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Abstract In this paper, we obtain Chen’s inequalities for totally real submanifolds in complex
space forms with a semi-symmetric metric connection. Also, some results of A. Mihai and C.
Ozgiir’s paper have been modified.
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1. Introduction

One of the basic problems in the submanifold theory is to find simple relations between
the intrinsic and extrinsic curvatures of a submanifold. Related with famous Nash embedding
theorem [9], Chen introduced a new type of Riemannian invariant, known as Chen’s invariant

dnr (see [4]), which is given by
oy (z) = 7(x) — inf{K(m) | # C T,M",dim 7 = 2},

where M™ is a Riemannian manifold, K () is the sectional curvature of M™ associated with
a 2-plane section and the scalar curvature 7 at x is defined by 7(z) = >0, _;<, K(ei A ¢j).
For n = 2, this invariant vanishes trivially. The author’s original motivation was to provide
answers to a question raised by Chern concerning the existence of minimal isometric immersions
into Euclidean space [14]. Therefore, Chen obtained a necessary condition for the existence
of minimal isometric immersion from a given Riemannian manifold into Euclidean space and
established inequalities for submanifolds in real space forms in terms of the sectional curvature,
the scalar curvature and the mean curvature [4]. These inequalities are sharp, and many nice
classes of submanifolds realize equality in all above inequalities. Afterwards, many papers studied
similar problems for different submanifolds in various ambient space, like complex space forms

[5], Sasakian space forms [8], Lorentzian manifolds [13] and quaternionic space forms [7]. In [5],
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Chen established an inequality for a totally real submanifold in a complex space form. Later,
Oprea improved this inequality in Lagrangian case[16] by using optimization techniques applied
in the setup of Riemmanian geometry [17]. Since then several authors have studied the equality
case of this improved inequality, see for instance [10, 11].

Recently, Mihai and Ozgiir proved Chen’s inequalities for submanifolds of real space forms,
complex space forms and Sasakian space forms with semi-symmetric metric connections [1, 2].
In this paper, we obtain Chen’s inequalities for totally real submanifolds in complex space forms
with a semi-symmetric metric connection. We also show that a result of Mihai and Ozgiir 1,
Theorem 4.1] is incorrect and the Corollary 4.2 from [1] is not ideal. For the sake of correcting
the results, we establish Chen-Ricci inequalities for submanifolds of real space forms with a

semi-symmetric metric connection at the end of Section 3.

2. Preliminaries

To meet the requirements in the next sections, here, the basic elements of the theory of a
Riemannian manifold endowed with a semi-symmetric metric connection are briefly presented.

Let M be an m-dimensional Riemannian manifold with Riemannian metric g, the linear
connection V and the Riemannian connection % For the vector fields X,Y on M the torsion
tensor field T of the linear connection V is defined by T(X,Y) = VY — V=X — [X,Y]. A liner
connection V is said to be a semi-symmetric connection if the torsion tensor T of the connection V
satisfies T(X,Y) = ¢(Y)X — ¢(X)Y, where ¢ is a 1-form on M. Further, if V satisfies Vg = 0,
then V is called a semi-symmetric metric connection [12]. In [12], Yano obtained a relation
between the semi-symmetric metric connection V and the Riemannian connection 6 which is
given by VY = %Y?‘F #(Y)X —g(X,Y)P, where P is a vector field given by g(P, X) = ¢(X)
for any vector field X on M.

Let N™*P be a complex space form of constant holomorphic sectional curvature 4c and of
complex dimension n + p. A submanifold M™ of real dimension n in N"T? is called totally real
if the complex structure J of N™*P carries each tangent space TM of M™ into its corresponding
normal space T+ M (see [3]). In particular, for p = 0, M™ is Lagrangian.

Let M™ be an n-dimensional totally real submanifold of an (n+p)-dimensional complex space
form N™P(4c) with the semi-symmetric metric connection V and the Riemannian connection
ﬁ. On M™ we consider the induced semi-symmetric metric connection denoted by V and the
induced Levi-Civita connection denoted by V. We denote by R and R the curvature tensors
associated to V and @, respectively.

