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Abstract By Brezis-Nirenberg type Mountain Pass Theorem, the research has focused on the

existence of nontrivial homoclinic orbits for a class of second order Hamiltonian systems with

non-Ambrosetti-Rabinowitz type superquadratic potentials and small forced terms.
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1. Introduction

Since 1990, there have been a vast literatures (cf. [1–10] and references therein) on the

subject of homoclinic orbits for Hamiltonian systems by variational methods. Firstly, Rabinowitz

[1] discussed the existence of homoclinic orbits for second order periodic Hamiltonian systems

q̈ (t)− L (t) q (t) +Wq (t, q (t)) = 0, t ∈ R (HS)

where q (t) ,W (t, q) : R × Rn → R are C1-maps, T -periodic in t,Wq(t, q) = ∂W
∂q denotes the

gradient of W (t, q) with respect to q. If 0 ̸= q (t) ∈ W 1,2 (R,Rn) is a solution of (HS) such that

q (t) → 0, q ˙(t) → 0 as |t| → ∞, then we say it is a nontrivial homoclinic orbit of (HS). Rabinowitz

assumed that L (t) is a positive symmetrical matrix function, and W (t, q) satisfies the so-called

Ambrosetti-Rabinowitz type superquadratic condition:

(AR) There exists θ > 2 such that 0 < θW (t, q) ≤ qWq (t, q) , ∀ (t, q) ∈ R× Rn \ {0}.
For k ≥ 1, he considered the approximate problem{

q̈ (t)− L (t) q (t) +Wq (t, q (t)) = 0, t ∈ (−kT, kT ) ,

q (−kT ) = q (kT ) .
(HSk)

Solutions of (HSk) are obtained as critical points qk (t) of the functional

fk (q) =
1

2

∫ kT

−kT

[
|q̇ (t)|2 + (L (t) q (t) , q (t))

]
dt−

∫ kT

−kT

W (t, q (t)) dt

via minimax argument, and uniform estimates permit qk (t) to converge weakly to a nontrivial

homoclinic orbit of (HS).

Received August 23, 2013; Accepted January 14, 2014

* Corresponding author

E-mail address: cunlcy@163.com (Chengyue LI); paopao 0811@126.com (Zhiwei XIAO); wang-meng1989@163.

com (Mengmeng WANG)



620 Chengyue LI, Zhiwei XIAO and Mengmeng WANG

Later, Izydorek and Janczewska [2] used the same idea as in [1] to study homoclinic orbits

for more general periodic Hamiltonian systems with a small forced term f (t) as follows

q̈ (t)−Kq (t, q (t)) +Wq (t, q (t)) = f (t) , t ∈ R (HSf)

where K (t, q) ,W (t, q) : R × Rn → R and f : R → Rn,Kq (t, q) =
∂K
∂q denotes the gradient of

K (t, q) with respect to q. They proved the following result:

Theorem 1.1([2]) Under the condition of (AR), suppose that K (t, q) ,W (t, q) and f (t) satisfy

(H1) K (t, q) ,W (t, ) : R× Rn → R are C1-maps, T -periodic in the variable t;

(H2) There are constants b1 > 0 and b2 > 0 such that

b1 |q|2 ≤ K (t, q) ≤ b2 |q|2 , ∀ (t, q) ∈ R× Rn;

(H3) K (t, q) ≤ qKq (t, q) ≤ 2K (t, q), ∀ (t, q) ∈ R× Rn;

(H4) Wq (t, q) = o (|q|) as q → 0 uniformly with respect to t;

(H5) f (t) : R → Rn is a continuous and bounded function with f (t) ∈ L2 (R).
Furthermore, if ∥f∥L2(R) is sufficiently small, then (HSf) possesses a nontrivial homoclinic orbit.

For the existence of homoclinic orbits for coercive or subquadratic Hamiltonian systems, we

refer the reader to V. Cotizelati, I. Ekeland and E. Sere [3], W.Omana and M.Willem [4], Y.H.

Ding and M. Girardi [5], E. Sere [6], P.L.Felmer, and Silva [7], P. Korman, A. C. Lazer [8], Y.

Lv, Chun-Lei Tang [9], etc.

