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Abstract An n×n complex sign pattern (ray pattern) S is said to be spectrally arbitrary if for

every monic nth degree polynomial f(λ) with coefficients from C, there is a complex matrix in

the complex sign pattern class (ray pattern class) of S such that its characteristic polynomial

is f(λ). We derive the Nilpotent-Centralizer methods for spectrally arbitrary complex sign

patterns and ray patterns, respectively. We find that the Nilpotent-Centralizer methods for

three kinds of patterns (sign pattern, complex sign pattern, ray pattern) are the same in form.
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1. Introduction

A sign pattern A of order n is a matrix whose entries are in the set {+,−, 0}. Its sign

pattern class is

Q(A) = {A | A ∈ Mn(R) and sgn(A) = A}.

For n× n sign patterns A = [akl] and B = [bkl], the matrix S = A+ iB is called a complex

sign pattern of order n, where i2 = −1 (see [1]). Clearly, the (k, l)-entry of S is akl + ibkl for

k, l = 1, 2, . . . , n. Associated with an n×n complex sign pattern S = A+iB is a class of complex

matrices, called the complex sign pattern class of S, defined by

Qc(S) = {C = A+ iB | A and B are n× n real matrices, and sgn(A) = A, sgn(B) = B}.

A ray pattern S = [sjk] of order n is a matrix with entries sjk ∈ {eiθ | 0 ≤ θ < 2π} ∪ {0},
where i2 = −1. Its ray pattern class is

Qr(S) = {A = [ajk] ∈ Mn(C) | ajk = rjksjk, where rjk ∈ R+ for 1 ≤ j, k ≤ n}.

Let A be a sign pattern of order n ≥ 2. If for any given real monic polynomial f(λ) of

degree n, there is a real matrix A ∈ Q(A) having characteristic polynomial f(λ), then A is a

spectrally arbitrary sign pattern (SAP).

Let S = A + iB be a complex sign pattern of order n ≥ 2. If for every monic nth degree

polynomial f(λ) with coefficients from C, there is a complex matrix in Qc(S) such that its
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characteristic polynomial is f(λ), then S is said to be a spectrally arbitrary complex sign pattern

(SAC) (see [2]).

A ray pattern S of order n (n ≥ 2) is said to be spectrally arbitrary (SAR) if each monic

polynomial of degree n with coefficients from C is the characteristic polynomial of some matrix

in Qr(S) (see [3]).

For two n×n sign patterns A = [akl] and B = [bkl], if akl = bkl whenever bkl ̸= 0, then A is

a superpattern of B, and B is a subpattern of A. Note that each sign pattern is a superpattern

and a subpattern of itself.

For two n×n complex sign patterns S1 = A1+iB1 and S2 = A2+iB2, if A1 is a superpattern

of A2, and B1 is a superpattern of B2, then S1 is a superpattern of S2, and S2 is a subpattern of

S1.

A ray pattern S1 = [pjk] is a superpattern of a ray pattern S2 = [sjk] if pjk = sjk whenever

sjk ̸= 0. And S2 is a subpattern of S1 if S1 is a superpattern of S2.

A sign pattern A (complex sign pattern S, ray pattern S) is said to be potentially nilpotent

(PN) if there exists a matrix B ∈ Q(A) (B ∈ Qc(S), B ∈ Qr(S)) such that Bk = 0 for some

positive integer k.

For a complex sign pattern S = A+ iB, the sign patterns A and B are the real part pattern

and imaginary part pattern of S, respectively. Let C be an n×n complex matrix. We use ℜ(C)lk

(respectively, ℑ(C)lk) to denote the real part (respectively, imaginary part) of the (l, k) entry of

C.

Let C be an n × n real or complex matrix. If there is some positive integer k such that

Ck = 0, then C is said to be a nilpotent matrix. The smallest such k is called the nilpotence

index (simply, index) of C.

The problem of classifying the spectrally arbitrary sign patterns was introduced in [4] by

Drew et al. In their article, they developed the Nilpotent-Jacobian method for showing that a

sign pattern and all its superpatterns are spectrally arbitrary. In [2, 3], the concepts of spectral-

ly arbitrary ray patterns and spectrally arbitrary complex sign patterns were introduced, and

the two articles extended the Nilpotent-Jacobian method for sign patterns to ray patterns and

complex sign patterns, respectively. Work on spectrally arbitrary patterns (sign patterns, ray

patterns, and complex sign patterns) has continued in several articles including [2–9].

