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1. Introduction

One of the basic problems in the submanifold theory is to find simple relations between

the intrinsic and extrinsic curvatures of a submanifold. Related with famous Nash embedding

theorem [9], Chen introduced a new type of Riemannian invariant, known as Chen’s invariant

δM (see [4]), which is given by

δM (x) = τ(x)− inf{K(π) | π ⊂ TxM
n, dimπ = 2},

where Mn is a Riemannian manifold, K(π) is the sectional curvature of Mn associated with

a 2-plane section and the scalar curvature τ at x is defined by τ(x) =
∑

1≤i<j≤n K(ei ∧ ej).

For n = 2, this invariant vanishes trivially. The author’s original motivation was to provide

answers to a question raised by Chern concerning the existence of minimal isometric immersions

into Euclidean space [14]. Therefore, Chen obtained a necessary condition for the existence

of minimal isometric immersion from a given Riemannian manifold into Euclidean space and

established inequalities for submanifolds in real space forms in terms of the sectional curvature,

the scalar curvature and the mean curvature [4]. These inequalities are sharp, and many nice

classes of submanifolds realize equality in all above inequalities. Afterwards, many papers studied

similar problems for different submanifolds in various ambient space, like complex space forms

[5], Sasakian space forms [8], Lorentzian manifolds [13] and quaternionic space forms [7]. In [5],
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Chen established an inequality for a totally real submanifold in a complex space form. Later,

Oprea improved this inequality in Lagrangian case[16] by using optimization techniques applied

in the setup of Riemmanian geometry [17]. Since then several authors have studied the equality

case of this improved inequality, see for instance [10, 11].

Recently, Mihai and Özgür proved Chen’s inequalities for submanifolds of real space forms,

complex space forms and Sasakian space forms with semi-symmetric metric connections [1, 2].

In this paper, we obtain Chen’s inequalities for totally real submanifolds in complex space forms

with a semi-symmetric metric connection. We also show that a result of Mihai and Özgür [1,

Theorem 4.1] is incorrect and the Corollary 4.2 from [1] is not ideal. For the sake of correcting

the results, we establish Chen-Ricci inequalities for submanifolds of real space forms with a

semi-symmetric metric connection at the end of Section 3.

2. Preliminaries

To meet the requirements in the next sections, here, the basic elements of the theory of a

Riemannian manifold endowed with a semi-symmetric metric connection are briefly presented.

Let M be an m-dimensional Riemannian manifold with Riemannian metric g, the linear

connection ∇ and the Riemannian connection ∇̂. For the vector fields X,Y on M the torsion

tensor field T of the linear connection ∇ is defined by T (X,Y ) = ∇XY −∇Y X− [X,Y ]. A liner

connection∇ is said to be a semi-symmetric connection if the torsion tensor T of the connection∇
satisfies T (X,Y ) = ϕ(Y )X − ϕ(X)Y , where ϕ is a 1-form on M . Further, if ∇ satisfies ∇g = 0,

then ∇ is called a semi-symmetric metric connection [12]. In [12], Yano obtained a relation

between the semi-symmetric metric connection ∇ and the Riemannian connection ∇̂ which is

given by ∇XY = ∇̂XY +ϕ(Y )X − g(X,Y )P , where P is a vector field given by g(P,X) = ϕ(X)

for any vector field X on M .

Let Nn+p be a complex space form of constant holomorphic sectional curvature 4c and of

complex dimension n+ p. A submanifold Mn of real dimension n in Nn+p is called totally real

if the complex structure J of Nn+p carries each tangent space TM of Mn into its corresponding

normal space T⊥M (see [3]). In particular, for p = 0, Mn is Lagrangian.

LetMn be an n-dimensional totally real submanifold of an (n+p)-dimensional complex space

form Nn+p(4c) with the semi-symmetric metric connection ∇ and the Riemannian connection

∇̂. On Mn we consider the induced semi-symmetric metric connection denoted by ∇ and the

induced Levi-Civita connection denoted by ∇̂. We denote by R and R̂ the curvature tensors

associated to ∇ and ∇̂, respectively.

