Second Order Derivative Estimates of the Solutions of a Class of Monge-Ampère Equations

Yadong WU ${ }^{1, *}$, Hepeng $\mathbf{L I}^{2}$
1. College of Mathematics and Information Science, Jiangxi Normal University, Jiangxi 330022, P. R. China;
2. College of Mathematics and Finance, Sichuan University of Arts and Science, Sichuan 635000, P. R. China

Abstract

In this paper, we consider a class of Monge-Ampère equations in relative differential geometry. Given these equations with zero boundary values in a smooth strictly convex bounded domain, we obtain second order derivative estimates of the convex solutions.

Keywords Monge-Ampère equation; derivative estimate; relative differential geometry.
MR(2010) Subject Classification 35J60; 35J65; 53A15

1. Introduction

In equiaffine differential geometry and relative differential geometry, Li-Simon-Chen [1] and Wu-Zhao [2] considered the following equation

$$
\left\{\begin{array}{l}
\operatorname{det}\left(\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right)=S(x)(-u)^{-k} \quad \text { in } \Omega \tag{1.1}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

where Ω is a smooth strictly convex bounded domain in \mathbb{R}^{n}, k is a positive constant with $k>1$, and $S(x) \in C^{\infty}(\Omega) \cap C^{2}(\bar{\Omega})$ with $S_{n}>0$. In particular for $k=n+2$ and $S(x)=$ const, equation (1.1) is the well-known hyperbolic affine hypersphere equation.

Cheng-Yau [3] showed that (1.1) has a convex solution $u \in C^{\infty}(\Omega) \cap C^{0}(\bar{\Omega})$, and the uniqueness follows from the maximum principal. Moreover, Lazer-McKenna [4] showed that the unique convex solution u satisfies

$$
\begin{equation*}
\frac{1}{C_{0}} d(x)^{\frac{n+1}{n+k}} \leq-u(x) \leq C_{0} d(x)^{\frac{n+1}{n+k}} \tag{1.2}
\end{equation*}
$$

where $d(x):=\operatorname{dist}(x, \partial \Omega)$, and C_{0} is a positive constant. In the following, we denote by $u_{i}, u_{i j}, u_{i j k}, \ldots$, the derivatives of u with respect to $x,\left(u^{i j}\right)$ the inverse matrix of $\left(u_{i j}\right)$. The main result of our paper is

Theorem 1.1 The convex solution of (1.1) satisfies

$$
\begin{equation*}
\left|u_{i j}\right| \leq C d(x)^{\frac{n+1}{n+k}-2}, \quad 1 \leq i, j \leq n \tag{1.3}
\end{equation*}
$$

[^0]where C is a constant depending only on Ω, n, k and $S(x)$.
For $k=n+2$ and $S(x)=$ const, formula (1.3) can be seen in Loewner-Nirenberg [5] and Wu [6]. Second order estimates (1.3) can be used to describe the asymptotic behaviors of relative hypersurfaces of hyperbolic type, for details see [2] and [6]. On the other hand, (1.3) gives another proof of Lemma 3 in [2].

2. A barrier function

We consider the function

$$
\begin{equation*}
w=-c\left(R^{2}-\sum_{1 \leq i \leq n}\left(x_{i}-\bar{x}_{i}\right)^{2}\right)^{\beta}, \quad 0<\beta<1 \tag{2.1}
\end{equation*}
$$

defined in the ball $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid \sum\left(x_{i}-\bar{x}_{i}\right)^{2} \leq R^{2}\right\}$. A direct calculation gives

