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Abstract By Brezis-Nirenberg type Mountain Pass Theorem, the research has focused on the
existence of nontrivial homoclinic orbits for a class of second order Hamiltonian systems with
non-Ambrosetti-Rabinowitz type superquadratic potentials and small forced terms.
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1. Introduction

Since 1990, there have been a vast literatures (cf.[1-10] and references therein) on the
subject of homoclinic orbits for Hamiltonian systems by variational methods. Firstly, Rabinowitz

[1] discussed the existence of homoclinic orbits for second order periodic Hamiltonian systems
G(t) = L(t)q(t) +W,(t,q(t)) =0,t R (HS)

where ¢ (t),W(t,q) : R x R® — R are C'-maps, T-periodic in ¢, W,(t,q) = %—Vg denotes the
gradient of W (¢, q) with respect to q. If 0 # ¢ (t) € W2 (R,R") is a solution of (HS) such that
q(t) — 0,q(t) — 0 as |¢| — oo, then we say it is a nontrivial homoclinic orbit of (HS). Rabinowitz
assumed that L (¢) is a positive symmetrical matrix function, and W (¢, q) satisfies the so-called
Ambrosetti-Rabinowitz type superquadratic condition:

(AR) There exists § > 2 such that 0 < W (¢,q) < ¢W, (¢,q9),Y (¢,q) € R x R™\ {0}.
For k > 1, he considered the approximate problem
{ G@)—L(t)q(t)+W,(t,q(t)) =0,t € (—kT,kT), (HSK)

q(=kT) = q (KT).
Solutions of (HSk) are obtained as critical points gy, (f) of the functional
kT

kT
=3 [ [a@r+@oaw.awn]a- [ W@

2 ) kr —kT
via minimax argument, and uniform estimates permit g (¢) to converge weakly to a nontrivial
homoclinic orbit of (HS).
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Later, Izydorek and Janczewska [2] used the same idea as in [1] to study homoclinic orbits

for more general periodic Hamiltonian systems with a small forced term f (t) as follows
G(t) = Kq(t,q (1) +Wo(t,q(t) = f (), teR (Hsf)

where K (¢,q) ,W (t,q) : RxR®" - Rand f: R = R", K, (t,q) = %—Iq( denotes the gradient of
K (t,q) with respect to q. They proved the following result:

Theorem 1.1([2]) Under the condition of (AR), suppose that K (t,q) ,W (t,q) and f (t) satisfy
(Hy) K (t,q),W (t,) : RxR" — R are Cl-maps, T-periodic in the variable t;
(Hy) There are constants by > 0 and b > 0 such that

bilql> < K (t,q) < by g,V (t,q) € R x R™;

(H3) K (t,q) < qKy(t,q) <2K (t,q), ¥ (t,q) € R x R™;

(Hy) Wy (t,q) = 0(lq|) as ¢ — 0 uniformly with respect to t;

(Hs) f(t):R — R" is a continuous and bounded function with f (t) € L? (R).
Furthermore, if || f|| ;2 is sufficiently small, then (HSf) possesses a nontrivial homoclinic orbit.

For the existence of homoclinic orbits for coercive or subquadratic Hamiltonian systems, we
refer the reader to V. Cotizelati, I. Ekeland and E. Sere [3], W.Omana and M.Willem [4], Y.H.
Ding and M. Girardi [5], E. Sere [6], P.L.Felmer, and Silva [7], P. Korman, A. C. Lazer [8], Y.
Lv, Chun-Lei Tang [9], etc.

Inspired by the above papers, particularly [1] and [2], we consider whether the conclusion of
Theorem 1.1 still holds if W (¢, q) does not satisfy condition (AR) in Equation (HSf). Exactly,

our main result is

Theorem 1.2 Assume that K (t,q) ,W (t,q) and f (t) satisfy (Hy)— (Hy). Furthermore, assume
that

(Hs) f(t):R — R"™ is a continuous function with f (t) € L% (R);

(Hs) W (t,q)/|q|* = oo (lg| = o0) uniformly with respect to t;

(H7) there are dy,ds > 0 and A > 1 such that

Wy (t.q)l < dilg]* +da, VEER, g €R™;
(Hs) there are h > 0,ds > 0 and u > X such that
aWq (t,q) —2W (t.q) > d3|q|", VLER, |q| > h;

(Ho) qWq(t,q) >2W (t,q), Vt €R, ¢ € R"\ {0},
then (HSf) possesses a nontrivial homoclinic orbit provided that | f|| 2, is sufficiently small.