The Gauss formulas with respect to ∇, respectively ∇̂, can be written as follows

∇XY = ∇XY + h(X,Y ), ∇̂XY = ∇̂XY + ĥ(X,Y ),

for any vector field X on Nn+p, where h is a (0, 2) symmetric tensor on Mn and ĥ is the second

fundamental form associated to Riemaniann connection ∇̂ (see [18]). According to the formula

(7) from [18] h is also symmetric.

The curvature tensor R̂ with respect to the Levi-Civita connection ∇̂ on Nn+p(4c) is ex-



Chen’s inequalities for totally real submanifolds in complex space forms 589

pressed by [3]

R̂(X,Y , Z,W ) =c{g(X,Z)g(Y ,W )− g(X,W )g(Y , Z) + g(JX,Z)g(JY ,W )−

g(JX,W )g(JY , Z) + 2g(X, JY )g(Z, JW )}, (2.1)

and the curvature tensor R with respect to the semi-symmetric metric connection ∇ on Nn+p

can be written as [15]

R(X,Y , Z,W ) =R̂(X,Y , Z,W ) + α(Y , Z)g(X,W )− α(X,Z)g(Y ,W )+

α(X,W )g(Y , Z)− α(Y ,W )g(X,Z), (2.2)

for any vector fields X,Y , Z,W on Nn+p, where α is a (0, 2)-tensor field defined by

α(X,Y ) = (∇̂Xϕ)Y − ϕ(X)ϕ(Y ) +
1

2
ϕ(P )g(X,Y ).

From (2.1) and (2.2) it follows that the curvature tensor R can be expressed as

R(X,Y , Z,W ) =c{g(X,Z)g(Y ,W )− g(X,W )g(Y , Z) + g(JX,Z)g(JY ,W )− g(JX,W )g(JY , Z)+

2g(X, JY )g(Z, JW )}+ α(Y ,Z)g(X,W )− α(X,Z)g(Y ,W )+

α(X,W )g(Y , Z)− α(Y ,W )g(X,Z). (2.3)

For any vector fields X,Y, Z,W on M , the Gauss equation with respect to the semi-symmetric

metric connection is [18]

R(X,Y, Z,W ) = R(X,Y, Z,W ) + g(h(X,Z), h(Y,W ))− g(h(X,W ), h(Y,Z)). (2.4)

In Nn+p we can choose a local orthonormal frame

e1, . . . , en, en+1, . . . , en+p,

e1∗ = Je1, . . . , en∗ = Jen, e(n+1)∗ = Jen+1, . . . , e(n+p)∗ = Jen+p, (2.5)

such that, restricting to Mn, e1, e2, . . . , en are tangent to Mn. If we write ĥβ
ij = g(ĥ(ei, ej), eβ),

we have [3]

ĥm∗

ij = ĥj∗

im = ĥi∗

jm. (2.6)

Similarly, we write hβ
ij = g(h(ei, ej), eβ). We denote λ =

∑n
i=1 α(ei, ei).

We use the following convention on the ranges of indices unless otherwise stated

β = n+ 1, . . . , n+ p, (n+ 1)∗, . . . , (n+ p)∗; i, j,m = 1, 2, . . . , n.

If ĥβ
ij = kβgij , where kr are real-valued functions on M , then M is said to be totally

umbilical with respect to Levi-Civita connection. Similarly, if hβ
ij = kβgij , then M is said to be

totally umbilical with respect to semi-symmetric metric connection [18].

The squared length of h is ∥ h ∥2=
∑

1≤i<j≤n g(h(ei, ej), h(ei, ej)) and the mean curvature

vector of M associated to ∇ is ζ = 1
n

∑n
i=1 h(ei, ei), denoting by H the mean curvature of Mn as-

sociated to∇. Similarly, the mean curvature vector ofMn associated to ∇̂ is ζ̂ = 1
n

∑n
i=1 ĥ(ei, ei),

denoting by Ĥ the mean curvature of M associated to Riemannian connection ∇̂.
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Let π ⊂ TxM and π⊥ ⊂ T⊥
x M be plane sections for any x in Mn and K(π) the sectional

curvature of Mn associated to the induced semi-symmetric metric connection ∇. The scalar

curvature τ at x is defined by

τ(x) =
∑

1≤i<j≤n

Kij =
∑

1≤i<j≤n

K(ei ∧ ej).