The Gauss formulas with respect to V, respectively @, can be written as follows
VxY = VxY +h(X,Y), VxY =VxY +h(X,Y),

for any vector field X on N"*P where h is a (0, 2) symmetric tensor on M™ and h is the second
fundamental form associated to Riemaniann connection V (see [18]). According to the formula
(7) from [18] h is also symmetric.

The curvature tensor R with respect to the Levi-Civita connection V on N"*P(4c) is ex-
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pressed by [3]

RX,Y,Z W) =c{g(X,2)g(Y, W) — g(X, W)g(Y,Z) + g(JX, Z)g(JY ,W)—
9(JX, W)g(JY,Z) +29(X,JY)g(Z, W)}, (2.1)

and the curvature tensor R with respect to the semi-symmetric metric connection V on N™*P

can be written as [15]

for any vector fields X,Y,Z, W on N"*P where « is a (0,2)-tensor field defined by

o(X,7) = (Vxo)7 — o(X)6(T) + 56(P)g(X, 7).

From (2.1) and (2.2) it follows that the curvature tensor R can be expressed as

29(X,IY)g(Z, IW)} +a(Y,2)g(X, W) — (X, Z)g(Y , W)+
a(X,W)g(Y,Z) —a(Y,W)g(X, Z). (2.3)

For any vector fields XY, Z, W on M, the Gauss equation with respect to the semi-symmetric

metric connection is [18]

R(X,Y,Z,W)=R(X,Y,Z, W)+ g(h(X,Z),h(Y,W)) — g(h(X, W), h(Y, Z)). (2.4)
In N™*P we can choose a local orthonormal frame
€1y 1 €nyCntly- -+ Entp,
e = Jep, ..., en = Jep, i1y = Jenyty s €napyr = Jenip, (2.5)

such that, restricting to M™, ey, ea,...,e, are tangent to M™. If we write ﬁfj = g(ﬁ(ei, €j),€8);
we have [3]
}}ZL —h =i

m gm:*

(2.6)

Similarly, we write hi’gj = g(h(e;,e;),e3). We denote A = Y1 | ae;, ;).

We use the following convention on the ranges of indices unless otherwise stated
B=n+1....,n+p,n+ )" ....n+p)7*; i,jm=12,... n

If flg = k8 gij, where k" are real-valued functions on M, then M is said to be totally
umbilical with respect to Levi-Civita connection. Similarly, if hfj = kPgi;, then M is said to be
totally umbilical with respect to semi-symmetric metric connection [18].

The squared length of h is || h ||>= D1<icj<n 9(h(ei €j), hiei, €;)) and the mean curvature
vector of M associated to V is { = % i, h(ei,e;), denoting by H the mean curvature of M" as-

sociated to V. Similarly, the mean curvature vector of M™ associated to V is ¢ = % Sor h(e,e;),

denoting by H the mean curvature of M associated to Riemannian connection V.
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Let 7 C T, M and 't C T;-M be plane sections for any = in M™ and K (r) the sectional
curvature of M™ associated to the induced semi-symmetric metric connection V. The scalar

curvature 7 at z is defined by

T(.’,E) == Z KU == Z K(ei/\ej).

1<i<j<n 1<i<j<n

According to the formula (7) from [18] we have
Lemma 2.1 ([18]) If P is a tangent vector field on M™, we have h = h,( = (.

Lemma 2.2 ([18, Theorem 3|) A submanifold M of a Riemannian manifold N is totally umbilical
if and only if it is totally umbilical with respect to the semi-symmetric metric connection.

From Lemma 2.1 and (2.6), we immediately have

Lemma 2.3 If P is a tangent vector field on M", then hf} = hfm = hzm
In Section 3, we use a simple way to obtain the relation between the Ricci curvature and

the spared mean curvature. We need the following lemma.

Lemma 2.4 Let f(z1,22,...,2,) be a function in R™ defined by

flz1,22,...,2p) =$1Z$i-

Ifvy + 29+ -+ x, = 2¢, then we have
flar,xe,...,x,) <e€
with the equality holding if and only if x1 = 2o+ 23+ -+ 2, = €.

Proof From zi + 29+ ---+ z, = 2¢, we have

n
E T, = 2e — xy.
=2

It follows that

flxr, 20, xn) = 2128 — 1) = — (21 — 5)2 + 2.

