Journal of Mathematical Research with Applications Sept., 2014, Vol. 34, No. 5, pp. 619–626 DOI:10.3770/j.issn:2095-2651.2014.05.012 Http://jmre.dlut.edu.cn

Homoclinic Orbits for Hamiltonian Systems with Small Forced Terms

Chengyue LI*, Zhiwei XIAO, Mengmeng WANG

Faculty of Science, Minzu University of China, Beijing 100081, P. R. China

Abstract By Brezis-Nirenberg type Mountain Pass Theorem, the research has focused on the existence of nontrivial homoclinic orbits for a class of second order Hamiltonian systems with non-Ambrosetti-Rabinowitz type superquadratic potentials and small forced terms.

Keywords Homoclinic orbits; Hamiltonian systems; Mountain Pass Theorem; critical points.

MR(2010) Subject Classification 58E05; 34C37; 70H05

1. Introduction

Since 1990, there have been a vast literatures (cf. [1–10] and references therein) on the subject of homoclinic orbits for Hamiltonian systems by variational methods. Firstly, Rabinowitz [1] discussed the existence of homoclinic orbits for second order periodic Hamiltonian systems

$$\ddot{q}(t) - L(t)q(t) + W_q(t,q(t)) = 0, t \in \mathbb{R}$$
(HS)

where $q(t), W(t,q) : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ are \mathbb{C}^1 -maps, *T*-periodic in $t, W_q(t,q) = \frac{\partial W}{\partial q}$ denotes the gradient of W(t,q) with respect to q. If $0 \neq q(t) \in W^{1,2}(\mathbb{R},\mathbb{R}^n)$ is a solution of (HS) such that $q(t) \to 0, q(t) \to 0$ as $|t| \to \infty$, then we say it is a nontrivial homoclinic orbit of (HS). Rabinowitz assumed that L(t) is a positive symmetrical matrix function, and W(t,q) satisfies the so-called Ambrosetti-Rabinowitz type superquadratic condition:

(AR) There exists $\theta > 2$ such that $0 < \theta W(t,q) \le qW_q(t,q), \forall (t,q) \in \mathbb{R} \times \mathbb{R}^n \setminus \{0\}$. For $k \ge 1$, he considered the approximate problem

$$\begin{cases} \ddot{q}(t) - L(t)q(t) + W_q(t,q(t)) = 0, t \in (-kT,kT), \\ q(-kT) = q(kT). \end{cases}$$
 (HSk)

Solutions of (HSk) are obtained as critical points $q_k(t)$ of the functional

$$f_{k}(q) = \frac{1}{2} \int_{-kT}^{kT} \left[\left| \dot{q}(t) \right|^{2} + \left(L(t) q(t), q(t) \right) \right] dt - \int_{-kT}^{kT} W(t, q(t)) dt$$

via minimax argument, and uniform estimates permit $q_k(t)$ to converge weakly to a nontrivial homoclinic orbit of (HS).

Received August 23, 2013; Accepted January 14, 2014

^{*} Corresponding author

E-mail address: cunlcy@163.com (Chengyue LI); paopao_0811@126.com (Zhiwei XIAO); wang-meng1989@163.com (Mengmeng WANG)

Later, Izydorek and Janczewska [2] used the same idea as in [1] to study homoclinic orbits for more general periodic Hamiltonian systems with a small forced term f(t) as follows

$$\ddot{q}(t) - K_q(t, q(t)) + W_q(t, q(t)) = f(t), \quad t \in \mathbb{R}$$
(HSf)

where $K(t,q), W(t,q) : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}^n, K_q(t,q) = \frac{\partial K}{\partial q}$ denotes the gradient of K(t,q) with respect to q. They proved the following result:

Theorem 1.1([2]) Under the condition of (AR), suppose that K(t,q), W(t,q) and f(t) satisfy (H₁) K(t,q), $W(t,) : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ are \mathbb{C}^1 -maps, T-periodic in the variable t;

(H₂) There are constants $b_1 > 0$ and $b_2 > 0$ such that

$$b_1 |q|^2 \le K(t,q) \le b_2 |q|^2, \forall (t,q) \in \mathbb{R} \times \mathbb{R}^n;$$

- (H₃) $K(t,q) \leq qK_q(t,q) \leq 2K(t,q), \forall (t,q) \in \mathbb{R} \times \mathbb{R}^n;$
- (H_4) $W_q(t,q) = o(|q|)$ as $q \to 0$ uniformly with respect to t;
- (H_5) $f(t): \mathbb{R} \to \mathbb{R}^n$ is a continuous and bounded function with $f(t) \in L^2(\mathbb{R})$.