$$
\begin{gather*}
w_{i}=2 c \beta\left(R^{2}-\left(x_{i}-\bar{x}_{i}\right)^{2}\right)^{\beta-1}\left(x_{i}-\bar{x}_{i}\right), \tag{2.2}\\
w_{i j}=2 c \beta\left(R^{2}-\left(\sum x_{i}-\bar{x}_{i}\right)^{2}\right)^{\beta-1}\left[\delta_{i j}+2(1-\beta) \frac{\left(x_{i}-\bar{x}_{i}\right)\left(x_{j}-\bar{x}_{j}\right)}{R^{2}-\sum\left(x_{i}-\bar{x}_{i}\right)^{2}}\right] \\
=2 \beta c^{\frac{1}{\beta}}(-w)^{\frac{\beta-1}{\beta}}\left[\delta_{i j}+2(1-\beta) c^{\frac{1}{\beta}}(-w)^{-\frac{1}{\beta}}\left(x_{i}-\bar{x}_{i}\right)\left(x_{j}-\bar{x}_{j}\right)\right] . \tag{2.3}
\end{gather*}
$$

Hence

$$
\begin{align*}
\operatorname{det}\left(w_{i j}\right) & =2^{n} \beta^{n} c^{\frac{n}{\beta}}(-w)^{\frac{(\beta-1) n}{\beta}}\left[1+2(1-\beta) c^{\frac{1}{\beta}}(-w)^{-\frac{1}{\beta}} \sum\left(x_{i}-\bar{x}_{i}\right)^{2}\right] \\
& =2^{n} \beta^{n} c^{\frac{n}{\beta}}(-w)^{\frac{(\beta-1) n}{\beta}}\left[1+2(1-\beta) c^{\frac{1}{\beta}}(-w)^{-\frac{1}{\beta}}\left(R^{2}-(-w)^{\frac{1}{\beta}} c^{-\frac{1}{\beta}}\right)\right] \\
& =2^{n} \beta^{n} c^{\frac{n}{\beta}}(-w)^{n-\frac{n+1}{\beta}}\left[(2 \beta-1)(-w)^{\frac{1}{\beta}}+2 R^{2}(1-\beta) c^{\frac{1}{\beta}}\right] . \tag{2.4}
\end{align*}
$$

For $2 \beta-1 \geq 0$, we have

$$
\begin{align*}
\operatorname{det}\left(w_{i j}\right) & \leq 2^{n} \beta^{n} c^{\frac{n}{\beta}}(-w)^{n-\frac{n+1}{\beta}}\left[(2 \beta-1) R^{2} c^{\frac{1}{\beta}}+2 R^{2}(1-\beta) c^{\frac{1}{\beta}}\right] \\
& =2^{n} R^{2} \beta^{n} c^{\frac{n+1}{\beta}}(-w)^{n-\frac{n+1}{\beta}} \\
& \leq 2^{n} R^{2} c^{\frac{n+1}{\beta}}(-w)^{n-\frac{n+1}{\beta}} . \tag{2.5}
\end{align*}
$$

For $2 \beta-1 \leq 0$, we have

$$
\begin{align*}
\operatorname{det}\left(w_{i j}\right) & \leq 2^{n+1} R^{2}(1-\beta) \beta^{n} c^{\frac{n+1}{\beta}}(-w)^{n-\frac{n+1}{\beta}} \\
& \leq 2 R^{2} c^{\frac{n+1}{\beta}}(-w)^{n-\frac{n+1}{\beta}} \tag{2.6}
\end{align*}
$$

Let $S(x)$ be the function as in (1.1), and $k=\frac{n+1}{\beta}-n$. Now we choose the constant c as follows

$$
\begin{equation*}
c=\left(2^{-n} R^{-2} \cdot \min _{x \in \bar{\Omega}} S(x)\right)^{\frac{1}{n+k}} . \tag{2.7}
\end{equation*}
$$

Then from (2.5) and (2.6), we know

$$
\begin{equation*}
\operatorname{det}\left(w_{i j}\right) \leq S(x)(-w)^{-k} \tag{2.8}
\end{equation*}
$$

Next we give a comparison result in [4].
Lemma 2.1 ([4]) Let Ω be a bounded convex domain, and let $v_{k} \in C^{2}(\Omega) \cap C(\bar{\Omega})$ for $k=1,2$.