In [6], Garnett and Shader derived the Nilpotent-Centralizer method to prove a sign pattern

to be spectrally arbitrary.

Theorem 1.1 (Nilpotent-Centralizer Method) ([6]) Let A be an n × n sign pattern and A be

a nilpotent realization of index n of A. If the only matrix in the centralizer of A satisfying

B ◦ AT = 0 is the zero matrix, then the pattern A and each of its superpatterns is a spectrally

arbitrary pattern.

Motivated by [6], in this work, we give the Nilpotent-Centralizer methods for spectrally

arbitrary complex sign patterns and ray patterns, respectively. We find that the Nilpotent-

Centralizer methods for three kinds of patterns (sign pattern, complex sign pattern, ray pattern)
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are the same in form.

2. The Nilpotent-Centralizer method for spectrally arbitrary complex
sign patterns

In [2], a means to show that a complex sign pattern and all its superpatterns are spectrally

arbitrary was established.

Theorem 2.1 (Nilpotent-Jacobian Method) ([2]) Let S = A+ iB be a complex sign pattern of

order n ≥ 2, and suppose that there exists some nilpotent complex matrix C = A + iB ∈
Qc(S), where A ∈ Q(A), B ∈ Q(B), and A and B have at least 2n nonzero entries, say

ai1j1 , . . . , ain1 jn1
, bin1+1jn1+1 , . . . , bi2nj2n . Let X be the complex matrix obtained by replacing

these entries in C by variables x1, . . . , x2n, and the characteristic polynomial of X be

|λI −X| =λn + (f1(x1, x2, . . . , x2n) + ig1(x1, x2, . . . , x2n))λ
n−1 + · · ·+

(fn−1(x1, x2, . . . , x2n) + ign−1(x1, x2, . . . , x2n))λ+

(fn(x1, x2, . . . , x2n) + ign(x1, x2, . . . , x2n)).

If the Jacobian matrix J = ∂(f1,...,fn,g1,...,gn)
∂(x1,x2,...,x2n)

is nonsingular at

(x1, . . . , x2n) = (ai1j1 , . . . , ain1 jn1
, bin1+1jn1+1 , . . . , bi2nj2n),

then the complex sign pattern S is spectrally arbitrary, and every superpattern of S is a spectrally

arbitrary complex sign pattern.

In the following, we show a slight generalization of the Nilpotent-Jacobian method for

spectrally arbitrary complex sign pattern.

Let C = A + iB be an n × n nilpotent matrix with m nonzero entries ai1j1 , . . . , ain1 jn1
,

bin1+1jn1+1 , . . . , bimjm , and C(x1, x2, . . . , xm) be the matrix obtained from C by replacing those

nonzero entries by xk for k = 1, 2, . . . ,m, where x1, x2, . . . , xm are distinct indeterminates. Then

there exist polynomials β1 = f1 + ig1, β2 = f2 + ig2, . . . , βn = fn + ign, where fi, gi are in

R[x1, x2, . . . , xm], such that the characteristic polynomial of C(x1, x2, . . . , xm) is xn + β1x
n−1 +

· · ·+ βn−1x+ βn. Define ~ : Rm → R2n by

~(x1, x2, . . . , xm)

= (f1(x1, x2, . . . , xm), . . . , fn(x1, x2, . . . , xm), g1(x1, x2, . . . , xm), . . . , gn(x1, x2, . . . , xm)).

We call ~ the polynomial map of C. The Jacobian of ~, denoted Jac(~), is defined as

Jac(~) =
∂(f1, f2, . . . , fn, g1, g2, . . . , gn)

∂(x1, x2, . . . , xm)
,

and set

Jac(~)|C = Jac(~)|(x1,x2,...,xm)=(ai1j1 ,...,ain1 jn1
,bin1+1jn1+1

,...,bimjm ).

Now, we will try to give the Nilpotent-Centralizer method to show that a complex sign

pattern is spectrally arbitrary. Some results are similar to the corresponding results in [6].
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Theorem 2.2 (Extended Nilpotent-Jacobian Method) Let S be a complex sign pattern of order

n, C ∈ Qc(S) be a nilpotent complex matrix and ~ be the polynomial map of C. If Jac(~)|C has

rank 2n, then the complex sign pattern S, and each superpattern of S, is a SAC.

