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The Nilpotent-Centralizer Methods

Yubin GAO*, Yanling SHAO
Department of Mathematics, North University of China, Shanzi 030051, P. R. China

Abstract Annxn complex sign pattern (ray pattern) S is said to be spectrally arbitrary if for
every monic nth degree polynomial f(\) with coefficients from C, there is a complex matrix in
the complex sign pattern class (ray pattern class) of S such that its characteristic polynomial
is f(M\). We derive the Nilpotent-Centralizer methods for spectrally arbitrary complex sign
patterns and ray patterns, respectively. We find that the Nilpotent-Centralizer methods for
three kinds of patterns (sign pattern, complex sign pattern, ray pattern) are the same in form.
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1. Introduction

A sign pattern A of order n is a matrix whose entries are in the set {4+, —,0}. Its sign
pattern class is

Q(A)={A| A€ M,(R) and sgn(A) = A}.

For n x n sign patterns A = [ay;] and B = [by], the matrix S = A + 1B is called a complex
sign pattern of order n, where i* = —1 (see [1]). Clearly, the (k,[)-entry of S is ap + iby for
k,1=1,2,...,n. Associated with an n x n complex sign pattern S = A+iB is a class of complex

matrices, called the complex sign pattern class of S, defined by
Q.(8) ={C =A+iB| A and B are n x n real matrices, and sgn(A) = A, sgn(B) = B}.

A ray pattern S = [s;;] of order n is a matrix with entries s, € {ei‘9 |0 <6 <27} U{0},

where i2 = —1. Its ray pattern class is
Q-(S) = {A = [ajx] € M,,(C) | aji, = 7ji5;k, where rj;, € RY for 1 < j, k <n}.

Let A be a sign pattern of order n > 2. If for any given real monic polynomial f(\) of
degree n, there is a real matrix A € Q(A) having characteristic polynomial f(\), then A is a
spectrally arbitrary sign pattern (SAP).

Let S = A+ iB be a complex sign pattern of order n > 2. If for every monic nth degree

polynomial f(A) with coefficients from C, there is a complex matrix in Q.(S) such that its
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characteristic polynomial is f(X), then § is said to be a spectrally arbitrary complex sign pattern
(SAC) (see [2]).

A ray pattern S of order n (n > 2) is said to be spectrally arbitrary (SAR) if each monic
polynomial of degree n with coefficients from C is the characteristic polynomial of some matrix
in Q.(S) (see [3]).

For two n x n sign patterns A = [ag;] and B = [by], if ag; = by whenever by; # 0, then A is
a superpattern of B, and B is a subpattern of .A. Note that each sign pattern is a superpattern
and a subpattern of itself.

For two n xn complex sign patterns §; = A; +iB; and Sy = Az +iBs, if A is a superpattern
of Ay, and B is a superpattern of By, then S is a superpattern of So, and Sy is a subpattern of
S1.

A ray pattern S; = [pjx] is a superpattern of a ray pattern Sy = [s;] if pjx = s, whenever
sjk # 0. And Sy is a subpattern of S; if Sy is a superpattern of Ss.

A sign pattern A (complex sign pattern S, ray pattern S) is said to be potentially nilpotent
(PN) if there exists a matrix B € Q(A) (B € Q.(S), B € Q.(S)) such that BX = 0 for some
positive integer k.

For a complex sign pattern S = A+ 1B, the sign patterns A and B are the real part pattern
and imaginary part pattern of S, respectively. Let C' be an n X n complex matrix. We use R(C)x
(respectively, 3(C)x) to denote the real part (respectively, imaginary part) of the (I, k) entry of
C.

Let C' be an n x n real or complex matrix. If there is some positive integer k such that
C* = 0, then C is said to be a nilpotent matrix. The smallest such k is called the nilpotence
index (simply, index) of C.