Let $f(x, \xi)$ be defined for $x \in \Omega$ and ξ in some interval containing the ranges of v_{1} and v_{2} and assume that $f(x, \xi)$ is strictly increasing in ξ for all $x \in \Omega$. If
(1) the matrix $\left(\left(v_{1}\right)_{i j}\right)$ is positive definite in Ω,
(2) $\operatorname{det}\left(\left(v_{1}\right)_{i j}\right) \geq f\left(x, v_{1}\right), \forall x \in \Omega$,
(3) $\operatorname{det}\left(\left(v_{2}\right)_{i j}\right) \leq f\left(x, v_{2}\right), \forall x \in \Omega$,
(4) $v_{1} \leq v_{2}, \forall x \in \partial \Omega$,
then $v_{1} \leq v_{2}, \forall x \in \Omega$.

3. Second order derivative estimates

Proof We divide two steps to prove Theorem 1.1, and follow the calculations as in LoewnerNirenberg [5] and Pogorelov [7].

Step 1. For any point $x^{0}=\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right) \in \Omega$, set $d_{0}=\operatorname{dist}\left(x^{0}, \partial \Omega\right)$. There is a number δ_{0} such that for $\delta \leq \delta_{0}$ the domain Ω_{δ} consisting of the set of points in Ω whose distance to the boundary is at least δ has a smooth, strictly convex boundary.

Let $z=\sigma(x)$ be the equation of the tangent hyperplane to the graph $u(x)$ at the point $\left(x^{0}, u\left(x^{0}\right)\right)$. We claim that there is a positive constant c_{0} such that

$$
\begin{equation*}
\max _{\partial \Omega_{\delta}} \sigma(x) \leq-c_{0} \cdot d_{0}^{\frac{n+1}{n+k}}, \text { for } \delta \leq \min \left\{\delta_{0}, d_{0} / 2\right\} \tag{3.1}
\end{equation*}
$$

To see this, let Q be the boundary point of Ω_{δ} where σ takes its maximum. For $\delta \leq \delta_{0}$, there is a fixed positive number R_{0} independent of δ such that there is a closed disc D in $\bar{\Omega}_{\delta}$ of radius R_{0} touching $\partial \Omega_{\delta}$ at Q. We may suppose that Q is the origin and that the inner normal to $\partial \Omega_{\delta}$ at Q has the direction $(0,0, \ldots, 1)$. Hence the disc D has center $\left(0,0, \ldots, R_{0}\right)$.

Let w be the function

$$
\begin{align*}
w & =-c\left(R_{0}^{2}-\sum_{1 \leq i \leq n-1} x_{i}^{2}-\left(x_{n}-R_{0}\right)^{2}\right)^{\frac{n+1}{n+k}} \\
& =-c\left(-\sum_{1 \leq i \leq n} x_{i}^{2}+2 R_{0} x_{n}\right)^{\frac{n+1}{n+k}} \tag{3.2}
\end{align*}
$$

From Section 2, we can choose the constant c such that

$$
\left\{\begin{array}{l}
\operatorname{det}\left(w_{i j}\right) \leq S(x)(-w)^{-k} \quad \text { in } D \\
w=0 \text { on } \partial D
\end{array}\right.
$$

By Lemma 2.1 we conclude $\sigma \leq u \leq w$. Since the maximum of σ on \bar{D} occurs at Q, we see that the tangent hyperplane has the form $\sigma=u\left(x_{0}\right)+u_{n}\left(x^{0}\right)\left(x_{n}-x_{n}^{0}\right)$. Hence

$$
\begin{equation*}
\sigma\left(0, \ldots, 0, x_{n}\right) \leq u\left(0, \ldots, 0, x_{n}\right) \leq w\left(0, \ldots, 0, x_{n}\right)=-c\left(2 R_{0} x_{n}-x_{n}^{2}\right)^{\frac{n+1}{n+k}} \tag{3.3}
\end{equation*}
$$