Remark 1.3 (Hy) and (Hg) show that W (¢, ¢) is superquadratic at the origin and infinity.

Remark 1.4 Combining (H4) with (H7) implies that, for any small § > 0, there exists d; =
dy (8) > 0 such that

W, (t,q)| < dilgl* +6lgf*, VteR, geR™
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Remark 1.5 From (Hs) and (Hg), we may assume that

qWy (t,q) —2W (t,q) > dslq|", VtER, || >h
with the property that 0 < d3 = d3 (h) — 0 as h — 0.
Remark 1.6 If W (¢,q) satisfies condition (AR), then there exist d4 > 0,h’ > 0 such that
W(t,q) > dylq|”,Vt € R,|q| > K, thus, whenever § > v, (AR) implies (Hs). However, for
example, if we take W (t,q) = |q|*In(1 4 |¢|2), then it satisfies condition (H,) and (Hg)—(Hy),

but does not satisfy (AR). In this sense, our result Theorem 1.2 generalizes the main conclusions
in [1] and [2].

Remark 1.7 In [12], the author and Costa studied the existence of homoclinic type solutions of
a class of differential equations with periodic potentials which also satisfy conditions (Hg)—(Ho)
with ¢ > A — 1 instead of u > X in (Hg), however, all of them do not contain a non-periodic
small forced term. By [12], we also guess that our Theorem 1.2 may still hold with 4 > A — 1
instead of © > X in (Hg).

In the next section, different from the arguments in [1] and [2], we shall employ the following

Brezis-Nirenberg type Mountain Pass Theorem [11] to prove our Theorem 1.2 directly.

Theorem 1.8 (Brezis-Nirenberg [11]) Let X be a Banach space and ¢ € C! (X, R) with ¢ (0) =
0. Suppose that ¢ satisfies
(i) there are constants w > 0 and p > 0 such that ¢ (u) > w,V ||u|| = p;
(ii) there exists e € X \ B, (0) such that ¢ (e) < 0.
Define 8 = inf cr ¢ (7 (s)) with
I'={ye(0,1],X):7(0)=0,v(1) =e},
then w < B < oo and ¢ has at least a (Ce)ﬁ sequence, namely, there exists a sequence {qm,} in

X such that
@ (gm) = B, 1+ llgmlD) 9" (gm) || — 0.

2. Some lemmas

Denote by E = W12 (R, R") the usual Sobolev space with the norm

ol = ([ (40P +la0F) ar). 1)

Let 1 (q) = (Jp[ld(t)|? + 2K (t,q)]dt). Then (H,) implies
bllgl* <n”(g) <ballal®, Vo€ E (2.2)

with b; = min {1,2b;} and by = max {1,2by}. Set
1
I(Q):i/“()\ + 2K (t,q(t dt—/Wtq dt+/f dt
/Wtq dt+/f dt, qe E. (2.3)



622 Chengyue LI, Zhiwei XIAO and Mengmeng WANG

Using (H;)—(Hy) and (Hs), we know that I (¢) € C! (E) , critical points of I (¢) in E are classical
solutions of (HSf).

Lemma 2.1 Under the assumptions of (Hy)-(H,) and (Hs), there exist w > 0 and p > 0 such
that I (q) > wV¥|lql| = p.

Proof By the Sobolev inequalities, we have
lall L2y < llall s llall oo ) < llall, Vg € E.

According to (Hy), for ¢ a by /4, there exists p € (0,1) such that |W (t,q)| < c1|g|*.V]g| < p
uniformly in ¢t € R. If ¢ € E with ||g|| = p, then |q ()| < p,Vt € R. Thus we obtain

/ W (tq (1) dt < e ql2agey < e lal> = 1™, (2.4)

/ F dt\ < W oy el ey < 211l oge - (2.5)

Hence, we have the estimate
(@) > c1p® = p | fll o e - (2.6)

Therefore, for cy 2 spey, if [/l z2®) < c2, then by (2.6), we have

1
I(q) > 501;}2 205>0. (2.7)

So we complete the proof. [J

Lemma 2.2 Under the assumptions of (H;)—(Hy), (Hs) and (Hg), there is e € E\ B, (0) such
that I (e) < 0.