Furthermore, if $\|f\|_{L^2(\mathbb{R})}$ is sufficiently small, then (HSf) possesses a nontrivial homoclinic orbit.

For the existence of homoclinic orbits for coercive or subquadratic Hamiltonian systems, we refer the reader to V. Cotizelati, I. Ekeland and E. Sere [3], W.Omana and M.Willem [4], Y.H. Ding and M. Girardi [5], E. Sere [6], P.L.Felmer, and Silva [7], P. Korman, A. C. Lazer [8], Y. Lv, Chun-Lei Tang [9], etc.

Inspired by the above papers, particularly [1] and [2], we consider whether the conclusion of Theorem 1.1 still holds if W(t,q) does not satisfy condition (AR) in Equation (HSf). Exactly, our main result is

Theorem 1.2 Assume that K(t,q), W(t,q) and f(t) satisfy $(H_1) - (H_4)$. Furthermore, assume that

- (\overline{H}_5) $f(t): \mathbb{R} \to \mathbb{R}^n$ is a continuous function with $f(t) \in L^2(\mathbb{R})$;
- (H₆) $W(t,q)/|q|^2 \to \infty (|q| \to \infty)$ uniformly with respect to t;
- (H_7) there are $d_1, d_2 > 0$ and $\lambda > 1$ such that

$$W_q(t,q) \leq d_1 |q|^{\lambda} + d_2, \quad \forall t \in \mathbb{R}, \ q \in \mathbb{R}^n;$$

 (H_8) there are $h > 0, d_3 > 0$ and $\mu > \lambda$ such that

$$qW_q\left(t,q\right) - 2W\left(t,q\right) \ge d_3 \left|q\right|^{\mu}, \quad \forall t \in \mathbb{R}, \ \left|q\right| > h;$$

 $(H_9) \quad qW_q(t,q) > 2W(t,q), \, \forall t \in \mathbb{R}, \, q \in \mathbb{R}^n \setminus \{0\},$

then (HSf) possesses a nontrivial homoclinic orbit provided that $||f||_{L^2(\mathbb{R})}$ is sufficiently small.

Remark 1.3 (H₄) and (H₆) show that W(t,q) is superquadratic at the origin and infinity.

Remark 1.4 Combining (H₄) with (H₇) implies that, for any small $\delta > 0$, there exists $\bar{d}_1 = \bar{d}_1(\delta) > 0$ such that

$$|W_q(t,q)| \le \bar{d_1} |q|^{\lambda} + \delta |q|^2, \quad \forall t \in \mathbb{R}, \ q \in \mathbb{R}^n$$

Homoclinic orbits for Hamiltonian systems with small forced terms

Remark 1.5 From (H_8) and (H_9) , we may assume that

$$qW_q(t,q) - 2W(t,q) \ge d_3 |q|^{\mu}, \quad \forall t \in \mathbb{R}, \ |q| > h$$

with the property that $0 < d_3 = d_3(h) \rightarrow 0$ as $h \rightarrow 0$.

Remark 1.6 If W(t,q) satisfies condition (AR), then there exist $d_4 > 0, h' > 0$ such that $W(t,q) \ge d_4 |q|^{\theta}, \forall t \in \mathbb{R}, |q| \ge h'$, thus, whenever $\theta > \gamma$, (AR) implies (H₈). However, for example, if we take $W(t,q) = |q|^2 \ln(1+|q|^2)$, then it satisfies condition (H₄) and (H₆)–(H₉), but does not satisfy (AR). In this sense, our result Theorem 1.2 generalizes the main conclusions in [1] and [2].