Lemma 2.4 is completed. (]

3. Chen-Ricci inequalities

Chen established a relationship between the Ricci curvature and mean curvature for totally
real submanifolds of complex space forms [6]. In this paper, we obtain an inequality between
the Ricci curvature and mean curvature in the direction of a unit tangent vector X and the
mean curvature with respect to the semi-symmetric metric connection, as an answer of the basic

problem in submanifold theory which we have mentioned in the introduction.

Theorem 3.1 Let M™,n > 2, be an n-dimensional totally real submanifold of an (n + p)-

dimensional complex space form N™1P(4c), endowed with a semi-symmetric metric connection
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V. For each unit vector X in T, M we have
2
Ric(X) < (n— 1)c — (n — 2)a(X, X) — A+ ”ZH% (3.1)

where H and « are the mean curvature and characteristic tensor of M"™ respect to the semi-
symmetric metric connection, respectively. The equality case of (3.1) holds for all unit tangent
vectors at x if and only if either
B .
(1) n#2, hy; =0,Vi,j 8 or
(2) n=2,h =h5, h?, =0,vij B

where h is a (0,2) symmetric tensor on M™.

Proof Let X € T, M be a unit tangent vector at . We choose the local field of orthonormal
frames (2.5) at  such that e; = X. From the equations (2.3) and (2.4) it follows that

(n+p)”
Rijij = c—ale;, e;) —alej,ej) + Z [hﬁhfj - (hfj)2] (3.2)
B=n+1
Using (3.2), one derives
n (n+p)* n
Ric(X Z Rini=(n—1ec—(n—-1)a(X,X)— Za(ei, €;) Z Z (W2 P — (h2)3
i=2 B=n-+1i=2
(n+p)” n
<(n—-De—(n—2)a(X,X) = A+ > > hi k] (3.3)
B=n+11=2

Let us consider the quadratic forms fg : R®™ — R, defined by

Fo(h5y My Zhﬁ i

We consider the problem max f3, subject to = : hfl + hgz + -+ hE, = kP, where k” is a
real constant. From Lemma 2.4, we can see that the solution (hfl, th, ...,h8,) of the problem

in question must satisfy
M= W= 5 (3.4)

i=2
which implies
k5)?

fa < ( 4) : (3.5)

From (3.3) and (3.5) we have

(n+0)" 1 512
Ric(X) < (n— l)a — (n—2)a(X,X) — A+ > (kP)
B=n+1

=(n—-1)a—(n—-2)a(X,X)— A+ "ZQH?

Next, we shall study the equality case.
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If the equality case of inequality (3.1) holds for all unit tangent vectors at x, noting that X
is arbitrary, by computing Ric(e;),j = 2,3,...,n and combining (3.3) and (3.4) we have

=0, i#j, VB,
RO 4 Ry 4+ he —2hP =0, Vi,}p.

We can distinguish two cases:
(1) n#2, A, =0,Vij,Bor
(2) n=2, hi, = h,, hy =0, Vi,j,8.

The converse is trivial. (I

Remark 3.2 In [2], Mihai and Ozgiir did not establish Chen-Ricci inequalities for submanifolds
of complex space forms equipped with a semi-symmetric metric connection. Thus, our main

result is not covered by [2].

Theorem 3.3 If the equality case of inequality (3.1) holds for all unit tangent vectors of M™,

then M™ is a totally umbilical submanifold. Moreover, we have

(i) The equality case of inequality (3.1) holds for all unit tangent vectors of M? if and only
if M? is a totally umbilical submanifold.

(ii) If P is a tangent vector field on M™ and n > 3, the equality case of (3.1) holds for all

unit tangent vectors of M™ if and only if M™ is a totally geodesic submanifold.

Proof For n = 2, the equality case of inequality (3.1) holds for all unit tangent vectors of M?
if and only if M? is a totally umbilical submanifold with respect to the semi-symmetric metric
connection. Then from Lemma 2.2, M? is a totally umbilical submanifold with respect to the
Levi-Civita connection. For n > 3, from Theorem 3.1 the the equality case of inequality (3.1)
holds for all unit tangent vectors of M™ if and only if hfj =0, Vi, j, 8. According to the formula
(7) from [18], we have Bg = h?j + kPg;;, where kP are real-valued functions on M. Thus, we
have iL’ZBj = kPg;;, which implies M™ is a totally umbilical submanifold.