Inspired by the above papers, particularly [1] and [2], we consider whether the conclusion of

Theorem 1.1 still holds if W (t, q) does not satisfy condition (AR) in Equation (HSf). Exactly,

our main result is

Theorem 1.2 Assume that K (t, q) ,W (t, q) and f (t) satisfy (H1)−(H4). Furthermore, assume

that

(H̄5) f (t) : R → Rn is a continuous function with f (t) ∈ L2 (R) ;
(H6) W (t, q) / |q|2 → ∞ (|q| → ∞) uniformly with respect to t;

(H7) there are d1, d2 > 0 and λ > 1 such that

|Wq (t, q)| ≤ d1 |q|λ + d2, ∀t ∈ R, q ∈ Rn;

(H8) there are h > 0, d3 > 0 and µ > λ such that

qWq (t, q)− 2W (t, q) ≥ d3 |q|µ , ∀t ∈ R, |q| > h;

(H9) qWq (t, q) > 2W (t, q), ∀t ∈ R, q ∈ Rn \ {0},
then (HSf) possesses a nontrivial homoclinic orbit provided that ∥f∥L2(R) is sufficiently small.

Remark 1.3 (H4) and (H6) show that W (t, q) is superquadratic at the origin and infinity.

Remark 1.4 Combining (H4) with (H7) implies that, for any small δ > 0, there exists d̄1 =

d̄1 (δ) > 0 such that

|Wq (t, q)| ≤ d̄1 |q|λ + δ |q|2 , ∀t ∈ R, q ∈ Rn.
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Remark 1.5 From (H8) and (H9), we may assume that

qWq (t, q)− 2W (t, q) ≥ d3 |q|µ , ∀t ∈ R, |q| > h

with the property that 0 < d3 = d3 (h) → 0 as h → 0.

Remark 1.6 If W (t, q) satisfies condition (AR), then there exist d4 > 0, h′ > 0 such that

W (t, q) > d4 |q|θ , ∀t ∈ R, |q| > h′, thus, whenever θ > γ, (AR) implies (H8). However, for

example, if we take W (t, q) = |q|2 ln(1 + |q|2), then it satisfies condition (H4) and (H6)–(H9),

but does not satisfy (AR). In this sense, our result Theorem 1.2 generalizes the main conclusions

in [1] and [2].

Remark 1.7 In [12], the author and Costa studied the existence of homoclinic type solutions of

a class of differential equations with periodic potentials which also satisfy conditions (H6)–(H9)

with µ > λ − 1 instead of µ > λ in (H8), however, all of them do not contain a non-periodic

small forced term. By [12], we also guess that our Theorem 1.2 may still hold with µ > λ − 1

instead of µ > λ in (H8).

In the next section, different from the arguments in [1] and [2], we shall employ the following

Brezis-Nirenberg type Mountain Pass Theorem [11] to prove our Theorem 1.2 directly.

Theorem 1.8 (Brezis-Nirenberg [11]) Let X be a Banach space and φ ∈ C1 (X,R) with φ (0) =

0. Suppose that φ satisfies

(i) there are constants ω > 0 and ρ > 0 such that φ (u) ≥ ω, ∀ ∥u∥ = ρ;

(ii) there exists e ∈ X \Bρ (0) such that φ (e) < 0.

Define β = infγ∈Γ φ (γ (s)) with

Γ = {γ ∈ ([0, 1] , X) : γ (0) = 0, γ (1) = e} ,

then ω ≤ β < ∞ and φ has at least a (Ce)β sequence, namely, there exists a sequence {qm} in

X such that

φ (qm) → β, (1 + ∥qm∥) ∥φ′ (qm)∥ → 0.

2. Some lemmas

Denote by E = W 1,2 (R,Rn) the usual Sobolev space with the norm

∥q∥ =
(∫

R

(
|q̇ (t)|2 + |q (t)|2

)
dt
) 1

2

. (2.1)

Let η (q) = (
∫
R[|q̇(t)|

2 + 2K(t, q)]dt)
1
2 . Then (H2) implies

b̄1 ∥q∥2 ≤ η2 (q) ≤ b̄2 ∥q∥2 , ∀q ∈ E (2.2)

with b̄1 = min {1, 2b1} and b̄2 = max {1, 2b2}. Set

I (q) =
1

2

∫
R

[
|q̇ (t)|2 + 2K (t, q (t))

]
dt−

∫
R
W (t, q (t)) dt+

∫
R
f (t) q (t) dt

=
1

2
η2 (q)−

∫
R
W (t, q (t)) dt+

∫
R
f (t) q (t) dt, q ∈ E. (2.3)
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Using (H1)–(H4) and (H5), we know that I (q) ∈ C1 (E) , critical points of I (q) in E are classical

solutions of (HSf).