Remark 1.7 In [12], the author and Costa studied the existence of homoclinic type solutions of a class of differential equations with periodic potentials which also satisfy conditions $(H_6)-(H_9)$ with $\mu > \lambda - 1$ instead of $\mu > \lambda$ in (H_8) , however, all of them do not contain a non-periodic small forced term. By [12], we also guess that our Theorem 1.2 may still hold with $\mu > \lambda - 1$ instead of $\mu > \lambda$ in (H_8) .

In the next section, different from the arguments in [1] and [2], we shall employ the following Brezis-Nirenberg type Mountain Pass Theorem [11] to prove our Theorem 1.2 directly.

Theorem 1.8 (Brezis-Nirenberg [11]) Let X be a Banach space and $\varphi \in \mathbb{C}^1(X, \mathbb{R})$ with $\varphi(0) = 0$. Suppose that φ satisfies

- (i) there are constants $\omega > 0$ and $\rho > 0$ such that $\varphi(u) \ge \omega, \forall ||u|| = \rho$;
- (ii) there exists $e \in X \setminus B_{\rho}(0)$ such that $\varphi(e) < 0$.

Define $\beta = \inf_{\gamma \in \Gamma} \varphi(\gamma(s))$ with

$$\Gamma = \{\gamma \in ([0,1], X) : \gamma (0) = 0, \gamma (1) = e\}$$

then $\omega \leq \beta < \infty$ and φ has at least a $(Ce)_{\beta}$ sequence, namely, there exists a sequence $\{q_m\}$ in X such that

$$\varphi(q_m) \to \beta, (1 + \|q_m\|) \|\varphi'(q_m)\| \to 0.$$

2. Some lemmas

Denote by $E = W^{1,2}(\mathbb{R}, \mathbb{R}^n)$ the usual Sobolev space with the norm

$$|q|| = \left(\int_{\mathbb{R}} \left(|\dot{q}(t)|^2 + |q(t)|^2 \right) dt \right)^{\frac{1}{2}}.$$
(2.1)

Let $\eta(q) = (\int_{\mathbb{R}} [|\dot{q}(t)|^2 + 2K(t,q)] dt)^{\frac{1}{2}}$. Then (H₂) implies

$$\bar{b_1} \|q\|^2 \le \eta^2 (q) \le \bar{b_2} \|q\|^2, \quad \forall q \in E$$
 (2.2)

with $\bar{b_1} = \min\{1, 2b_1\}$ and $\bar{b_2} = \max\{1, 2b_2\}$. Set

$$I(q) = \frac{1}{2} \int_{\mathbb{R}} \left[|\dot{q}(t)|^2 + 2K(t, q(t)) \right] dt - \int_{\mathbb{R}} W(t, q(t)) dt + \int_{\mathbb{R}} f(t) q(t) dt$$

$$= \frac{1}{2} \eta^2(q) - \int_{\mathbb{R}} W(t, q(t)) dt + \int_{\mathbb{R}} f(t) q(t) dt, \quad q \in E.$$
(2.3)

Using (H₁)–(H₄) and (H₅), we know that $I(q) \in \mathbb{C}^1(E)$, critical points of I(q) in E are classical solutions of (HSf).

Lemma 2.1 Under the assumptions of $(H_1)-(H_4)$ and (\overline{H}_5) , there exist $\omega > 0$ and $\rho > 0$ such that $I(q) > \omega \forall ||q|| = \rho$.

Proof By the Sobolev inequalities, we have

 $\|q\|_{L^2(\mathbb{R})} \le \|q\|, \|q\|_{L^\infty(\mathbb{R})} \le \|q\|, \quad \forall q \in E.$

According to (H₄), for $c_1 \stackrel{\Delta}{=} \bar{b_1}/4$, there exists $\rho \in (0,1)$ such that $|W(t,q)| \leq c_1 |q|^2$, $\forall |q| \leq \rho$ uniformly in $t \in \mathbb{R}$. If $q \in E$ with $||q|| = \rho$, then $|q(t)| \leq \rho$, $\forall t \in \mathbb{R}$. Thus we obtain

$$\int_{\mathbb{R}} W(t, q(t)) \, \mathrm{d}t \le c_1 \, \|q\|_{L^2(\mathbb{R})}^2 \le c_1 \, \|q\|^2 = c_1 \rho^2, \tag{2.4}$$

$$\left| \int_{\mathbb{R}} f(t) q(t) \, \mathrm{d}t \right| \le \|f\|_{L^{2}(\mathbb{R})} \, \|q\|_{L^{2}(\mathbb{R})} \le \rho \, \|f\|_{L^{2}(\mathbb{R})} \,. \tag{2.5}$$