Proof Assume that Jac(~)|C has rank 2n. Then Jac(~)|C has 2n linearly independent columns.

Let P be the set of entries of C corresponding to these columns. By applying the Nilpotent-

Jacobian method, the resulting Jacobian matrix evaluated at the initial points will have rank 2n,

therefore is nonsingular. So by Theorem 2.1, the complex sign pattern S and each superpattern

of S is a SAC. The theorem follows.

Lemma 2.3 Let C be an n × n complex matrix, Y = [ykl] = [pkl + iqkl] be a complex matrix

with the same complex sign pattern as C and whose nonzero entries are distinct indeterminates.

Let the characteristic polynomial of Y be

cY = det(xI − Y ) = xn + (f1 + ig1)x
n−1 + · · ·+ (fn−1 + ign−1)x+ (fn + ign),

where fm = fm(p11, p12, . . . , pnn, q11, q12, . . . , qnn), and gm = gm(p11, p12, . . . , pnn, q11, q12, . . . , qnn)

for m = 1, 2, . . . , n. Then for (k, l) with pkl ̸= 0, we have
∂fm
∂pkl

∣∣∣
Y=C

= the real part of the coefficient of xn−m in −adj(xI − C)lk,

∂gm
∂pkl

∣∣∣
Y=C

= the imaginary part of the coefficient of xn−m in −adj(xI − C)lk,

and for (k, l) with qkl ̸= 0, we have
−∂fm
∂qkl

∣∣∣
Y=C

= the imaginary part of the coefficient of xn−m in −adj(xI − C)lk,

∂gm
∂qkl

∣∣∣
Y=C

= the real part of the coefficient of xn−m in −adj(xI − C)lk.

Proof Let Ekl be the n× n matrix which has 1 in the (k, l)-entry and 0’s elsewhere.

For (k, l) with pkl ̸= 0, we have

∂cY
∂pkl

= lim
h→0

det(xI − (Y + hEkl))− det(xI − Y )

h

= lim
h→0

det(xI − Y )− h(−1)k+l det((xI − Y )(k, l))− det(xI − Y )

h
= −adj(xI − Y )lk.

Hence

−adj(xI − Y )lk =
∂cY
∂pkl

=
( ∂f1
∂pkl

+ i
∂g1
∂pkl

)
xn−1 +

( ∂f2
∂pkl

+ i
∂g2
∂pkl

)
xn−2+

· · ·+
(∂fn−1

∂pkl
+ i

∂gn−1

∂pkl

)
x+

( ∂fn
∂pkl

+ i
∂gn
∂pkl

)
,
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and so
∂fm
∂pkl

∣∣∣
Y=C

= the real part of the coefficient of xn−m in −adj(xI − C)lk,

∂gm
∂pkl

∣∣∣
Y=C

= the imaginary part of the coefficient of xn−m in −adj(xI − C)lk.

Similarly, for (k, l) with qkl ̸= 0, we have

∂cY
∂qkl

= lim
h→0

det(xI − (Y + ihEkl))− det(xI − Y )

h

= lim
h→0

det(xI − Y )− ih(−1)k+l det((xI − Y )(k, l))− det(xI − Y )

h
= −i adj(xI − Y )lk.

Then

−i adj(xI − Y )lk =
∂cY
∂qkl

=
( ∂f1
∂qkl

+ i
∂g1
∂qkl

)
xn−1 +

( ∂f2
∂qkl

+ i
∂g2
∂qkl

)
xn−2+

· · ·+
(∂fn−1

∂qkl
+ i

∂gn−1

∂qkl

)
x+

( ∂fn
∂qkl

+ i
∂gn
∂qkl

)
,

equivalently,

−adj(xI − Y )lk =
( ∂g1
∂qkl

− i
∂f1
∂qkl

)
xn−1 +

( ∂g2
∂qkl

− i
∂f2
∂qkl

)
xn−2+

· · ·+
(∂gn−1

∂qkl
− i

∂fn−1

∂qkl

)
x+

( ∂gn
∂qkl

− i
∂fn
∂qkl

)
.