According to the formula (7) from [18] we have

Lemma 2.1 ([18]) If P is a tangent vector field on Mn, we have h = ĥ, ζ = ζ̂.

Lemma 2.2 ([18, Theorem 3]) A submanifoldM of a Riemannian manifoldN is totally umbilical

if and only if it is totally umbilical with respect to the semi-symmetric metric connection.

From Lemma 2.1 and (2.6), we immediately have

Lemma 2.3 If P is a tangent vector field on Mn, then hm∗

ij = hj∗

im = hi∗

jm.

In Section 3, we use a simple way to obtain the relation between the Ricci curvature and

the spared mean curvature. We need the following lemma.

Lemma 2.4 Let f(x1, x2, . . . , xn) be a function in Rn defined by

f(x1, x2, . . . , xn) = x1

n∑
i=2

xi.

If x1 + x2 + · · ·+ xn = 2ε, then we have

f(x1, x2, . . . , xn) ≤ ε2

with the equality holding if and only if x1 = x2 + x3 + · · ·+ xn = ε.

Proof From x1 + x2 + · · ·+ xn = 2ε, we have

n∑
i=2

xi = 2ε− x1.

It follows that

f(x1, x2, . . . , xn) = x1(2ε− x1) = −(x1 − ε)2 + ε2.

Lemma 2.4 is completed. �

3. Chen-Ricci inequalities

Chen established a relationship between the Ricci curvature and mean curvature for totally

real submanifolds of complex space forms [6]. In this paper, we obtain an inequality between

the Ricci curvature and mean curvature in the direction of a unit tangent vector X and the

mean curvature with respect to the semi-symmetric metric connection, as an answer of the basic

problem in submanifold theory which we have mentioned in the introduction.

Theorem 3.1 Let Mn, n ≥ 2, be an n-dimensional totally real submanifold of an (n + p)-

dimensional complex space form Nn+p(4c), endowed with a semi-symmetric metric connection
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∇. For each unit vector X in TxM we have

Ric(X) ≤ (n− 1)c− (n− 2)α(X,X)− λ+
n2

4
H2, (3.1)

where H and α are the mean curvature and characteristic tensor of Mn respect to the semi-

symmetric metric connection, respectively. The equality case of (3.1) holds for all unit tangent

vectors at x if and only if either

(1) n ̸= 2, hβ
ij = 0, ∀i, j, β or

(2) n = 2, hβ
11 = hβ

22, h
β
12 = 0, ∀i, j, β,

where h is a (0, 2) symmetric tensor on Mn.

Proof Let X ∈ TxM be a unit tangent vector at x. We choose the local field of orthonormal

frames (2.5) at x such that e1 = X. From the equations (2.3) and (2.4) it follows that

Rijij = c− α(ei, ei)− α(ej , ej) +

(n+p)∗∑
β=n+1

[hβ
iih

β
jj − (hβ

ij)
2]. (3.2)

Using (3.2), one derives

Ric(X) =

n∑
i=2

R1i1i = (n− 1)c− (n− 1)α(X,X)−
n∑

i=2

α(ei, ei) +

(n+p)∗∑
β=n+1

n∑
i=2

[hβ
11h

β
ii − (hβ

1i)
2]

≤ (n− 1)c− (n− 2)α(X,X)− λ+

(n+p)∗∑
β=n+1

n∑
i=2

hβ
11h

β
ii. (3.3)

Let us consider the quadratic forms fβ : Rn → R, defined by

fβ(h
r
11, h

r
22, . . . , h

r
nn) =

n∑
i=2

hβ
11h

β
ii.

We consider the problem max fβ , subject to Ξ : hβ
11 + hβ

22 + · · · + hβ
nn = kβ , where kβ is a

real constant. From Lemma 2.4, we can see that the solution (hβ
11, h

β
22, . . . , h

β
nn) of the problem

in question must satisfy

hβ
11 =

n∑
i=2

hβ
ii =

kβ

2
, (3.4)

which implies

fβ ≤ (kβ)2

4
. (3.5)

From (3.3) and (3.5) we have

Ric(X) ≤ (n− 1)a− (n− 2)α(X,X)− λ+

(n+p)∗∑
β=n+1

(kβ)2

4

= (n− 1)a− (n− 2)α(X,X)− λ+
n2

4
H2.

Next, we shall study the equality case.
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If the equality case of inequality (3.1) holds for all unit tangent vectors at x, noting that X

is arbitrary, by computing Ric(ej), j = 2, 3, . . . , n and combining (3.3) and (3.4) we have

hβ
ij = 0, i ̸= j, ∀β,

hβ
11 + hβ

22 + · · ·+ hβ
nn − 2hβ

ii = 0, ∀i, β.