Hence, we have the estimate

$$I(q) \ge c_1 \rho^2 - \rho \|f\|_{L^2(\mathbb{R})}.$$
(2.6)

Therefore, for $c_2 \stackrel{\Delta}{=} \frac{1}{2}\rho c_1$, if $||f||_{L^2(\mathbb{R})} \leq c_2$, then by (2.6), we have

$$I(q) \ge \frac{1}{2}c_1\rho^2 \stackrel{\Delta}{=} \omega > 0.$$
(2.7)

So we complete the proof. \Box

Lemma 2.2 Under the assumptions of $(H_1)-(H_4)$, (\bar{H}_5) and (H_6) , there is $e \in E \setminus B_{\rho}(0)$ such that I(e) < 0.

Proof Choose $0 \neq g = g(t) \in \mathbb{C}_0^{\infty}(\mathbb{R}, \mathbb{R}^n) \subset E$ and $\sigma > 0$ such that

Supp
$$\{g(t)\} \subset (0,T), \quad 0 < \sigma ||g|| \le ||g||_{L^2(0,T)}.$$
 (2.8)

By (H₆), there is $\alpha > 0$ such that

$$W(t,q) \ge c_3 |q|^2 - \alpha, \quad \forall t \in \mathbb{R}, \ q \in \mathbb{R}^n$$
(2.9)

with $c_3 \stackrel{\Delta}{=} 1 + \frac{\bar{b_2}}{2\sigma^2}$. Consequently, for $\forall \tau > 1$

$$I(\tau g) = \frac{1}{2} \eta^{2} (\tau g) - \int_{0}^{T} W(t, \tau g(t)) dt + \tau \int_{0}^{T} f(t) g(t) dt$$

$$\leq \frac{\tau^{2} \bar{b_{2}}}{2\sigma^{2}} \int_{0}^{T} |g(t)|^{2} dt - \int_{0}^{T} W(t, \tau g(t)) dt + \tau \int_{0}^{T} f(t) g(t) dt$$

$$\leq \frac{\tau^{2} \bar{b_{2}}}{2\sigma^{2}} \int_{0}^{T} |g(t)|^{2} dt - c_{3}\tau^{2} \int_{0}^{T} |g(t)|^{2} dt + \tau \int_{0}^{T} f(t) g(t) dt + \alpha T$$

$$= -\frac{1}{2}\tau^{2} \int_{0}^{T} |g(t)|^{2} dt + \tau \int_{0}^{T} f(t) g(t) dt + \alpha T \to -\infty, \text{ as } \tau \to \infty.$$
(2.10)

Clearly, we can take $e = e(t) = \tau g(t) \in E$ such that $||e|| > \rho$ and $\varphi(e) < 0$ for τ large enough. \Box

Lemma 2.3 Under the assumptions of Theorem 1.2, there exists d > 0 such that I(q) has a bounded $(Ce)_d$ sequence $\{q_m\}$ in E.

Proof By Lemmas 2.1, 2.2 and Theorem 1.8, for d > 0 defined by

$$d = \inf_{\gamma \in \Gamma} \max_{0 \le s \le 1} I(\gamma(s)) \ge \omega > 0$$
(2.11)

with

$$\Gamma = \{ \gamma \in \mathbb{C} ([0, 1], E) : \gamma (0) = 0, \gamma (1) = e \},\$$

 $I\left(q\right)$ has a $\left(Ce\right)_{d}$ sequence $\left\{q_{m}\right\}$ satisfying that

$$I(q_m) \to d > 0, \ (1 + ||q_m||) ||I'(q_m)|| \to 0.$$
 (2.12)