Since for some constant N

$$
\begin{equation*}
\sigma\left(0, \ldots, 0, x_{n}\right) \leq-c\left(2 R_{0} x_{n}-x_{n}^{2}\right)^{\frac{n+1}{n+k}} \leq-N x_{n}^{\frac{n+1}{n+k}}, \quad 0 \leq x_{n} \leq R_{0} \tag{3.4}
\end{equation*}
$$

we may therefore assert that $\sigma\left(0, \ldots, 0, x_{n}\right) \leq \tau\left(x_{n}\right)$, where $z=\tau\left(x_{n}\right)$ is the equation in the $\left(x_{n}, z\right)$ plane of the tangent line from the point $\left(x_{n}^{0}, u\left(x^{0}\right)\right)$ to the curve $z=-N x_{n}^{\frac{n+1}{n+k}}$, further-
more, this line touches the curve at a point $\left(t,-N t^{\frac{n+1}{n+k}}\right)$ with $t \leq R_{0}$.
The slope of $\tau\left(x_{n}\right)$ is $-\frac{N(n+1)}{n+k} t^{\frac{1-k}{n+k}}$ and therefore

$$
\begin{equation*}
\sigma(Q) \leq \tau(0)=-N t^{\frac{n+1}{n+k}}+\frac{N(n+1)}{n+k} t^{\frac{1-k}{n+k}} \cdot t=-N \frac{k-1}{n+k} t^{\frac{n+1}{n+k}} . \tag{3.5}
\end{equation*}
$$

We wish to find a lower bound for t. From the definition of $\tau\left(x_{n}\right)$, we have

$$
\begin{equation*}
-\frac{N(n+1)}{n+k} t^{\frac{1-k}{n+k}}=\frac{u\left(x^{0}\right)+N t^{\frac{n+1}{n+k}}}{x_{n}^{0}-t} \tag{3.6}
\end{equation*}
$$

or

$$
\begin{equation*}
N \frac{k-1}{n+k} \cdot t+u\left(x^{0}\right) \cdot t^{\frac{k-1}{n+k}}+N \frac{n+1}{n+k} x_{n}^{0}=0 . \tag{3.7}
\end{equation*}
$$

Put $s=t^{-1 /(n+k)}$, then from (3.7) we get

$$
\begin{equation*}
N \frac{n+1}{n+k} x_{n}^{0} \cdot s^{n+k}+u\left(x^{0}\right) \cdot s^{n+1}+N \frac{k-1}{n+k}=0 . \tag{3.8}
\end{equation*}
$$

Consider a function

$$
\begin{equation*}
f(y)=N \frac{n+1}{n+k} x_{n}^{0} \cdot y^{n+k}+u\left(x^{0}\right) \cdot y^{n+1}+N \frac{k-1}{n+k} \tag{3.9}
\end{equation*}
$$

and a point

$$
\begin{equation*}
s^{*}=\left[\frac{-(n+k) u\left(x^{0}\right)}{N(n+1) x_{n}^{0}}\right]^{\frac{1}{k-1}} . \tag{3.10}
\end{equation*}
$$

Then $f\left(s^{*}\right)=N \frac{k-1}{n+k}>0$, and the derivative of $f(y)$ is $f^{\prime}(y)=N(n+1) x_{n}^{0} \cdot y^{n+k-1}+(n+$ 1) $u\left(x^{0}\right) \cdot y^{n}$. Obviously for $y>s^{*}, f^{\prime}(y)>0$. It follows that $s \leq s^{*}$, and hence

$$
\begin{equation*}
t=s^{-(n+k)} \geq\left(s^{*}\right)^{-(n+k)}=\left(\frac{-(n+k) u\left(x^{0}\right)}{N(n+1) x_{n}^{0}}\right)^{\frac{n+k}{1-k}} . \tag{3.11}
\end{equation*}
$$