We can distinguish two cases:

(1) n ̸= 2, hβ
ij = 0, ∀i, j, β or

(2) n = 2, hβ
11 = hβ

22, h
β
12 = 0, ∀i, j, β.

The converse is trivial. �

Remark 3.2 In [2], Mihai and Özgür did not establish Chen-Ricci inequalities for submanifolds

of complex space forms equipped with a semi-symmetric metric connection. Thus, our main

result is not covered by [2].

Theorem 3.3 If the equality case of inequality (3.1) holds for all unit tangent vectors of Mn,

then Mn is a totally umbilical submanifold. Moreover, we have

(i) The equality case of inequality (3.1) holds for all unit tangent vectors of M2 if and only

if M2 is a totally umbilical submanifold.

(ii) If P is a tangent vector field on Mn and n ≥ 3, the equality case of (3.1) holds for all

unit tangent vectors of Mn if and only if Mn is a totally geodesic submanifold.

Proof For n = 2, the equality case of inequality (3.1) holds for all unit tangent vectors of M2

if and only if M2 is a totally umbilical submanifold with respect to the semi-symmetric metric

connection. Then from Lemma 2.2, M2 is a totally umbilical submanifold with respect to the

Levi-Civita connection. For n ≥ 3, from Theorem 3.1 the the equality case of inequality (3.1)

holds for all unit tangent vectors of Mn if and only if hβ
ij = 0, ∀i, j, β. According to the formula

(7) from [18], we have ĥβ
ij = hβ

ij + kβgij , where kβ are real-valued functions on M . Thus, we

have ĥβ
ij = kβgij , which implies Mn is a totally umbilical submanifold.

If P is a tangent vector field on Mn, from Lemma 2.1 we have ĥ = h. For n ≥ 3, from

Theorem 3.1 the the equality case of inequality (3.1) holds for all unit tangent vectors of Mn if

and only if hβ
ij = 0, ∀i, j, β. Thus we have ĥβ

ij = 0, ∀i, j, β, which implies Mn is a totally geodesic

submanifold. �

Remark 3.4 It is very odd that the coefficients of α(X,X) and λ of inequality (3.1) are different

from (4.1) in [1]. By simple calculation, we can show that the inequality (4.1) from [1] is incorrect.

In the proof of Theorem 4.1 in [1], they wrote

n2 ∥ H ∥2 ≥ 1

2
n2 ∥ H ∥2 +2

(
τ −

∑
2≤i<j≤n

)
Kij + 2

n+p∑
r=n+1

n∑
j=2

(hr
1j)

2

= −2(n− 1)c+ 2(2n− 3)λ− 2(n− 2)α(e1, e1),
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but according to (4.2) and (4.3) in [1], one gets

n2 ∥ H ∥2 ≥ 1

2
n2 ∥ H ∥2 +2

(
τ −

∑
2≤i<j≤n

)
Kij + 2

n+p∑
r=n+1

n∑
j=2

(hr
1j)

2

= −2(n− 1)c+ 2λ+ 2(n− 2)α(e1, e1).

This is the reason why they made a mistake.

Remark 3.5 The Corollary 4.2 from [1] is not ideal because Mihai and Özgür only classified

submanifolds in real space forms endowed with a semi-symmetric metric connection satisfying the

equality case of (4.1) from [1] in the case that P is tangent to the submanifold. From Theorem

3.3, we know that, without the condition that P is tangent to M , we can also classify totally

real submanifolds in complex space forms endowed with a semi-symmetric metric connection

satisfying the equality case of (3.1).

Under these circumstances it becomes necessary to give a theorem, which could present a

sharp Chen-Ricci inequality for submanifolds in real space forms endowed with a semi-symmetric

metric connection. The equality case should be considered.