Setting $c_4 \stackrel{\Delta}{=} \min\{1, b_1\} > 0$, by Remark 1.4, we can take $\delta = \frac{1}{3}c_4 > 0$ and the corresponding $\bar{d}_1 = \bar{d}_1(\delta) > 0$. Clearly, there exists small h > 0 such that $0 < \bar{d}_1 h^{\lambda - 1} < \frac{1}{3}c_4$. So, we have

$$c_5 \stackrel{\Delta}{=} c_4 - \bar{d_1}h^{\lambda - 1} - \delta \ge \frac{1}{3}c_4 > 0,$$

thus, from (H_2) , (H_3) , Remaks 1.4 and 1.5, we infer that

$$I'(q_m) q_m = \|\dot{q_m}\|_{L^2(\mathbb{R})}^2 + \int_{\mathbb{R}} q_m(t) K_q(t, q_m(t)) dt - \int_{\mathbb{R}} W_q(t, q_m(t)) q_m(t) dt + \int_{\mathbb{R}} f(t) q_m(t) dt \geq c_4 \|q_m\|^2 - \int_{\mathbb{R}} |W_q(t, q_m(t))| |u_m(t)| dt + \int_{\mathbb{R}} f(t) q_m(t) dt \geq c_4 \|q_m\|^2 - d\bar{1} \int_{\mathbb{R}} |q_m(t)|^{\lambda+1} dt - \delta \int_{\mathbb{R}} |q_m(t)|^2 dt + \int_{\mathbb{R}} f(t) q_m(t) dt = c_4 \|q_m\|^2 - d\bar{1} \int_{|q_m(t)| \geq h} |q_m(t)|^{\lambda+1} dt - d\bar{1} \int_{|q_m(t)| \leq h} |q_m(t)|^{\lambda+1} dt - \delta \int_{\mathbb{R}} |q_m(t)|^2 dt + \int_{\mathbb{R}} f(t) q_m(t) dt \geq c_4 \|q_m\|^2 - d\bar{1} \int_{|q_m(t)| \geq h} |q_m(t)|^{\lambda+1} dt - d\bar{1}h^{\lambda-1} \int_{\mathbb{R}} |q_m(t)|^2 dt - \delta \int_{\mathbb{R}} |q_m(t)|^2 dt + \int_{\mathbb{R}} f(t) q_m(t) dt \geq c_4 \|q_m\|^2 - d\bar{1} \int_{|q_m(t)| \geq h} |q_m(t)|^{\lambda+1} dt - d\bar{1}h^{\lambda-1} \|q_m\|^2 - \delta \|q_m\|^2 - \|f\|_{L^2(\mathbb{R})} \|q_m\| = c_5 \|q_m\|^2 - d\bar{1} \int_{|q_m(t)| \geq h} |q_m(t)|^{\lambda+1} dt - \|f\|_{L^2(\mathbb{R})} \|q_m\|.$$

$$(2.13)$$

Since $\lambda < \mu$, we can take $r \in (0, 1)$ such that $\lambda + 1 - r < \mu$, so, we can make the estimate for the integral term $\int_{|q_m(t)| \ge h} |q_m(t)|^{\lambda+1} dt$ in (2.13) as follows.

$$\int_{|q_m(t)| \ge h} |q_m(t)|^{\lambda+1} dt \le ||q_m||_{L^{\infty}}^r \int_{|q_m(t)| \ge h} |q_m(t)|^{\lambda+1-r} dt
\le h^{\lambda+1-r-\mu} ||q_m||_{L^{\infty}}^r \int_{|q_m(t)| \ge h} |q_m(t)|^{\mu} dt
\le h^{\lambda+1-r-\mu} ||q_m||^r \int_{|q_m(t)| \ge h} |q_m(t)|^{\mu} dt.$$
(2.14)

Combining (2.13) with (2.14), we deduce that

$$I'(q_m) q_m \ge c_5 \|q_m\|^2 - \bar{d_1} h^{\lambda+1-r-\mu} \|q_m\|^r \int_{|q_m(t)|\ge h} |q_m(t)|^{\mu} dt - \|f\|_{L^2(\mathbb{R})} \|q_m\|.$$
(2.15)