Thus 
−∂fm
∂qkl

∣∣∣
Y=C

= the imaginary part of the coefficient of xn−m in −adj(xI − C)lk,

∂gm
∂qkl

∣∣∣
Y=C

= the real part of the coefficient of xn−m in −adj(xI − C)lk.

The lemma follows.

Lemma 2.4 ([6]) If the n× n complex matrix C is nilpotent, then

adj(xI − C)lk = (xn−1I + xn−2C + xn−3C2 + · · ·+ Cn−1)lk =
n−1∑
m=0

xn−m−1(Cm)lk.

Lemmas 2.3 and 2.4 imply the following theorem.

Theorem 2.5 Let C be an n × n nilpotent complex matrix, Y = [ykl] = [pkl + iqkl] be a

complex matrix with the same complex sign pattern as C and whose nonzero entries are distinct

indeterminates. Let the characteristic polynomial of Y be

cY = det(xI − Y ) = xn + (f1 + ig1)x
n−1 + · · ·+ (fn−1 + ign−1)x+ (fn + ign),

where fm = fm(p11, p12, . . . , pnn, q11, q12, . . . , qnn), and gm = gm(p11, p12, . . . , pnn, q11, q12, . . . , qnn)
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for m = 1, 2, . . . , n. Then for (k, l) with pkl ̸= 0, we have
∂fm
∂pkl

∣∣∣
Y=C

= −ℜ(Cm−1)lk,

∂gm
∂pkl

∣∣∣
Y=C

= −ℑ(Cm−1)lk = −ℜ(−iCm−1)lk,

and for (k, l) with qkl ̸= 0, we have
∂fm
∂qkl

∣∣∣
Y=C

= ℑ(Cm−1)lk,

∂gm
∂qkl

∣∣∣
Y=C

= −ℜ(Cm−1)lk = ℑ(−iCm−1)lk.

For two complex patterns S1 = A1+iB1 and S2 = A2+iB2, the operating S1 ◦S2 is defined

as S1 ◦ S2 = A1 ◦ A2 + i(B1 ◦ B2).

Example 2.6 Consider the following 3× 3 complex sign pattern

S =

 1− i 1 0

1 + i 0 −1

1 0 −1 + i

 .

The complex matrix

C =

 1− i
√
3 1 0

2 + i2
√
3 0 −1

8 0 −1 + i
√
3

 ∈ Qc(S)

is nilpotent (see Page 689 in [2]), and

C0 = I =

 1 0 0

0 1 0

0 0 1

 , C1 =

 1− i
√
3 1 0

2 + i2
√
3 0 −1

8 0 −1 + i
√
3

 , C2 =

 0 1− i
√
3 −1

0 2 + i2
√
3 1− i

√
3

0 8 −2− i2
√
3

 .

Set

Y =

 p11 + iq11 p12 0

p21 + iq21 0 p23

p31 0 p33 + iq33

 ,

and

cY = det(xI − Y ) = x3 + (f1 + ig1)x
2 + (f2 + ig2)x+ (f3 + ig3).

Then 

f1 = −p11 − p33,

f2 = −p12p21 + p11p33 − q11q33,

f3 = −p12p23p31 + p12p21p33 − p12q21q33,

g1 = −q11 − q33,

g2 = p11q33 + p33q11 − p12q21,

g3 = p12p33q21 + p12p21q33.
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Calculations show that

Jac(~) =
∂(f1, f2, f3, g1, g2, g3)

∂(p11, p12, p21, p23, p31, p33, q11, q21, q33)

=



−1 0 0 0 0 −1 0 0 0

p33 −p21 −p12 0 0 p11 −q33 0 −q11

0 p21p33 − p23p31 − q21q33 p12p33 −p12p31 −p12p23 p12p21 0 −p12q33 −p12q21

0 0 0 0 0 0 −1 0 −1

q33 −q21 0 0 0 q11 p33 −p12 p11

0 p33q21 + p21q33 p12q33 0 0 p12q21 0 p12p33 p12p21


,

and

Jac(~)|C =



−1 0 0 0 0 −1 0 0 0

−1 −2 −1 0 0 1 −
√
3 0

√
3

0 0 −1 −8 1 2 0 −
√
3 −2

√
3

0 0 0 0 0 0 −1 0 −1
√
3 −2

√
3 0 0 0 −

√
3 −1 −1 1

0 0
√
3 0 0 2

√
3 0 −1 2


.