Theorem 3.6 LetMn be an n-dimensional submanifold of a real space formNn+p(c) of constant

curvature c and of real dimension n+p equipped with a semi-symmetric metric connection. Then:

(i) For each unit vector X in TxM we have

Ric(X) ≤ (n− 1)c− (n− 2)α(X,X)− λ+
n2

4
H2. (3.6)

(ii) If the equality case of inequality (3.6) holds for all unit tangent vectors of Mn, then

Mn is a totally umbilical submanifold. Moreover, we have

(1) The equality case of inequality (3.6) holds for all unit tangent vectors of M2 if and only

if M2 is a totally umbilical submanifold.

(2) If P is a tangent vector field on Mn and n ≥ 3, the equality case of (3.6) holds for all

unit tangent vectors of Mn if and only if Mn is a totally geodesic submanifold.

Remark 3.7 We omit the proof of Theorem 3.6 since it is essentially similar to the proofs of

Theorems 3.1 and 3.3.

4. Chen like inequalities relating δM

Let Mn, n ≥ 3, be an n-dimensional submanifold of a complex space form Nn+p(4c) of

constant holomorphic sectional curvature 4c and of complex dimension n + p. For any tangent

vector field X to Mn, denote JX = QX + FX, where QX and FX are the tangential and

normal components of JX, respectively. We put ∥ Q ∥2=
∑n

i,j=1 g
2(Jei, ej). Following [2], we

denote by Θ2(π) = g2(Qe1, e2) = g2(Je1, e2), where {e1, e2} is an orthonormal basis of a 2-plane

section π. Θ2(π) is a real number in [0, 1], independent of choice of e1, e2. Denote by K(π)

the sectional curvature of Mn with respect to the induced semi-symmetric metric connection ∇.

For any orthonormal basic {e1, . . . , en} of the tangent space TxM , the scalar curvature τ at x is
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defined by τ(x) =
∑

1≤i<j≤n K(ei ∧ ej). Mihai and Özgür proved the following

Theorem 4.1 ([2, Theorem 3.1]) Let Mn, n ≥ 3, be an n-dimensional submanifold of an (n+p)-

dimensional complex space form Nn+p(4c), endowed with a semi-symmetric metric connection

∇. Then we have

τ(x)−K(π) ≤ (n− 2)(n+ 1)c

2
+

n2(n− 2)

2(n− 1)
H2 − (n− 2)λ− trace(α |π⊥) +

3 ∥ Q ∥2 −6Θ2(π)

2
c,

(4.1)

where H and α are the mean curvature and characteristic tensor of Mn respect to the semi-

symmetric metric connection, respectively.

If P is tangent to Mn, for Lagrangian submanifolds, from Lemma 2.1 the inequality (4.1)

becomes

Corollary 4.2 LetMn, n ≥ 3, be an n-dimensional Lagrangian submanifold of an n-dimensional

complex space formNn(4c), endowed with a semi-symmetric metric connection∇. If P is tangent

to Mn, we have

τ(x)−K(π) ≤ (n− 2)(n+ 1)c

2
+

n2(n− 2)

2(n− 1)
Ĥ2 − (n− 2)λ− trace(α |π⊥). (4.2)

We can obtain an improved inequality (4.2) as follows.

Theorem 4.3 Let Mn, n ≥ 3, be an n-dimensional Lagrangian submanifold of an n-dimensional

complex space formNn(4c), endowed with a semi-symmetric metric connection∇. If P is tangent

to Mn, we have

τ(x)−K(π) ≤ (n− 2)(n+ 1)c

2
+

n2(2n− 3)

2(2n+ 3)
Ĥ2 − (n− 2)λ− trace(α |π⊥). (4.3)

Proof We consider the point x ∈ Mn. Choose the local field of orthonormal frames (2.5) such

that {e1, e2} is an orthonormal frame in the 2-plane which minimize the sectional curvature at

the point x. We remark that

α(e1, e1) + α(e2, e2) = λ− trace(α |π⊥). (4.4)