The problem of classifying the spectrally arbitrary sign patterns was introduced in [4] by
Drew et al. In their article, they developed the Nilpotent-Jacobian method for showing that a
sign pattern and all its superpatterns are spectrally arbitrary. In [2, 3], the concepts of spectral-
ly arbitrary ray patterns and spectrally arbitrary complex sign patterns were introduced, and
the two articles extended the Nilpotent-Jacobian method for sign patterns to ray patterns and
complex sign patterns, respectively. Work on spectrally arbitrary patterns (sign patterns, ray
patterns, and complex sign patterns) has continued in several articles including [2-9].

In [6], Garnett and Shader derived the Nilpotent-Centralizer method to prove a sign pattern
to be spectrally arbitrary.

Theorem 1.1 (Nilpotent-Centralizer Method) ([6]) Let A be an n X n sign pattern and A be
a nilpotent realization of index n of A. If the only matrix in the centralizer of A satisfying
Bo AT =0 is the zero matrix, then the pattern A and each of its superpatterns is a spectrally
arbitrary pattern.

Motivated by [6], in this work, we give the Nilpotent-Centralizer methods for spectrally
arbitrary complex sign patterns and ray patterns, respectively. We find that the Nilpotent-
Centralizer methods for three kinds of patterns (sign pattern, complex sign pattern, ray pattern)
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are the same in form.

2. The Nilpotent-Centralizer method for spectrally arbitrary complex
sign patterns

In [2], a means to show that a complex sign pattern and all its superpatterns are spectrally

arbitrary was established.

Theorem 2.1 (Nilpotent-Jacobian Method) ([2]) Let S = A+ iB be a complex sign pattern of
order n > 2, and suppose that there exists some nilpotent complex matrix C = A + iB €

Q.(S), where A € Q(A), B € Q(B), and A and B have at least 2n nonzero entries, say

a/ilj17 ttt ainljnl ? binl+1jn1+1’ Tt b
these entries in C' by variables x1,...,xs,, and the characteristic polynomial of X be

ianjan - L€t X be the complex matrix obtained by replacing
AT = X| =A™+ (fi(21, @2, .-, o) +ig1(21, T, ., 220)) A" 4
(frn—1(z1, T2, -+, T2n) +ign—1(21, 22, ..., T2n)) A+
(fn(wlyx% e 7x2n) + ign(l'l,l'g, s ax2n))~

If the Jacobian matrix J = W is nonsingular at

(xh s 7'75271) = (ailjl yee s Qig g bin1+ljnl+l’ R bi2nj2n)’

then the complex sign pattern S is spectrally arbitrary, and every superpattern of S is a spectrally
arbitrary complex sign pattern.
In the following, we show a slight generalization of the Nilpotent-Jacobian method for

spectrally arbitrary complex sign pattern.

Let C'= A+ 1B be an n X n nilpotent matrix with m nonzero entries a;,j,,..., i, j.,
Dip 41dnyt1s s Dipjms> and C(21,22,...,7,) be the matrix obtained from C by replacing those
nonzero entries by xy for k =1,2,...,m, where x1, 2, ..., x,, are distinct indeterminates. Then

there exist polynomials 8, = f1 +ig1,82 = fa +ig2,...,8n = fn + ign, where f;, g; are in
R[z1, T2, .., Tm], such that the characteristic polynomial of C(x1, 2, ..., %y) is 2™ + Brz" "t +
<o+ + Bn_1% + Bp. Define h : R™ — R2" by
Mz, 22,y Tm)
= (fi(x1, 2o, T )y ooy fr(@1, %2y ooy ), 91(T1, T2y oo Ty ey G (T, X2y o ooy T))-
We call & the polynomial map of C. The Jacobian of A, denoted Jac(h), is defined as
— 8(f17f27'")fn7g].7927"')g7l)

O(x1, T, ..., Tm)

Jac(h)

)

and set

JaC(h)‘C = Jac(h)|(931x$2>-~w$m):(a’i1h sy @ip g gng 7bin1+1jn,1+1 7"'7bimjm)'

Now, we will try to give the Nilpotent-Centralizer method to show that a complex sign

pattern is spectrally arbitrary. Some results are similar to the corresponding results in [6].
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Theorem 2.2 (Extended Nilpotent-Jacobian Method) Let S be a complex sign pattern of order
n, C' € Q.(S) be a nilpotent complex matrix and h be the polynomial map of C. If Jac(h)|c has
rank 2n, then the complex sign pattern S, and each superpattern of S, is a SAC.