Let Ĵac(~)|C be the matrix obtained from Jac(~)|C by changing the signs of the first six

columns, that is,

Ĵac(~)|C =



1 0 0 0 0 1 0 0 0

1 2 1 0 0 −1 −
√
3 0

√
3

0 0 1 8 −1 −2 0 −
√
3 −2

√
3

0 0 0 0 0 0 −1 0 −1

−
√
3 2

√
3 0 0 0

√
3 −1 −1 1

0 0 −
√
3 0 0 −2

√
3 0 −1 2


.

Theorem 2.5 states that the entries in a column of Ĵac(~)|C are corresponding to the relevant

entries of matrices

C0, C1, C2,−iC0,−iC1,−iC2, (2.1)

where,

C0 =

 1 0 + i0 0

0 1 0

0 0 1

 , C1 =

 1− i
√
3 1 + i0 0

2 + i2
√
3 0 −1

8 0 −1 + i
√
3

 ,

C2 =

 0 1−i
√
3 −1

0 2 + i2
√
3 1− i

√
3

0 8 −2− i2
√
3

 , −iC0 =

 0− i 0 + i0 0

0 −i 0

0 0 −i

 ,

−iC1 =

 −
√
3− i 0−i 0

2
√
3− i2 0 i

−i8 0
√
3 + i

 , −iC2 =

 0 −
√
3− i i

0 2
√
3− i2 −

√
3− i

0 −i8 −2
√
3 + i2

 .
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The following facts are clear.

(1) The entries of the first six columns of Ĵac(~)|C are corresponding to the real parts of

the relevant entries of matrices in (2.1). For example, the entries of the first column of Ĵac(~)|C
are the real parts of (1,1) entries of matrices in (2.1), respectively; the entries of the third column

of Ĵac(~)|C are the real parts of (1,2) entries of matrices in (2.1), respectively.

(2) The entries of the last three columns of Ĵac(~)|C are corresponding to the imaginary

parts of the relevant entries of matrices in (2.1). For example, the entries of the eighth column

of Ĵac(~)|C are the imaginary parts of (1,2) entries of matrices in (2.1), respectively.

Note that rank(Jac(~)|C) < 6 ⇐⇒ rank(Ĵac(~)|C) < 6 ⇐⇒ the row vectors of Ĵac(~)|C are

linearly dependent ⇐⇒ there exist real numbers am(m = 1, 2, . . . , 6), not all 0, such that

(a1C
0 + a2C

1 + a3C
2 − ia4C

0 − ia5C
1 − ia6C

2) ◦ CT = 0. (2.2)

We can represent (2.2) as

((a1 − ia4)C
0 + (a2 − ia5)C

1 + (a3 − ia6)C
2) ◦ CT = 0.

So rank(Jac(~)|C) < 6 ⇐⇒ there exist complex numbers cm(m = 1, 2, 3), not all 0, such that

(c1C
0 + c2C

1 + c3C
2) ◦ CT = 0. (2.3)

Now we get the following theorem.

Theorem 2.7 Let C be an n × n nilpotent complex matrix, and let ~ be its polynomial map.

Then Jac(~)|C has rank less than 2n if and only if there exists a nonzero polynomial v(x) ∈ C[x]
of degree at most n− 1 such that v(C) ◦ CT = 0.

Proof Jac(~)|C has rank less than 2n if and only if there exist real numbers am(m = 1, 2, . . . , 2n),

not all 0, such that

(a1C
0 + a2C

1 + · · ·+ anC
n−1 − ian+1C

0 − ian+2C
1 − · · · − ia2nC

n−1) ◦ CT = 0. (2.4)

We can represent (2.4) as

((a1 − ian−1)C
0 + (a2 − ian+2)C

1 + · · ·+ (an − ia2n)C
n−1) ◦ CT = 0. (2.5)

Therefore Jac(~)|C has rank less than 2n if and only if there is a nonzero polynomial v(x) ∈ C[x]
(namely, v(x) = (a1 − ian−1) + (a2 − ian+2)x + · · · + (an − ia2n)x

n−1) of degree at most n − 1

such that v(C) ◦ CT = 0. The theorem follows.

In the following context, the proofs of Lemma 2.8 and Theorem 2.9 are the same as Lemma

3.6 and Theorem 3.7 in [6], respectively. We will omit them.