Lemma 2.1 Under the assumptions of (H1)–(H4) and (H̄5), there exist ω > 0 and ρ > 0 such

that I (q) > ω∀ ∥q∥ = ρ.

Proof By the Sobolev inequalities, we have

∥q∥L2(R) ≤ ∥q∥ , ∥q∥L∞(R) ≤ ∥q∥ , ∀q ∈ E.

According to (H4), for c1
∆
= b̄1/4, there exists ρ ∈ (0, 1) such that |W (t, q)| ≤ c1 |q|2 , ∀ |q| ≤ ρ

uniformly in t ∈ R. If q ∈ E with ∥q∥ = ρ, then |q (t)| ≤ ρ, ∀t ∈ R. Thus we obtain∫
R
W (t, q (t)) dt ≤ c1 ∥q∥2L2(R) ≤ c1 ∥q∥2 = c1ρ

2, (2.4)∣∣∣∣∫
R
f (t) q (t) dt

∣∣∣∣ ≤ ∥f∥L2(R) ∥q∥L2(R) ≤ ρ ∥f∥L2(R) . (2.5)

Hence, we have the estimate

I (q) ≥ c1ρ
2 − ρ ∥f∥L2(R) . (2.6)

Therefore, for c2
∆
= 1

2ρc1, if ∥f∥L2(R) ≤ c2, then by (2.6), we have

I (q) ≥ 1

2
c1ρ

2 ∆
= ω > 0. (2.7)

So we complete the proof. �

Lemma 2.2 Under the assumptions of (H1)–(H4), (H̄5) and (H6), there is e ∈ E \ Bρ (0) such

that I (e) < 0.

Proof Choose 0 ̸= g = g (t) ∈ C∞
0 (R,Rn) ⊂ E and σ > 0 such that

Supp {g (t)} ⊂ (0, T ) , 0 < σ ∥g∥ ≤ ∥g∥L2(0,T ) . (2.8)

By (H6), there is α > 0 such that

W (t, q) ≥ c3 |q|2 − α, ∀t ∈ R, q ∈ Rn (2.9)

with c3
∆
= 1 + b̄2

2σ2 . Consequently, for ∀τ > 1

I (τg) =
1

2
η2 (τg)−

∫ T

0

W (t, τg (t)) dt+ τ

∫ T

0

f (t) g (t) dt

≤ τ2b̄2
2σ2

∫ T

0

|g (t)|2 dt−
∫ T

0

W (t, τg (t)) dt+ τ

∫ T

0

f (t) g (t) dt

≤ τ2b̄2
2σ2

∫ T

0

|g (t)|2 dt− c3τ
2

∫ T

0

|g (t)|2 dt+ τ

∫ T

0

f (t) g (t) dt+ αT

= −1

2
τ2

∫ T

0

|g (t)|2 dt+ τ

∫ T

0

f (t) g (t) dt+ αT → −∞, as τ → ∞. (2.10)

Clearly, we can take e = e (t) = τg (t) ∈ E such that ∥e∥ > ρ and φ (e) < 0 for τ large enough.

�
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Lemma 2.3 Under the assumptions of Theorem 1.2, there exists d > 0 such that I (q) has a

bounded (Ce)d sequence {qm} in E.