Next, with the aid of (H₃), (H₈)–(H₉), we have for the above h > 0 in (2.13)

$$2I(q_{m}) - I'(q_{m}) q_{m} = \int_{\mathbb{R}} [2K(t, q_{m}(t)) - K_{q}(t, q_{m}(t)) q_{m}(t)] dt + \int_{\mathbb{R}} [W_{q}(t, q_{m}(t)) q_{m}(t) - 2W(t, q_{m}(t))] dt + \int_{\mathbb{R}} f(t) q_{m}(t) dt \\ \ge \int_{\mathbb{R}} [W_{q}(t, q_{m}(t)) q_{m}(t) - 2W(t, q_{m}(t))] dt + \int_{\mathbb{R}} f(t) q_{m}(t) dt \\ \ge d_{3}(h) \int_{|q_{m}(t)| \ge h} |q_{m}(t)|^{\mu} dt - ||f||_{L^{2}(\mathbb{R})} ||q_{m}||.$$

$$(2.16)$$

Thus, by (2.12) and (2.16), there exist $c_6 = c_6(h) > 0, c_7 = c_7(h) > 0$ such that

$$\int_{|q_m(t)| > h} |q_m(t)|^{\mu} \, \mathrm{d}t \le c_6 + c_7 \, \|f\|_{L^2(\mathbb{R})} \, \|q_m\| \,. \tag{2.17}$$

We substitute (2.17) into (2.15), and obtain

$$I'(q_m) q_m \ge c_5 \|q_m\|^2 - \bar{d}_1 c_6 h^{\lambda+1-r-\mu} \|q_m\|^r - \bar{d}_1 c_7 h^{\lambda+1-r-\mu} \|f\|_{L^2(\mathbb{R})} \|q_m\|^{r+1} - \|f\|_{L^2(\mathbb{R})} \|q_m\|.$$
(2.18)

By $0 < r < r+1 < 2, c_5 > 0$, (2.12) and (2.18), we infer that $\{q_m\}$ is bounded in E. \Box

3. Proof of Theorem 1.2

Proof of Theorem 1.2 By Lemma 2.3, we know that I(q) has a bounded $(Ce)_d$ sequence $\{q_m\}$, thus, without loss of generality, we may assume that there exists $q_0 = q_0(t) \in E$ such that

 $q_m \rightharpoonup q_0$ weakly in $E, q_m \rightarrow q_0$ in $L^2_{\text{loc}}(\mathbb{R}), q_m \rightarrow q_0$ in $\mathbb{C}_{\text{loc}}(\mathbb{R})$.

Therefore, for $\forall v \in \mathbb{C}_0^{\infty}(\mathbb{R})$, from the following

$$I'(q_m)\nu = \int_{\mathbb{R}} \dot{q_m}(t)\nu(t) dt + \int_{\mathbb{R}} K_q(t, q_m(t))\nu(t) dt - \int_{\mathbb{R}} W_q(t, q_m(t))\nu(t) dt + \int_{\mathbb{R}} f(t)\nu(t) dt \to 0, \qquad (3.1)$$

we can show that

$$0 = \int_{\mathbb{R}} \dot{q_0}(t) \nu(t) dt + \int_{\mathbb{R}} K_q(t, q_0(t)) \nu(t) dt - \int_{\mathbb{R}} W_q(t, q_0(t)) \nu(t) dt + \int_{\mathbb{R}} f(t) \nu(t) dt, \quad (3.2)$$

that is, $q_0 \in E$ is a critical point of the functional I in (2.3), and $q_0 = q_0(t)$ is one solution of (HSf).

Case (I) If $f(t) \neq 0$, then clearly $q_0 \neq 0$.

Case (II) If f(t) = 0, then, for $\forall m$, there is $j_m \in \mathbb{Z}$ such that the maximum of $|q_m(t+j_mT)|$ occurs in [0,T]. Let $w_m(t) \triangleq q_m(t+j_mT)$. By (H₁) and (2.12), we have $||w_m|| = ||q_m||$,

Homoclinic orbits for Hamiltonian systems with small forced terms

 $I(w_m) = I(q_m), I'(w_m) = I'(q_m) \to 0$. Thus, we also assume that there exists $w_0 = w_0(t) \in E$ such that

$$w_m
ightarrow w_0$$
 weakly in $E, \ w_m
ightarrow w_0$ in $L^2_{
m loc}\left(\mathbb{R}\right)$, and $w_m
ightarrow w_0$ in $\mathbb{C}_{
m loc}\left(\mathbb{R}\right)$.