If P is a tangent vector field on M™, from Lemma 2.1 we have h = h. For n > 3, from
Theorem 3.1 the the equality case of inequality (3.1) holds for all unit tangent vectors of M™ if
and only if hfj =0, Vi, j, 8. Thus we have fzg =0, Vi, j, B, which implies M™ is a totally geodesic
submanifold. [J

Remark 3.4 It is very odd that the coefficients of a(X, X') and A of inequality (3.1) are different
from (4.1) in [1]. By simple calculation, we can show that the inequality (4.1) from [1] is incorrect.

In the proof of Theorem 4.1 in [1], they wrote

n+p n

1
RH P2 gn? [ H P 42(r— 3 VKy+2 Y D (k)

2<i<j<n r=n-+1j5=2

—2(n —1)c+2(2n — 3)A — 2(n — 2)a(er, e1),
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but according to (4.2) and (4.3) in [1], one gets

n+p n

SR I H 420 = S0 K2 YY)

2<i<j<n r=n+1j=2
==2(n—1)c+2XA+2(n —2)a(er,e1).

n® || H |2

Y

This is the reason why they made a mistake.

Remark 3.5 The Corollary 4.2 from [1] is not ideal because Mihai and Ozgiir only classified
submanifolds in real space forms endowed with a semi-symmetric metric connection satisfying the
equality case of (4.1) from [1] in the case that P is tangent to the submanifold. From Theorem
3.3, we know that, without the condition that P is tangent to M, we can also classify totally
real submanifolds in complex space forms endowed with a semi-symmetric metric connection
satisfying the equality case of (3.1).

Under these circumstances it becomes necessary to give a theorem, which could present a
sharp Chen-Ricci inequality for submanifolds in real space forms endowed with a semi-symmetric

metric connection. The equality case should be considered.

Theorem 3.6 Let M™ be an n-dimensional submanifold of a real space form N™"P(c) of constant
curvature ¢ and of real dimension n—+p equipped with a semi-symmetric metric connection. Then:

(i) For each unit vector X in T, M we have
2
Ric(X) < (n—1)c — (n — 2)a(X, X) — A+ %Hz. (3.6)

(ii) If the equality case of inequality (3.6) holds for all unit tangent vectors of M™, then
M™ is a totally umbilical submanifold. Moreover, we have

(1) The equality case of inequality (3.6) holds for all unit tangent vectors of M? if and only
if M? is a totally umbilical submanifold.

(2) If P is a tangent vector field on M™ and n > 3, the equality case of (3.6) holds for all

unit tangent vectors of M™ if and only if M™ is a totally geodesic submanifold.

Remark 3.7 We omit the proof of Theorem 3.6 since it is essentially similar to the proofs of
Theorems 3.1 and 3.3.

4. Chen like inequalities relating o,

Let M™,n > 3, be an n-dimensional submanifold of a complex space form N"*P(4c) of
constant holomorphic sectional curvature 4c¢ and of complex dimension n + p. For any tangent
vector field X to M™, denote JX = QX + FX, where QX and FX are the tangential and
normal components of JX, respectively. We put || Q [|*= >_7';_, g°(Jei, ¢;). Following [2], we
denote by ©2(7) = g%(Qe1, e2) = g?(Je1, ea), where {ej,es} is an orthonormal basis of a 2-plane
section m. ©%(7) is a real number in [0,1], independent of choice of ey, es. Denote by K ()
the sectional curvature of M™ with respect to the induced semi-symmetric metric connection V.