Since Ω_{δ} is convex, we get

$$
\begin{equation*}
x_{n}^{0} \geq \operatorname{dist}\left(x^{0}, \partial \Omega_{\delta}\right) \geq d_{0} / 2 \tag{3.12}
\end{equation*}
$$

From (1.2), we get

$$
\begin{equation*}
-u\left(x^{0}\right) \leq C_{0} \cdot d_{0}^{\frac{n+1}{n+k}} \tag{3.13}
\end{equation*}
$$

Combining (3.5) and (3.11)-(3.13), we get

$$
\begin{align*}
\sigma(Q) & \leq-N \frac{k-1}{n+k} t^{\frac{n+1}{n+k}} \leq-N \frac{k-1}{n+k}\left(\frac{-(n+k) u\left(x^{0}\right)}{N(n+1) x_{n}^{0}}\right)^{\frac{n+1}{1-k}} \\
& \leq-N \frac{k-1}{n+k}\left(\frac{n+k}{N(n+1)}\right)^{\frac{n+1}{1-k}}\left(2 C_{0}\right)^{\frac{n+1}{1-k}} \cdot d_{0}^{\frac{n+1}{n+k}} \tag{3.14}
\end{align*}
$$

hence (3.1) is proved.
From (1.2) we see that

$$
\begin{equation*}
-u(x) \leq C_{0} \cdot \delta^{\frac{n+1}{n+k}}, \quad x \in \partial \Omega_{\delta} \tag{3.15}
\end{equation*}
$$

Note that N and C_{0} are constants independent of δ, we now fix

$$
\begin{equation*}
\delta=\min \left\{\delta_{0}, \frac{1}{2} d_{0},\left(\frac{c_{0}}{2 C_{0}}\right)^{\frac{n+k}{n+1}} d_{0}\right\} . \tag{3.16}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
-u(x) \leq \frac{c_{0}}{2} d_{0}^{\frac{n+1}{n+k}}, \quad x \in \partial \Omega_{\delta} . \tag{3.17}
\end{equation*}
$$

It follows from (3.1) and (3.17) that

$$
\begin{equation*}
\alpha:=\max _{\partial \Omega_{\delta}}(\sigma-u(x)) \leq-\frac{c_{0}}{2} d_{0}^{\frac{n+1}{n+k}} \tag{3.18}
\end{equation*}
$$

By formula (3.17) and the convexity of u, there exists a constant $c_{1}>0$ such that

$$
\begin{equation*}
|\operatorname{grad} u|,|\operatorname{grad}(\sigma-u)| \leq c_{1} d_{0}^{\frac{1-k}{n+k}}, \quad \text { in } \Omega_{\delta} \tag{3.19}
\end{equation*}
$$

Step 2. Set

$$
\begin{equation*}
\gamma=u-\sigma+\alpha, \quad \text { in } \Omega_{\delta} \tag{3.20}
\end{equation*}
$$

then $\gamma \geq 0$ on $\partial \Omega_{\delta}$. With

$$
\begin{equation*}
\tau=\frac{2}{\left(c_{1}\right)^{2}} d_{0}^{\frac{2(k-1)}{k+n}} \tag{3.21}
\end{equation*}
$$

we consider in the region $\Omega_{0}=$ the points in Ω_{δ} where $\gamma<0$, the function

$$
\begin{equation*}
W=-\gamma\left[\exp \left(\tau u_{r}^{2} / 2\right)\right] u_{r r}, \tag{3.22}
\end{equation*}
$$

where the index r denotes differentiation in a fixed direction. In Ω_{0}, which contains x^{0}, the function W attains a maximum at some point O and some direction. By a unimodular transformation, we can make our choice of coordinate system in such a way that the direction is $(1,0, \ldots, 0)$ and at the point O we have $u_{i j}=0$ for $i \neq j$.