Lemma 2.8 Let C be an n × n nilpotent complex matrix of index n. Then there exists a

nonzero polynomial v(x) ∈ C[x] of degree at most n − 1 such that v(C) ◦ CT = 0 if and only if

there exists a nonzero complex matrix H in the centralizer of C such that H ◦ CT = 0.

Theorem 2.9 (Nilpotent-Centralizer Method for spectrally arbitrary complex sign patterns)

Let S be a complex sign pattern of order n, and C ∈ Qc(S) be a nilpotent complex matrix of
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index n. If the only complex matrix H in the centralizer of C satisfying H ◦ CT = 0 is the zero

matrix, then the complex sign pattern S and each of its superpatterns is spectrally arbitrary.

3. The Nilpotent-Centralizer method for spectrally arbitrary ray pat-
terns

In [3], a means to show that a ray pattern and all its superpatterns are spectrally arbitrary

was established as follows.

(1) Find a nilpotent matrix in the given ray pattern class.

(2) Change 2n of the positive coefficients (denoted r1, r2, . . . , r2n) of the eiθij in this nilpo-

tent matrix to variables t1, t2, . . . , t2n.

(3) Express the characteristic polynomial of the resulting matrix as:

λn + (f1(t1, t2, . . . , t2n) + ig1(t1, t2, . . . , t2n))λ
n−1 + · · ·+

(fn−1(t1, t2, . . . , t2n) + ign−1(t1, t2, . . . , t2n))λ+ (fn(t1, t2, . . . , t2n) + ign(t1, t2, . . . , t2n)).

(4) Find the Jacobian matrix

J =
∂(f1, f2, . . . , fn, g1, g2, . . . , gn)

∂(t1, t2, . . . , t2n)
.

(5) If the determinant of J , evaluated at (t1, t2, . . . , t2n) = (r1, r2, . . . , r2n) is nonzero, then

the given ray pattern and all of its superpatterns are spectrally arbitrary.

In the following, we show a slight generalization of the Nilpotent-Jacobian method for

spectrally arbitrary ray patterns.

Let C = [cjk] be an n × n nilpotent matrix with m nonzero entries ci1j1 , ci2j2 , . . . , cimjm ,

where cikjk = rke
iθk , k = 1, 2, . . . ,m. Let C(x1, x2, . . . , xm) be the matrix obtained from C by

replacing rk by xk for k = 1, . . . ,m, where x1, x2, . . . , xm are distinct indeterminates. Then there

exist polynomials β1 = f1+ig1, β2 = f2+ig2, . . . , βn = fn+ign, where fi, gi is in R[x1, x2, . . . , xm],

such that the characteristic polynomial of C(x1, x2, . . . , xm) is xn + β1x
n−1 + · · ·+ βn−1x+ βn.

Define h̃ : Rm → R2n by

h̃(x1, x2, . . . , xm)

= (f1(x1, x2, . . . , xm), . . . , fn(x1, x2, . . . , xm), g1(x1, x2, . . . , xm), . . . , gn(x1, x2, . . . , xm)).

We call h̃ the polynomial map of C. The Jacobian of h̃ is defined as

Jac(h̃) =
∂(f1, f2, . . . , fn, g1, g2, . . . , gn)

∂(x1, x2, . . . , xm)
.

Theorem 3.1 (Extended Nilpotent-Jacobian Method) Let S be a ray pattern of order n,

C ∈ Qr(S) be a nilpotent complex matrix and h̃ be the polynomial map of C. If

Jac(h̃)|C = Jac(h̃)|(x1,x2,...,xm)=(r1,r2,...,rm)

has rank 2n, then the ray pattern S, and each superpattern of S, is a SAR.

The proof of Theorem 3.1 is similar to Theorem 2.2, and we omit it.
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Now, we will try to give the Nilpotent-Centralizer method to show that a ray pattern is

spectrally arbitrary.

Lemma 3.2 Let S = [skl] be a ray pattern of order n and C ∈ Qr(S). Take Y = [rklskl] ∈ Qr(S).