Thus for any $\nu \in \mathbb{C}_{loc}(\mathbb{R})$, we have

$$|I'(w_m)\nu(\cdot)| = |I'(q_m)\nu(\cdot - j_mT)| \le ||I'(q_m)|| ||\nu(\cdot - j_mT)|| = ||I'(q_m)|| ||\nu(\cdot)|| \to 0.$$
(3.3)

Just similarly to (3.1), (3.2), we can prove that $w_0 \in E$ is a critical point of the functional *I*. We claim that $w_0 \neq 0$. If this is not true, then we have

$$\|q_m\|_{L^{\infty}(\mathbb{R})} = \|w_m\|_{L^{\infty}(\mathbb{R})} = \|w_m\|_{L^{\infty}([0,T])} \to 0.$$
(3.4)

Thus by (H₄), given $\varepsilon > 0$, we have, for *m* sufficiently large and $\forall t \in \mathbb{R}$

$$|W(t, q_m(t))| \le \varepsilon |q_m(t)|^2, |q_m(t) W_q(t, q_m)(t)| \le \varepsilon |q_m(t)|^2.$$
(3.5)

So, in view of (H₃) and (3.5), noticing f(t) = 0, we have

$$\begin{aligned} \|\dot{q}_{m}\|_{L^{2}(\mathbb{R})}^{2} + \int_{\mathbb{R}} K\left(t, q_{m}\left(t\right)\right) \mathrm{d}t &\leq \|\dot{q}_{m}\|_{L^{2}(\mathbb{R})}^{2} + \int_{\mathbb{R}} K_{q}\left(t, q_{m}\left(t\right)\right) q_{m}\left(t\right) \mathrm{d}t \\ &= I'\left(q_{m}\right) q_{m} + \int_{\mathbb{R}} W_{q}\left(t, q_{m}\left(t\right)\right) q_{m}\left(t\right) \mathrm{d}t \\ &\leq I'\left(q_{m}\right) q_{m} + \varepsilon \int_{\mathbb{R}} |q_{m}\left(t\right)|^{2} \mathrm{d}t \\ &\leq \|I'\left(q_{m}\right)\| \|q_{m}\| + \varepsilon \|q_{m}\|^{2}. \end{aligned}$$
(3.6)

And (3.5) and (3.6) imply

$$0 < I(q_m) = \frac{1}{2} \int_{\mathbb{R}} \left[|\dot{q}_m(t)|^2 + 2K(t, q_m(t)) \right] dt - \int_{\mathbb{R}} W(t, q_m(t)) dt$$

$$\leq \|\dot{q}_m\|_{L^2(\mathbb{R})}^2 + \int_{\mathbb{R}} K(t, q_m(t)) dt - \int_{\mathbb{R}} W(t, q_m(t)) dt$$

$$\leq \|I'(q_m)\| \|q_m\| + 2\varepsilon \|q_m\|^2.$$
(3.7)

Since $||q_m||$ is bounded, ε is arbitrary, (2.12) and (3.7) show $I(q_m) \to 0$, which contradicts (2.12). So $w_0 \neq 0$.

Under the above two cases, we get a nontrivial solution $q_*(t)$ of (HSf): $q_*(t) = q_0(t)$ or $q_*(t) = w_0(t)$, respectively.