In Ω_{0}, the function $-\gamma\left[\exp \left(\tau u_{1}^{2} / 2\right)\right] u_{11}$ takes a maximum at the point O. Take the logarithm and differentiate it twice with respect to x_{i}, then at the point O

$$
\begin{gather*}
\frac{\gamma_{i}}{\gamma}+\tau u_{1} u_{1 i}+\frac{u_{11 i}}{u_{11}}=0 \tag{3.23}\\
\frac{\gamma_{i i}}{\gamma}-\frac{\gamma_{i}^{2}}{\gamma^{2}}+\tau u_{1} u_{1 i i}+\tau u_{1 i}^{2}+\frac{u_{11 i i}}{u_{11}}-\frac{u_{11 i}^{2}}{u_{11}^{2}} \leq 0 . \tag{3.24}
\end{gather*}
$$

Multiplying (3.24) by $u^{i i} u_{11}$ and summing over i, with the aid of (3.23), we obtain (Summation convention is used)

$$
\begin{equation*}
u^{i i} u_{11 i i}-u^{i i} \frac{u_{11 i}^{2}}{u_{11}}-\sum_{i>1} u^{i i} \frac{u_{11 i}^{2}}{u_{11}}+\frac{n}{\gamma} u_{11}-\frac{\gamma_{1}^{2}}{\gamma^{2}}+\tau u_{11}^{2}+\tau u_{1} u_{11} u^{i i} u_{i i 1} \leq 0 \tag{3.25}
\end{equation*}
$$

We now differentiate (1.1) twice with respect to x_{1}

$$
\begin{gather*}
u^{i j} u_{i j 1}=-k \frac{u_{1}}{u}+\frac{S_{1}}{S} . \tag{3.26}\\
u_{1}^{i j} u_{i j 1}+u^{i j} u_{i j 11}=-k \frac{u_{11}}{u}+k \frac{u_{1}^{2}}{u^{2}}+\frac{S_{11}}{S}-\frac{S_{1}^{2}}{S^{2}} . \tag{3.27}
\end{gather*}
$$

From (3.27), we get

$$
\begin{align*}
u^{i i} u_{i i 11} & =-k \frac{u_{11}}{u}+k \frac{u_{1}^{2}}{u^{2}}+\frac{S_{11}}{S}-\frac{S_{1}^{2}}{S^{2}}-u_{1}^{i j} u_{i j 1} \\
& =-k \frac{u_{11}}{u}+k \frac{u_{1}^{2}}{u^{2}}+\frac{S_{11}}{S}-\frac{S_{1}^{2}}{S^{2}}+u^{i i} u^{j j} u_{i j 1}^{2} . \tag{3.28}
\end{align*}
$$

Note that

$$
\begin{equation*}
u^{i i} u^{j j} u_{i j 1}^{2}-u^{i i} \frac{u_{11 i}^{2}}{u_{11}}-\sum_{i>1} u^{i i} \frac{u_{11 i}^{2}}{u_{11}} \geq 0 . \tag{3.29}
\end{equation*}
$$

On the other hand, by (3.26) we have

$$
\begin{equation*}
\tau u_{1} u_{11} u^{i i} u_{i i 1}=-k \tau \frac{u_{1}^{2}}{u} u_{11}+\tau u_{1} u_{11} \frac{S_{1}}{S} \geq \tau u_{1} u_{11} \frac{S_{1}}{S} . \tag{3.30}
\end{equation*}
$$

Combining (3.25) and (3.28)-(3.30), we get

$$
\begin{equation*}
\tau u_{11}^{2}+\left(\frac{n}{\gamma}+\tau \frac{S_{1}}{S} u_{1}\right) u_{11}+\frac{S_{11}}{S}-\frac{S_{1}^{2}}{S^{2}}-\frac{\gamma_{1}^{2}}{\gamma^{2}} \leq 0 . \tag{3.31}
\end{equation*}
$$