Proof Choose 0# g =g (t) € C5° (R,R™) C E and ¢ > 0 such that

Supp{g (t)} € (0,T), 0<ollgll <llgllz>(0,r)- (2.8)
By (Hg), there is o > 0 such that
W (t7(J) Z C3 |(]|2 -, vt € Ra q € R™ (29)

with ¢3 = 29 + b2 . Consequently, for V7 > 1

19 = o) [ War@ass [ 1@ g0

7_252 T 5 T T
<2 lew) dt—/ W(t,7‘g(t))d2€+7/ f(t)g(t)dt
0
72y [T 2
7@ lg (t)|" dt — c37° | dt + 7 f t)dt + T
0
Z—*T / (t)] dt—l-T/ f@®g@)dt+aT — —c0, as T — oo. (2.10)

Clearly, we can take e = e (t) = 7¢ (t) € E such that |le]| > p and ¢ (e) < 0 for 7 large enough.
O
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Lemma 2.3 Under the assumptions of Theorem 1.2, there exists d > 0 such that I (q) has a
bounded (Ce), sequence {gm,} in E.

Proof By Lemmas 2.1, 2.2 and Theorem 1.8, for d > 0 defined by
=1 > .
d %Ielﬁ Olgsagll(’y (s)) >w>0 (2.11)
with
I'={ycC([0,1],E) :v(0) = 0,7 (1) = e},
I (q) has a (Ce), sequence {gn,} satisfying that
I(gm) = d >0, (14 llgml) I (gm)Il = 0. (2.12)

Setting cy £ min {1,b;} > 0, by Remark 1.4, we can take § = %04 > 0 and the corresponding
dy = dy (§) > 0. Clearly, there exists small A > 0 such that 0 < dyh*~! < Zc4. So, we have

s 2es— il —5> %c4 >0,
thus, from (Ha), (Hs), Remaks 1.4 and 1.5, we infer that
I (@) = ooy + [ a0 (O Ky (20 0)dt = [ W, (0 (0) 20 0t + [ 7O 00
Sesllanl® = [ 17, (g ()]l ]t + [ £ (00 0
Seallanl® =1 [ Jan (0P a6 =3 [ fan OF @t + [ £©an 0

qm%wf&/ mﬁW“af@/ g (B At
[gm (t)|>h l[gm ()| <h

6/mmwﬁa+/fummww
R R
am%W—&/ WMW“&—&W*/MMMQF
|gm (t)|>h R
5/Mm@f&+/fﬁmm@m
R R
zc4uqmn2—-J1/” lgm O dt = dipA ™ gll* = 6 llgm 1> = 1 £1] 2 llgm |
[gm (t)|>h

2 7 A+1
—cslanl® =1 [ g @O e~ el (213
lgm (t)|=h

Since A < p, we can take r € (0,1) such that A + 1 — r < u, so, we can make the estimate for
the integral term f‘q ®I1>h |gm ()M At in (2.13) as follows.

A+1 T A1—r
[ O sl [ 0P
lgm (t)| =R lgm () [=h

W gl [ g 0]
lgm (t)|=h

< BT g || |gm ()| dt. (2.14)
|Q'm(t)|2h
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Combining (2.13) with (2.14), we deduce that

I/ (qm) m Z cs quH2 _ CZlh)“’"l*T*'u' ||Qm‘|T | o ‘qm (t)|” dt — ||f||L2(R) Hq'mH . (215)
qm (t)[2>

Next, with the aid of (Hs), (Hs)—(Hy), we have for the above h > 0 in (2.13)
21 (gm) — I' (gm) am :/ 2K (t,qm (1)) — Kq (8, qm () gm (¢)] dt+
R
s 600 () 0 () = 2 (o ()]t + [ £ (6) 0 (0
R R
> [0, (i (0 40 (0 =2 (1o O]t + [ 7 O 0
R R
2ds ) [ g (OF = ]y gl (2.16)
lgm (t)|=h
Thus, by (2.12) and (2.16), there exist ¢g = ¢ (h) > 0,¢7 = ¢7 (h) > 0 such that
[ lan e < e ter g lanl (2.17)
lam (£)|>h
We substitute (2.17) into (2.15), and obtain

I (Gm) m >¢5 \|gm)* = diceh™ 177 g || —
7 —r— r+1
et Tl ey gm0 = 11 L2y Nlam - (2.18)

ByO<r<r+1<2c >0, (212) and (2.18), we infer that {g,,} is bounded in E. O

3. Proof of Theorem 1.2

Proof of Theorem 1.2 By Lemma 2.3, we know that I (¢) has a bounded (Ce), sequence
{qm}, thus, without loss of generality, we may assume that there exists go = qo (t) € E such that

Gm — qo weakly in FE, ¢, — qo in L120C (R), gm — qo in Cioe (R).