Proof Assume that Jac(h)|c has rank 2n. Then Jac(h)|c has 2n linearly independent columns.
Let P be the set of entries of C corresponding to these columns. By applying the Nilpotent-
Jacobian method, the resulting Jacobian matrix evaluated at the initial points will have rank 2n,
therefore is nonsingular. So by Theorem 2.1, the complex sign pattern S and each superpattern
of § is a SAC. The theorem follows.

Lemma 2.3 Let C be an n X n complex matrix, Y = [yri] = [pri + iqr1] be a complex matrix
with the same complex sign pattern as C' and whose nonzero entries are distinct indeterminates.

Let the characteristic polynomial of Y be
ey =det(z] —Y) =a" + (fi +ig))a" "+ 4 (famr +ign—1)7 + (fo +ign),

where fm - fm(p117p127 «o sy Pnnyq11,49125 - - - an); andgm = gm(p117p127 «o sy Pnny 411,912, - - - an)
form =1,2,...,n. Then for (k,l) with pg; # 0, we have

0

ﬂ‘ = the real part of the coefficient of x"~™ in —adj(xI — C),

Opr1 ly=C

3]

ﬂ‘ = the imaginary part of the coefficient of x"~™ in —adj(zl — C),,
Opri ly=C

and for (k,l) with g # 0, we have

0

_9fm = the imaginary part of the coefficient of x"~™ in —adj(zl — C),
Oqr ly=c

0

G9m = the real part of the coefficient of 2"~ ™ in —adj(zl — C).

Oqi ly=c

Proof Let Ej; be the n x n matrix which has 1 in the (k,{)-entry and 0’s elsewhere.
For (k,1) with pg; # 0, we have

Ocy . det(zl — (Y + hEy)) —det(zl = Y)
8ka - }lli% h
B det(zI —Y) — h(=1)**det((zI — Y)(k,1)) — det(x] —Y)
~ a0 h
= 7adj(12[ — Y)lk-
Hence
. _Ocy _(Ofi 091\ n1 (Of2 | 092\ .o
—odi(al =Y =500 = (G + i)™+ (G 130"
8fn—l .8971—1 8fn . agn
- _|_ + ,
( Opr ' Opri )x (3pkl lapkl)
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and so
)
Ofm = the real part of the coefficient of "~™ in —adj(xI — C),
Opr1 ly=C
0
G9m = the imaginary part of the coefficient of =™ in —adj(al — C).
Opr1 ly=C

Similarly, for (k, 1) with g # 0, we have

ey lim det(zl — (Y +ihEy)) — det(zI = Y)

6qkl "~ h—0 h
iy det(@l = Y) —ih(—)* det((2] — Y)(k, 1)) — det(x] ~ V)
= l1m
h—0 h

=—i adJ(JSI — Y)lk'-

Then
. Ocy ofi .0 1 Ofs . 0g2 _2
—iadj(xl =Y = — =44+ i )2 4+ == +i—== )"+
J( )lk g1 <3le 5%1) (5%1 3%1)
afn—l . agn—l 8fn . 8971
SRR o 1 T+ |—+t17),
( Oqx1 0qr ) (3%1 5'le)
equivalently,
) dg1 . 0f1 1 0g2 . O0fs _9
—adj(zl =Y =z=——1=—=—)2" "+ (=—=— —i=— )z" "+
i Jue (8%1 8%1) <8q1el (9%)
agnfl .8fn71 agn . afn
+ —1 x + —1 .
( Oqx1 Oqr ) (3%1 5qkz)
Thus
0
_Om = the imaginary part of the coefficient of =™ in —adj(xl — C),
g ly=c
89—’”’ = the real part of the coefficient of "~ in —adj(zI — C).
Oq ly=c

The lemma follows.