Finally, we claim that $q_*(t) \to 0$ and $\dot{q}_*(t) \to 0$ as $|t| \to \infty$. For the proof we refer to [2]. For the sake of completeness, we sketch it. Indeed, $q_* \in E$ implies $q_*(t) \to 0$ as $|t| \to \infty$. Since $q_*(t)$ is a solution of (HSf), we have

$$\ddot{q}_{*}(t) = f(t) - V_{q}(t, q_{*}(t)) \in L^{2}_{\text{loc}}(\mathbb{R}, \mathbb{R}^{n})$$
(3.8)

is continuous, where V(t,q) = -K(t,q) + W(t,q). Thus from $\dot{q}_* \in L^2(\mathbb{R})$, $f \in L^2(\mathbb{R})$ and $V_q(t,0) = 0$, one can show that (see [2] for details)

$$\int_{t-\frac{1}{2}}^{t+\frac{1}{2}} \left| \dot{q}_* \left(s \right) \right|^2 \mathrm{d}s \to 0, \tag{3.9}$$

Chengyue LI, Zhiwei XIAO and Mengmeng WANG

$$\int_{t-\frac{1}{2}}^{t+\frac{1}{2}} |\ddot{q}_{*}(s)|^{2} ds \leq \int_{t-\frac{1}{2}}^{t+\frac{1}{2}} |f(s)|^{2} ds + \int_{t-\frac{1}{2}}^{t+\frac{1}{2}} |V_{q}(t,q_{*}(s))|^{2} ds + 2\int_{t-\frac{1}{2}}^{t+\frac{1}{2}} |f(s)| |V_{q}(t,q_{*}(s))| ds \to 0$$
(3.10)

as $|t| \to \infty$. Therefore, by (3.9), (3.10), we have the estimate as follows

$$|\dot{q}_{*}(t)|^{2} \leq 2 \int_{t-\frac{1}{2}}^{t+\frac{1}{2}} |\dot{q}_{*}(s)|^{2} \,\mathrm{d}s + 2 \int_{t-\frac{1}{2}}^{t+\frac{1}{2}} |\ddot{q}_{*}(s)|^{2} \,\mathrm{d}s \to 0, \text{ as } |t| \to \infty.$$
(3.11)

The proof of Theorem 1.2 is completed. \Box

References

- P. H. RABINOWITZ. Homoclinic solutions for a class of Hamiltonian systems. Proc. R. Soc. Edinb., 1990, 114: 33–38.
- M. IZYDOREK, J. JANCZEWSKA. Homoclinic solutions for a class of the second order Hamiltonian systems. J. Differential Equations, 2005, 219(2): 375–389.
- [3] V. COTIZELATI, I. EKELAND, E. SERE. A variational approach to homoclinic solutions in Hamiltonian systems. Math. Ann., 1990, 288(1): 133–160.
- W. OMANA, M. WILLEM. Homoclinic solutions for a class of Hamiltonian systems. Differential Integral Equations, 1992, 5(5): 1115–1120.
- [5] Yanheng DING, M. GIRARDI. Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign. Dynam. Systems Appl., 1993, 2(1): 131–145.
- [6] E. SERE. Existence of infinitely many homoclinic solutions in Hamiltonian systems. Math. Z., 1992, 209(1): 27–42.
- [7] P. L. FELMER, E. A. DE B. E. SILVA. Homoclinic and periodic solutions for Hamiltonian systems. Ann. Sc. Norm. Super. Pisa Cl. Sci., 1998, 26(2): 285–301.
- [8] P. KORMAN, A. C. LAZER. Homoclinic solutions for a class of symmetric Hamiltonian systems. Electron. J. Differential Equations, 1994, 1: 1–10.
- [9] Ying LV, Chunlei TANG. Existence of even homoclinic orbits for second-order Hamiltonian systems. Nonlinear Anal., 2007, 67(7): 2189–2198.
- [10] P. H. RABINOWITZ. Minimax methods in critical point theory with applications to differential equations. American Mathematical Society, Providence, RI, 1986.
- H. BREZIS, L. NIRENBERG. Remarks on finding critical points. Comm. Pure Appl. Math., 1991, 44(8-9): 939–963.
- [12] D. G. COSTA, Chengyue LI. Homoclinic type solutions for a class of differential equations with periodic coefficients. Bonheure, Denis (ed.) et al., Nonlinear elliptic partial differential equations. Workshop in celebration of Jean-Pierre Gossez's 65th birthday, Bruxelles, Belgium, September 2-4, 2009. Providence, RI: American Mathematical Society (AMS). Contemporary Mathematics, 2011, 540:65-78.