Let the characteristic polynomial of Y be

cY = det(xI − Y ) = xn + (f1 + ig1)x
n−1 + · · ·+ (fn−1 + ign−1)x+ (fn + ign),

where fm = fm(r11, r12, . . . , rnn) and gm = gm(r11, r12, . . . , rnn) for m = 1, 2, . . . , n. Then for

(k, l) with skl ̸= 0, we have
∂fm
∂rkl

∣∣∣
Y=C

= the real part of the coefficient of xn−m in −skladj(xI − C)lk,

∂gm
∂rkl

∣∣∣
Y=C

= the imaginary part of the coefficient of xn−m in −skladj(xI − C)lk,

Proof For (k, l) with skl ̸= 0, we have

∂cY
∂rkl

= lim
h→0

det(xI − (Y + hsklEkl))− det(xI − Y )

h

= lim
h→0

det(xI − Y )− hskl(−1)k+l det((xI − Y )(k, l))− det(xI − Y )

h
= −skladj(xI − Y )lk.

Hence

−skladj(xI − Y )lk =
( ∂f1
∂rkl

+ i
∂g1
∂rkl

)
xn−1 +

( ∂f2
∂rkl

+ i
∂g2
∂rkl

)
xn−2+

· · ·+
(∂fn−1

∂rkl
+ i

∂gn−1

∂rkl

)
x+

( ∂fn
∂rkl

+ i
∂gn
∂rkl

)
,

and so
∂fm
∂rkl

∣∣∣
Y=C

= the real part of the coefficient of xn−m in −skladj(xI − C)lk,

∂gm
∂rkl

∣∣∣
Y=C

= the imaginary part of the coefficient of xn−m in −skladj(xI − C)lk.

The lemma follows.

Lemmas 3.2 and 2.4 imply the following theorem.

Theorem 3.3 Let S = [skl] be a ray pattern of order n, and C ∈ Qr(S) be a nilpotent complex

matrix. Take Y = [rklskl] ∈ Qr(S). Let the characteristic polynomial of Y be

cY = det(xI − Y ) = xn + (f1 + ig1)x
n−1 + · · ·+ (fn−1 + ign−1)x+ (fn + ign),

where fm = fm(r11, r12, . . . , rnn) and gm = gm(r11, r12, . . . , rnn) for m = 1, 2, . . . , n. Then for

(k, l) with skl ̸= 0, we have
∂fm
∂rkl

∣∣∣
Y=C

= −ℜ(sklCm−1)lk = −ℜ(Cm−1 ◦ ST )lk,

∂gm
∂rkl

∣∣∣
Y=C

= −ℑ(sklCm−1)lk = −ℜ(−iCm−1 ◦ ST )lk.
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Theorem 3.3 implies that the entries in a column of Jac(h̃)|C are corresponding to the

negative of real parts of relevant entries of matrices

C0 ◦ ST , C1 ◦ ST , . . . , Cm−1 ◦ ST ,−i(C0 ◦ ST ),−i(C1 ◦ ST ), . . . ,−i(Cm−1 ◦ ST ). (3.1)

For example, the entries of ∂(f1,f2,...,fn,g1,g2,...,gn)
∂(rkl)

|C are corresponding to the negative of real

parts of (l, k) entries of matrices as shown in (3.1), respectively.

By a similar approach to Theorem 2.7, we can prove the following theorem, and we omit

the proof.

Theorem 3.4 Let S = [sjk] be a ray pattern of order n, C ∈ Qr(S) be an nilpotent matrix,

and h̃ be its polynomial map. Then Jac(h̃)|C has rank less than 2n if and only if there exists a

nonzero polynomial v(x) ∈ C[x] of degree at most n− 1 such that v(C) ◦ ST = 0.

Similarly as in the case of complex sign patterns, we have following Lemma 3.5 and Theorem

3.6 about ray patterns.

Lemma 3.5 Let S = [sjk] be a ray pattern of order n, and C ∈ Qr(S) be an nilpotent complex

matrix of index n. Then there exists a nonzero polynomial v(x) ∈ C[x] of degree at most n− 1

such that v(C)◦ST = 0 if and only if there exists a nonzero complex matrix H in the centralizer

of C such that H ◦ ST = 0.

Theorem 3.6 (Nilpotent-Centralizer Method for spectrally arbitrary ray patterns) Let S be

a ray pattern of order n, and C ∈ Qr(S) be a nilpotent complex matrix of index n. If the only

complex matrix H in the centralizer of C satisfying H ◦ ST = 0 is the zero matrix, then the ray

pattern S and each of its superpatterns is spectrally arbitrary.
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