Lemma 2.4 ([6]) If the n x n complex matrix C is nilpotent, then

adj(xl — C)y, = (" T+ 2" 2C + 2" 3C% + -+ C" V),

I
&
?
s
i
Q
=
5

Lemmas 2.3 and 2.4 imply the following theorem.

Theorem 2.5 Let C be an n X n nilpotent complex matrix, Y = [yr] = [pr + iqui] be a
complex matrix with the same complex sign pattern as C' and whose nonzero entries are distinct

indeterminates. Let the characteristic polynomial of Y be
cy =det(z] =Y) =a" + (fr +ig1)2" "+ + (fao1 +ign-1)T + (fa +ign),

where fr, = fm(P11,P125 - - s Prns @115 Q125 - - > Gnn)> a0 gy = G (D11, P12, - - - Prn> Q11,125 - - - s Gnm)
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form =1,2,...,n. Then for (k,1) with py; # 0, we have

0 fm 1
— = -R(C™
Opr ly=C ( )lk7

agm o~ —1 . —1
== = -3(Cc™ = -R(-iC™

ot [y —c 3( )ik (—i )ik
and for (k,l) with q; # 0, we have

dfm

X Cmfl
g1 ly=c 3 Jue

9gm

_ m—1 — (i m—1
8qkl v_c = §R(C )lk \Y( ZC )lk-

For two complex patterns S; = A; +iB; and S = As + 1B, the operating S1 0 Ss is defined
as S108, = Aj 0 Ay + i(81 o Bg)

Example 2.6 Consider the following 3 x 3 complex sign pattern

1—i 1 0
S=|1+i 0 -1
1 0 —1+i
The complex matrix
1—iv3 1 0
C=|2+i2v/3 0 1 € Q.(S)

8 0 —1+iv3
is nilpotent (see Page 689 in [2]), and

1 00 1-iv3 1 0 0 1-iV3 -1
C'=I=|010|,C'=]|2+i2v/3 0 -1 ,C?=10 2+i2v/3 1-iV3

00 1 8 0 —1+iV3 0 8 -2 —i2V3
Set

P +iqin pi2 0
Y =1 pa+ign 0 D23 ;
D31 0 ps33+igss

and

cy =det(x]l —Y) =23 + (fi +ig1)z? + (fo +ig2)x + (f3 +ig3).
Then

J1=—p11 — p3s3,

f2 = —pi2p21 + p11P33 — 11433,

f3 = —D12p23P31 + P12P21P33 — P12421G33,
91 = —q11 — 433,

g2 = P11¢33 + P33q11 — P12G21,

g3 = D12P33G21 + P12D21933-
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Calculations show that
a(f17f27f37glag2ag3)

Jac(h) = O(p11, P12, P21, P23, P31, P33, G115 421, 433)
[ -1 0 0 0 0 ~1 0 0 0
D33 —p21 —p12 0 0 P11 —¢s3 0 —q11
_ 0 p21p3s —p23ps1 — q21G33 P12P33  —P12P31  —P12P23  P12P21 0 —P12433 —P12¢21
oo 0 0 0 0 0 ~1 0 ~1
433 —q21 0 0 0 q11 D33 —p12 P11
| O D33G21 + P21933 D12433 0 0 p12g21 0 D12P33s  Di2p21
and ) )
-1 0 0 0 -1 0 0 0
-1 -2 -—1 0 1 | =3 0 V3
0 0 -1 -8 1 2 0 -3 —2v3
Jac(h)|c =
0 0 0 0 0 0 -1 0 -1
V3 =23 0 0 0 —3| -1 -1
0 0 V3 0 0 23| 0 -1 2 |