Multiplying inequality (3.31) by $\gamma^{2} \exp \left(\tau u_{1}^{2}\right)$, we obtain

$$
\begin{equation*}
\tau \cdot W^{2}-\left(n+\tau \gamma u_{1} \frac{S_{1}}{S}\right) e^{\frac{\tau}{2} u_{1}^{2}} \cdot W+\left(\gamma^{2}\left(\frac{S_{11}}{S}-\frac{S_{1}^{2}}{S^{2}}\right)-\gamma_{1}^{2}\right) e^{\tau u_{1}^{2}} \leq 0 \tag{3.32}
\end{equation*}
$$

Applying (3.19) and (3.21), there exist constants c_{2}, c_{3} and c_{4} such that

$$
\begin{equation*}
c_{2} d_{0}^{\frac{2(k-1)}{n+k}} W^{2}-c_{3} W-c_{4} d_{0}^{\frac{2(1-k)}{n+k}} \leq 0 . \tag{3.33}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
W(O) \leq c_{5} \cdot d_{0}^{\frac{2(1-k)}{n+k}}, \text { for constant } c_{5}>0 \tag{3.34}
\end{equation*}
$$

Hence at the point x^{0}, we have

$$
\begin{equation*}
-\gamma\left[\exp \left(\tau u_{r}^{2} / 2\right)\right] u_{r r} \leq c_{5} \cdot d_{0}^{\frac{2(1-k)}{n+k}} . \tag{3.35}
\end{equation*}
$$

Since

$$
\begin{equation*}
-\gamma\left(x^{0}\right)=-\alpha \geq \frac{c_{0}}{2} d_{0}^{\frac{n+1}{n+k}} \tag{3.36}
\end{equation*}
$$

we can find a positive constant c_{6} so that

$$
\begin{equation*}
\left|u_{i i}\left(x^{0}\right)\right| \leq c_{6} d_{0}^{\frac{n+1}{n+k}-2}, \quad 1 \leq i \leq n \tag{3.37}
\end{equation*}
$$

By (3.37) and the convexity of u, we obtain (1.3).
Acknowledgements We thank the referees for their time and comments.

References

[1] Anmin LI, U. SIMON, Bohui CHEN. A two-step Monge-Ampère procedure for solving a fourth order PDE for affine hypersurfaces with constant curvature. J. Reine Angew. Math., 1997, 487: 179-200.
[2] Yadong WU, Guosong ZHAO. Hypersurfaces with Li-normalization and prescribed Gauss - Kronecker curvature. Results Math., 2011, 59(3-4): 563-576.
[3] S. Y. CHENG, S. T. YAU. On the regularity of the solutions of the Monge-Ampère equation $\operatorname{det}\left(\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right)=$ $F(x, u)$. Comm. Pure Appl. Math., 1977, 30: 41-68.
[4] A. C. LAZER, P. J. MCKENNA. On singular boundary value problems for the Monge-Ampère operator. J. Math. Anal. Appl., 1996, 197(2): 341-362.
[5] C. LOEWNER, L. NIRENBERG. Partial Differential Equations Invariant under Conformal or Projective Transformations. Academic Press, New York, 1974.
[6] Yadong WU. Asymptotic behaviors of hyperbolic hypersurfaces with constant affine Gauss-Kronecker curvature. Results Math., 2011, 59(1): 173-183.
[7] A. V. POGORELOV. The Minkowski Multidimensional Problem. Halsted Press, New York-Toronto-London, 1978.

[^0]: Received July 19, 2013; Accepted January 14, 2014
 Supported by the National Natural Science Foundation of China (Grant Nos. 11301231; 11171235).

 * Corresponding author

 E-mail address: wydmath@gmail.com (Yadong WU); lihepeng1984@163.com (Hepeng LI)