Using (3.2) and (4.4), we have

τ(x)−K(π) = τ −R1212 =
(n+ 1)(n− 2)c

2
−

∑
1≤i<j≤n

[α(ei, ei) + α(ej , ej)] + λ− trace(α |π⊥)+

n∑
m=1

( ∑
1≤i<j≤n

hm∗

ii hm∗

jj − hm∗

11 hm∗

22 −
∑

1≤i<j≤n

(hm∗

ij )2 + (hm∗

12 )2
)

=
(n+ 1)(n− 2)c

2
− (n− 1)λ+ λ− trace(α |π⊥)+

n∑
m=1

(
(hm∗

11 + hm∗

22 )
∑

3≤j≤n

hm∗

jj +
∑

3≤i<j≤n

hm∗

ii hm∗

jj −
∑

3≤j≤n

(hm∗

1j )2 −
∑

2≤i<j≤n

(hm∗

ij )2
)

≤ (n+ 1)(n− 2)c

2
−

∑
2≤i<j≤n

(hi∗

ij )
2 −

∑
2≤i<j≤n

(hj∗

ij )
2 − (n− 2)λ− trace(α |π⊥)+
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n∑
m=1

(
(hm∗

11 + hm∗

22 )
∑

3≤j≤n

hm∗

jj +
∑

3≤i<j≤n

hm∗

ii hm∗

jj

)
−

∑
3≤j≤n

(h1∗

1j )
2 −

∑
3≤j≤n

(hj∗

1j)
2.

From Lemma 2.3, we have

τ(x)−K(π) ≤ (n+ 1)(n− 2)c

2
−

∑
3≤j≤n

(h1∗

jj )
2 −

∑
2≤i ̸=j≤n

(hi∗

jj)
2 − (n− 2)λ− trace(α |π⊥)+

n∑
m=1

(
(hm∗

11 + hm∗

22 )
∑

3≤j≤n

hm∗

jj +
∑

3≤i<j≤n

hm∗

ii hm∗

jj

)
−

∑
3≤j≤n

(hj∗

11)
2. (4.5)

Let us consider the quadratic forms fm∗ : Rn → R, m = 1, 2, . . . , n, defined by

f1∗(h
1∗

11, h
1∗

22, . . . , h
1∗

nn) = (h1∗

11 + h1∗

22)
∑

3≤j≤n

h1∗

jj +
∑

3≤i<j≤n

h1∗

ii h
1∗

jj −
∑

3≤j≤n

(h1∗

jj )
2,

f2∗(h
2∗

11, h
2∗

22, . . . , h
2∗

nn) = (h2∗

11 + h2∗

22)
∑

3≤j≤n

h2∗

jj +
∑

3≤i<j≤n

h2∗

ii h
2∗

jj −
∑

3≤j≤n

(h2∗

jj )
2,

fm∗(hm∗

11 , hm∗

22 , . . . , hm∗

nn ) =(hm∗

11 + hm∗

22 )
∑

3≤j≤n

hm∗

jj +
∑

3≤i<j≤n

hm∗

ii hm∗

jj − (hm∗

11 )2−

∑
2≤j≤n,j ̸=m

(hm∗

jj )2, m = 3, 4, . . . , n.

Carefully reading the proof of Theorem 2 in [16], we can easily get

n∑
m=1

fm∗ ≤ n2(2n− 3)

2(2n+ 3)
Ĥ2. (4.6)

Using (4.5) and (4.6) gives

τ(x)−K(π) ≤ (n− 2)(n+ 1)c

2
+

n2(2n− 3)

2(2n+ 3)
Ĥ2 − (n− 2)λ− trace(α |π⊥). �

As an application of Theorem 4.3, we have the following result.

Theorem 4.4 Let Mn, n ≥ 3, be an n-dimensional Lagrangian submanifold of an n-dimensional

complex space form Nn(4c), endowed with a semi-symmetric metric connection ∇. If P is

a tangent vector field on Mn, the equality case of inequality (4.2) holds if and only if M is

minimal.

Proof From (4.2) and (4.3), we have

(n− 1)n2

2(n− 1)
Ĥ2 ≤ n2(2n− 3)

2(2n+ 3)
Ĥ2,

which implies
n2Ĥ2

2
(
2n− 3

2n+ 3
− n− 2

n− 1
) ≥ 0.

For any n ≥ 3, 2n−3
2n+3 − n−2

n−1 < 0, so we get Ĥ = 0 which implies M is minimal. �
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