Let J}E(hﬂc be the matrix obtained from Jac()|c by changing the signs of the first six

columns, that is,

[ 1 0 0 0 0 1 0 0 0 |
1 2 1 0 0 -1 | =3 0 V3
Toe(h)le = 0 0 1 8 -1 =2 0 -3 —2V3
0 0 0 0 0 0 —1 0 —1
-3 23 0 0 0 V3 | -1 -1 1
0 0 —vV3 0 0 -2v3| 0 -1 2 |

Theorem 2.5 states that the entries in a column of jz;(h) |¢ are corresponding to the relevant

entries of matrices

cl,.ct, c?,—iC?, —ict, —iC?, (2.1)
where,
1 04i0 0 1—ivV3 1410 0
C° = , Cl=1|24+i2v/3 0 -1 ,
8 0 —1+iV3
0 1-iv3 -1 0—i 04+i0 0
C?’=10 2+i2v3 1-iV/3 . —iC? = 0 —i 0 |,
0 8 —2—-1i2V/3 0 0 —i
—V3—-i 0-i 0 0 —v3-1i i
—ict=1| 2v3-i2 0 i , —iC?=10 2V3-i2 —v/3-i

—i8 0 V3+i 0 —i8 —2/3+1i2
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The following facts are clear.

(1) The entries of the first six columns of jaE(h)|c are corresponding to the real parts of
the relevant entries of matrices in (2.1). For example, the entries of the first column of il\c(h)‘c
are the real parts of (1,1) entries of matrices in (2.1), respectively; the entries of the third column
of J/BE(hﬂc are the real parts of (1,2) entries of matrices in (2.1), respectively.

(2) The entries of the last three columns of jé\c(hﬂc are corresponding to the imaginary
parts of the relevant entries of matrices in (2.1). For example, the entries of the eighth column
of jaE(hﬂc are the imaginary parts of (1,2) entries of matrices in (2.1), respectively.

Note that rank(Jac(f)|c) < 6 <= rank(iz\c(hﬂc) < 6 <= the row vectors of jz-x\c(h)|c are
linearly dependent <= there exist real numbers a,,(m =1,2,...,6), not all 0, such that

(a1C° + apC* + a3C? — iasC° —iasC* — iagC?) o CT = 0. (2.2)
We can represent (2.2) as
(a1 —1aq)C° + (ag — ias)C* + (a3 — iag)C?) o CT = 0.
So rank(Jac(h)|¢) < 6 <= there exist complex numbers ¢,,,(m = 1,2, 3), not all 0, such that
(10 4+ c2C + c3C*) o CT = 0. (2.3)
Now we get the following theorem.
Theorem 2.7 Let C be an n X n nilpotent complex matrix, and let i be its polynomial map.

Then Jac(h)|c has rank less than 2n if and only if there exists a nonzero polynomial v(z) € C[z]
of degree at most n — 1 such that v(C) o CT = 0.

Proof Jac(h)|c has rank less than 2n if and only if there exist real numbers a,,(m = 1,2,...,2n),
not all 0, such that

(a1C° 4+ axC* + -+ + 4, O™ — i, 1C° —iay 4 2Ct — -+ —iap,C" M) o cT =o. (2.4)
We can represent (2.4) as
(a1 —ian_1)C° + (ag — iap42)Ct 4 -+ + (an — iag,)C™ ) o CT = 0. (2.5)

Therefore Jac(i)|¢ has rank less than 2n if and only if there is a nonzero polynomial v(z) € Clz]

(namely, v(z) = (a1 —ian-1) + (a2 — iani2)x + - + (an — iaz,)z" 1) of degree at most n — 1
such that v(C) o CT = 0. The theorem follows.
In the following context, the proofs of Lemma 2.8 and Theorem 2.9 are the same as Lemma

3.6 and Theorem 3.7 in [6], respectively. We will omit them.