For any orthonormal basic {ey,...,e,} of the tangent space T,, M, the scalar curvature 7 at z is
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defined by 7(2) = 3>, <, <, K(e; Ae;). Mihai and Ozgiir proved the following

Theorem 4.1 ([2, Theorem 3.1]) Let M™, n > 3, be an n-dimensional submanifold of an (n+p)-
dimensional complex space form N™'P(4c), endowed with a semi-symmetric metric connection
V. Then we have

(n—2)(n+1)ec n?(n—2)

31| QI* ~66%(m) |
2 2n—1)

2 )
(4.1)

where H and « are the mean curvature and characteristic tensor of M"™ respect to the semi-

7(x) — K(7) < H? — (n—2)\ — trace(a | ;1) +

symmetric metric connection, respectively.
If P is tangent to M™, for Lagrangian submanifolds, from Lemma 2.1 the inequality (4.1)

becomes

Corollary 4.2 Let M™, n > 3, be an n-dimensional Lagrangian submanifold of an n-dimensional

complex space form N"(4c), endowed with a semi-symmetric metric connection V. If P is tangent

to M™, we have

(n—2)(n+1c  n?(n-2)
2 2(n —1)

r(z) — K(r) < H? — (n — 2)\ — trace(a |1 ). (4.2)

We can obtain an improved inequality (4.2) as follows.

Theorem 4.3 Let M"™, n > 3, be an n-dimensional Lagrangian submanifold of an n-dimensional

complex space form N"(4c), endowed with a semi-symmetric metric connection V. If P is tangent

to M"™, we have

(n—2)(n+1)c n?2n—3)
2 2(2n + 3)

Proof We consider the point € M™. Choose the local field of orthonormal frames (2.5) such

T(x) — K(m) < H? — (n — 2)\ — trace(a | ,2). (4.3)

that {e1, ez} is an orthonormal frame in the 2-plane which minimize the sectional curvature at

the point . We remark that
aler,e1) + alez, ea) = A — trace(a |1). (4.4)

Using (3.2) and (4.4), we have

(n+1)(n—2)c

T(I‘)—K(?T):T—nglgz 5

Z [a(ei, e;) + ale;, ej)] + X — trace(a |1 )+

1<i<j<n
n
m*pm” m*pm™ m*\2 m*\2
E ( E hii by 11 oy — E (hij)+(12)>
= 1<i<j<n 1<i<j<n

= w (n— DA+ X — trace(a |, )+

n

Do (B m) 30w 30w - 30 - 3 05)

m=1 3<j<n 3<i<j<n 3<j<n 2<i<j<n

(m+1)(n—2)c Z (hZ)Q - Z (hi] )2 — (n — 2)\ — trace(a |, )+

2
2<i<j<n 2<i<j<n
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n

PN(GHER S I DN D IR D DEUNED DR

m=1 3<j<n 3<i<j<n 3<j<n 3<j<n

From Lemma 2.3, we have

7(x) — K(m) Lt D=2 S (k)P = > (k)7 = (n—2)\ — trace(a 1)+

= 2 : L
3<j<n 2<i#j<n
3 ((h;’f+hg§) S Y an hm) 3 (i) (4.5)
m=1 3<j<n 3<i<j<n 3<j<n

Let us consider the quadratic forms f,« : R® — R, m =1,2,...,n, defined by

fl* (hﬂa h%;» R hi: ) (h%l + h22 Z h Z h%; hjl; o Z (hﬂl; )2’

3<j<n 3<i<j<n 3<j<n
2* 2% 4 2% 2%4\2
f2*(h’11’h’227"'5hnn) +h22 E h E hi; hj; — E (h3;)°
3<j<n 3<1<j<n 3<i<n

O i S X B N A N i e G R
3<j<n 3<i<j<n
S (W)’ m=34,....n

2<j<n,j#m

Carefully reading the proof of Theorem 2 in [16], we can easily get

n

n2(2n — A
> fme < MHQ. (4.6)

Using (4.5) and (4.6) gives :
(n=2)(n+1)c n%*2n-3)
7(z) — K(m) < 2 2(2n + 3)

As an application of Theorem 4.3, we have the following result.

H? — (n —2)\ — trace(a | ,.). O

Theorem 4.4 Let M"™, n > 3, be an n-dimensional Lagrangian submanifold of an n-dimensional
complex space form N"(4c), endowed with a semi-symmetric metric connection V. If P is
a tangent vector field on M™, the equality case of inequality (4.2) holds if and only if M is

minimal.

Proof From (4.2) and (4.3), we have

(n—1)n? 5  n?2n—3) ~,
-1 =3t

which implies
n?H? (Zn -3 n-—2
2 "2n+3 n-1

< 0, so we get H = 0 which implies M is minimal. [J

) > 0.

For any n > 3, 2 2n+3 P 1
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