Therefore, for Vv € C5° (R), from the following
I'(gm)v = /R gm (&) v (¢) dt + /RKq (t, qm (t)) v (t)dt—
/Wq (t, qm (1)) v (1) dt+/f(t)z/(t) dt — 0, (3.1)
R R
we can show that
0= /Rq'o ) v (t)dt + /]R Kq(t,qo () v(t)dt — /]R Wy (t,q0 (t)) v (t)dt + /]R f@®v)dt, (3.2)

that is, go € E is a critical point of the functional I in (2.3), and go = ¢o (¢) is one solution of
(HSf).

Case (I) If f () # 0, then clearly gy # 0.

Case (II) If f(¢t) =0, then, for Vm, there is j,, € Z such that the maximum of |g,, (t + jmT)]
occurs in [0,7]. Let w,y, (¢) 2 m (t+ jmT). By (Hy) and (2.12), we have ||wn| = |lgmll,
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I (W) =I(gm), I' (W) =I' (gm) — 0. Thus, we also assume that there exists wo = wy (t) € E
such that

Wy, — wo weakly in E, w,, — wy in L, (R), and w,, — wg in Ciee (R).
Thus for any v € Cjoc (R), we have
' (wim) v () = [I' (gm) v (- = G D) < [ (@) v (- = D) = 1T (@) | [l ()| = 0. (3.3)

Just similarly to (3.1), (3.2), we can prove that wy € E is a critical point of the functional I. We

claim that wy # 0. If this is not true, then we have
l@ml Lo @) = llwmll Lo () = llwml Lo 0,27y = 0- (3.4)
Thus by (Hy), given £ > 0, we have, for m sufficiently large and V¢ € R
W (¢, g ()] < &lam (B)], lgm () Wo (£, 4m) ()] < € lgm ()] (3.5)
So, in view of (Hs) and (3.5), noticing f(t) = 0, we have
il ey + [ € s (0) < ey + [ K 00 () g 1)

— I (q) 4o + / Wi (t, g (1)) g (1) dt

ST (Gm) g+ / o (D)t

2
< (gm) Hlgmll + € llgmll”- (3.6)
And (3.5) and (3.6) imply
1

0< (@) = 5 [ [l (O +2K (. 0] at = [ W (1.0 ()

IN

A RO R ACL
< 1T (@) gl + 2 g (3.7)

Since ||gm || is bounded, € is arbitrary, (2.12) and (3.7) show I (¢,,) — 0, which contradicts (2.12).
So wp # 0.

Under the above two cases, we get a nontrivial solution g, (t) of (HSf): ¢. (t) = qo (¢) or
g« (t) = wo (t), respectively.

Finally, we claim that g, (t) — 0 and ¢, (t) — 0 as |[t| — oo. For the proof we refer to [2].
For the sake of completeness, we sketch it. Indeed, g, € E implies ¢, (t) — 0 as |t| — oco. Since
g« (t) is a solution of (HSf), we have

Gu (t) = f (t) = Vg (.. (1)) € Lipe (R, R™) (3.8)

is continuous, where V (t,q) = —K (t,q) + W (t,q). Thus from ¢, € L*(R), f € L?(R) and
V, (t,0) = 0, one can show that (see [2] for details)

t+3
| la@kas =0 (3.9)
t

—1
2
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t+1 ) t+1 ) t+1 )
[ lePass [ i@l [ ta ()P st
t—1 t—1 t—1

2

f($)[1Vq (t, ¢+ (s))|ds — 0 (3.10)

[\
—
| ~
Jr
=

as [t| = oo. Therefore, by (3.9), (3.10), we have the estimate as follows

t+1

t+5
g (1) < 2/ |G (s)|2d5+2/ li, (s)]” ds — 0, as |t| — oo. (3.11)
t

t—

1 1
2 2

The proof of Theorem 1.2 is completed. (I
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