Lemma 2.8 Let C' be an n X n nilpotent complex matrix of index n. Then there exists a
nonzero polynomial v(z) € C[x] of degree at most n — 1 such that v(C) o CT = 0 if and only if

there exists a nonzero complex matrix H in the centralizer of C' such that H o CT = 0.

Theorem 2.9 (Nilpotent-Centralizer Method for spectrally arbitrary complex sign patterns)
Let S be a complex sign pattern of order n, and C € Q.(S) be a nilpotent complex matrix of
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index n. If the only complex matrix H in the centralizer of C satisfying H o CT = 0 is the zero

matrix, then the complex sign pattern S and each of its superpatterns is spectrally arbitrary.

3. The Nilpotent-Centralizer method for spectrally arbitrary ray pat-
terns

In [3], a means to show that a ray pattern and all its superpatterns are spectrally arbitrary
was established as follows.

(1) Find a nilpotent matrix in the given ray pattern class.

(2) Change 2n of the positive coefficients (denoted 71,79, ...,72,) of the %5 in this nilpo-
tent matrix to variables t1,%s, ..., toy,.

(3) Express the characteristic polynomial of the resulting matrix as:

>\n + (fl(t17t27 e 7t2n) + igl(t17t27 e 7t2’n)))\n_1 + - +
(fn—1(ti e, ton) Fign-1(ti, ta, ..o t2n))A + (fu(ti, t2, . ton) +ign(ts, ta, . t2n)).
(4) Find the Jacobian matrix

J = 8(f1af27---afnvgl7925-~-agn)
O(t1,ta, ... tap)

(5) If the determinant of J, evaluated at (¢1,ts,...,t2,) = (r1,72,...,T2,) is nonzero, then

the given ray pattern and all of its superpatterns are spectrally arbitrary.
In the following, we show a slight generalization of the Nilpotent-Jacobian method for

spectrally arbitrary ray patterns.

Let C = [¢;i] be an n x n nilpotent matrix with m nonzero entries ¢;, j,, Ciyjos - - s Ciryjims
where ¢;, j, = rre'%, k=1,2,...,m. Let C(x1,%2,...,2,) be the matrix obtained from C by
replacing 7y, by z for k = 1,...,m, where x1, xs, ..., x,, are distinct indeterminates. Then there

exist polynomials 81 = f1+ig1, B2 = fa+ig2, ..., Bn = futign, where f;, g; isin Rz, xa, ..., ],
such that the characteristic polynomial of C(x1, o, ..., Zm) is 2™ + S12" L+ + Bu_127 + Ba.
Define h : R™ — R2" by

h(x1, @2, .., )
= (f1($1,5527~-~733m)7-~-,fn(3717$2,~-~7$m),91($1,1‘27~-~,$m),-~-79n(1‘1,$2,-~-,$m))~

We call h the polynomial map of C. The Jacobian of h is defined as

Jac(h) = O(f1, fas- s [nr 91,92, -+, Gn)

8(.1‘1,.232, [N ,J}m)
Theorem 3.1 (Extended Nilpotent-Jacobian Method) Let S be a ray pattern of order n,
C € Q.(S) be a nilpotent complex matrix and h be the polynomial map of C. If

Jac(h)|c = Jac(h)

|(15171527---7Im):(7'1 S22y, Tm )

has rank 2n, then the ray pattern S, and each superpattern of S, is a SAR.

The proof of Theorem 3.1 is similar to Theorem 2.2, and we omit it.
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Now, we will try to give the Nilpotent-Centralizer method to show that a ray pattern is

spectrally arbitrary.

