∆u
)}

≤M∗e⊖η(t, 0)

{
N∑
i=1

sup
u∈(−∞,0]T

|ϕi(u)− x∗i (u)|+
N∑
i=1

sup
u∈(−∞,0]T

|ψi(u)− S∗
i (u)|

}
,

where

M∗ =1 +

N∑
j=1

Dτ
ijkj

∫ 0

−τij(0)

eη(σ(s+ τij), 0)∆s+

N∑
j=1

D̄ijkj

∫ +∞

0

∫ 0

−u

Kij(u)eη(σ(s+ u), 0)∆s∆u > 1.

By Definition 2.4, the periodic solution of system (1.1) is globally exponentially stable. This

completes the proof. �

4. Examples

In system (1.1), we consider the following assumptions. For i, j = 1, 2;[
f1(x1)

f2(x2)

]
=

1

2πe4π

[
arctanx1

arctanx2

]
,

[
α1(t)

α2(t)

]
=

[
3 + 2 cos πt

3

2 + sin πt
3

]
,

[
I1(t)

I2(t)

]
=

[
sin πt

3

cos πt
3

]

[
B1(t)

B2(t)

]
=

1

2πe4π

[
sin πt

3

cos πt
3

]
,

[
c1(t)

c2(t)

]
=

[
2 + sin πt

3

2 + cos πt
3

]
,

[
τ11(t) τ12(t)

τ21(t) τ22(t)

]
=

[
1 2

1 1

]

[
D11(t) D12(t)

D21(t) D22(t)

]
=

[
Dτ

11(t) Dτ
12(t)

Dτ
21(t) Dτ

22(t)

]
=

[
D̄11(t) D̄12(t)

D̄21(t) D̄22(t)

]
=

[
1
24 sin

πt
3

1
24 sin

πt
3

1
24 cos

πt
3

1
24 cos

πt
3

]
[
E1(t)

E2(t)

]
=

[
3 + sin πt

3

3 + cos πt
3

]
,

[
J1(t)

J2(t)

]
=

[
sin(πt−3

3 )

cos πt
3

]

[
K11(t) K12(t)

K21(t) K22(t)

]
=

[
1
2e

−2t 1
4e

−4t

1
8e

−8t 1
2e

−2t

]
,
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thus [
α1

α2

]
=

[
c1

c2

]
=

[
1

1

]
,

[
k1

k2

]
=

1

2πe4π

[
1

1

]
,

[
B1

B2

]
=

1

2πe4π

[
1

1

]

[
E1

E2

]
=

[
4

4

]
,

[
D11 D12

D21 D22

]
=

[
Dτ

11 Dτ
12

Dτ
21 Dτ

22

]
=

[
D̄11 D̄12

D̄21 D̄22

]
=

[
1
24

1
24

1
24

1
24

]
By Theorem 3.1, we know

P1 = P2 =
1

2πe4π
− 1 < 0,

Q1 = Q2 =
4

2πe4π
+

1

6πe4π
− 1 =

13

6πe4π
− 1 < 0.

All the conditions in Theorem 3.1 are satisfied. Therefore, the 6-periodic solution of the system

(1.1) in example is globally exponentially stable (see Figures 1 and 2).
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5. Conclusions

Without assuming the boundedness of the activation functions [15] and monotone of the

variable αi(t) [10], some conditions are obtained to ensure the global exponential stability of pe-

riodic solution for competitive neural networks with time-varying and distributed delays on time

scales which unify the continuous and discrete situations. Therefore, our results for applications

are more general than the previous results involved in competitive neural networks.
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