Lemma 3.2 Let S = [sg] be aray pattern of order n and C' € Q,.(S). TakeY = [rgisu] € Qr(S).
Let the characteristic polynomial of Y be

cy =det(x] =Y) =a" + (fr +ig1)z" "+ + (fao1 +ign-1)T + (fa +ign),

where fp, = fm(ri1,712, .., Tnn) and gm = gm(r11,712,- -+, "nn) for m = 1,2,... ,n. Then for
(k,1) with sy # 0, we have
gfm = the real part of the coefficient of x™~™ in —syadj(xl — C),
Kly=Cc
gf;’; o= the imaginary part of the coefficient of x™~™ in —syadj(xl — C),
Y=

Proof For (k,1) with s # 0, we have

8Cy . det(l’f - (Y + hSklEkl)) - det(x[ — Y)
— = lim
8rkl h—0 h
B det(z] —Y) — hsp(—1)** det((zI — Y)(k,1)) — det(zI — Y)
h—0 h

= —skladj(xf — Y)lk

Hence
. of1 . 0gq 1 Ofs . 0g2 9
st V(i) ()
S J(x )lk 8rkl +18m v + 87"kl +18rkl . +
Ofn_ - n n
37’kl a"’kl arkl arkl
and so
O fm . s .
— = the real part of the coefficient of "~™ in —sgadj(zl — C),
87"Icl Y=C
19)
99m = the imaginary part of the coefficient of =™ in —sgjadj(xl — C) .
Brkl Y=C

The lemma follows.

Lemmas 3.2 and 2.4 imply the following theorem.

Theorem 3.3 Let S = [sy] be a ray pattern of order n, and C € Q,.(S) be a nilpotent complex
matrix. Take Y = [rgisi] € Q- (S). Let the characteristic polynomial of Y be

cy =det(xl =Y) =2" + (fi +ig)z™  + -+ (fa1 Fign_1)z + (fn +ign),

where f,, = fm(ri1,712, ..., Tnn) and gm = gm(r11,712, -+, "nn) for m = 1,2,... ., n. Then for
(k,1) with sk # 0, we have

af. _ _

= = = R(suC" i = —R(C™ o ST

Bty —c (Sk )ik ( oS )ik,

G

__x m—1 — _ im—1 T )
B ly—c S5 C™ ik R(—iC™ " 0 S )i
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Theorem 3.3 implies that the entries in a column of Jac(h)|c are corresponding to the
negative of real parts of relevant entries of matrices

COo8ST CloST,...,C" 1 oST, —(CY o 8T), —i(C' o ST), ..., —i(C™ 1o ST). (3.1)
O(f1.f2,--fn:91,92,--.9n

O(rkt)
parts of (I, k) entries of matrices as shown in (3.1), respectively.

For example, the entries of )|o are corresponding to the negative of real
By a similar approach to Theorem 2.7, we can prove the following theorem, and we omit

the proof.

Theorem 3.4 Let S = [s;i] be a ray pattern of order n, C' € Q,(S) be an nilpotent matrix,
and h be its polynomial map. Then Jac(h)|c has rank less than 2n if and only if there exists a
nonzero polynomial v(x) € C[z] of degree at most n — 1 such that v(C) o ST = 0.

Similarly as in the case of complex sign patterns, we have following Lemma 3.5 and Theorem

3.6 about ray patterns.

Lemma 3.5 Let S = [s;i] be a ray pattern of order n, and C € Q,(S) be an nilpotent complex
matrix of index n. Then there exists a nonzero polynomial v(z) € Clz| of degree at most n — 1
such that v(C') o ST = 0 if and only if there exists a nonzero complex matrix H in the centralizer
of C such that H o ST = 0.

Theorem 3.6 (Nilpotent-Centralizer Method for spectrally arbitrary ray patterns) Let S be
a ray pattern of order n, and C € Q,(S) be a nilpotent complex matrix of index n. If the only
complex matrix H in the centralizer of C satisfying H o ST = 0 is the zero matrix, then the ray

pattern S and each of its superpatterns is spectrally arbitrary.
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