Proof By Lemmas 2.1, 2.2 and Theorem 1.8, for d > 0 defined by

d = inf
γ∈Γ

max
0≤s61

I (γ (s)) ≥ ω > 0 (2.11)

with

Γ = {γ ∈ C ([0, 1] , E) : γ (0) = 0, γ (1) = e} ,

I (q) has a (Ce)d sequence {qm} satisfying that

I (qm) → d > 0, (1 + ∥qm∥) ∥I ′ (qm)∥ → 0. (2.12)

Setting c4
∆
= min {1, b1} > 0, by Remark 1.4, we can take δ = 1

3c4 > 0 and the corresponding

d̄1 = d̄1 (δ) > 0. Clearly, there exists small h > 0 such that 0 < d̄1h
λ−1 < 1

3c4. So, we have

c5
∆
= c4 − d̄1h

λ−1 − δ ≥ 1

3
c4 > 0,

thus, from (H2), (H3), Remaks 1.4 and 1.5, we infer that

I ′ (qm) qm = ∥ ˙qm∥2L2(R) +

∫
R
qm (t)Kq (t, qm (t)) dt−

∫
R
Wq (t, qm (t)) qm (t) dt+

∫
R
f (t) qm (t) dt

≥c4 ∥qm∥2 −
∫
R
|Wq (t, qm (t))| |um (t)| dt+

∫
R
f (t) qm (t) dt

≥c4 ∥qm∥2 − d̄1

∫
R
|qm (t)|λ+1

dt− δ

∫
R
|qm (t)|2 dt+

∫
R
f (t) qm (t) dt

=c4 ∥qm∥2 − d̄1

∫
|qm(t)|≥h

|qm (t)|λ+1
dt− d̄1

∫
|qm(t)|≤h

|qm (t)|λ+1
dt−

δ

∫
R
|qm (t)|2 dt+

∫
R
f (t) qm (t) dt

≥c4 ∥qm∥2 − d̄1

∫
|qm(t)|≥h

|qm (t)|λ+1
dt− d̄1h

λ−1

∫
R
|qm (t)|2 dt−

δ

∫
R
|qm (t)|2 dt+

∫
R
f (t) qm (t) dt

≥c4 ∥qm∥2 − d̄1

∫
|qm(t)|≥h

|qm (t)|λ+1
dt− d̄1h

λ−1 ∥qm∥2 − δ ∥qm∥2 − ∥f∥L2(R) ∥qm∥

=c5 ∥qm∥2 − d̄1

∫
|qm(t)|≥h

|qm (t)|λ+1
dt− ∥f∥L2(R) ∥qm∥ . (2.13)

Since λ < µ, we can take r ∈ (0, 1) such that λ + 1 − r < µ, so, we can make the estimate for

the integral term
∫
|qm(t)|≥h

|qm (t)|λ+1
dt in (2.13) as follows.∫

|qm(t)|≥h

|qm (t)|λ+1
dt ≤ ∥qm∥rL∞

∫
|qm(t)|≥h

|qm (t)|λ+1−r
dt

≤ hλ+1−r−µ ∥qm∥rL∞

∫
|qm(t)|≥h

|qm (t)|µ dt

≤ hλ+1−r−µ ∥qm∥r
∫
|qm(t)|≥h

|qm (t)|µ dt. (2.14)
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Combining (2.13) with (2.14), we deduce that

I ′ (qm) qm ≥ c5 ∥qm∥2 − d̄1h
λ+1−r−µ ∥qm∥r

∫
|qm(t)|≥h

|qm (t)|µ dt− ∥f∥L2(R) ∥qm∥ . (2.15)

Next, with the aid of (H3), (H8)–(H9), we have for the above h > 0 in (2.13)

2I (qm)− I ′ (qm) qm =

∫
R
[2K (t, qm (t))−Kq (t, qm (t)) qm (t)] dt+∫

R
[Wq (t, qm (t)) qm (t)− 2W (t, qm (t))] dt+

∫
R
f (t) qm (t) dt

≥
∫
R
[Wq (t, qm (t)) qm (t)− 2W (t, qm (t))] dt+

∫
R
f (t) qm (t) dt

≥d3 (h)

∫
|qm(t)|≥h

|qm (t)|µ dt− ∥f∥L2(R) ∥qm∥ . (2.16)

Thus, by (2.12) and (2.16), there exist c6 = c6 (h) > 0, c7 = c7 (h) > 0 such that∫
|qm(t)|>h

|qm (t)|µ dt ≤ c6 + c7 ∥f∥L2(R) ∥qm∥ . (2.17)

We substitute (2.17) into (2.15), and obtain

I ′ (qm) qm ≥c5 ∥qm∥2 − d̄1c6h
λ+1−r−µ ∥qm∥r −

d̄1c7h
λ+1−r−µ ∥f∥L2(R) ∥qm∥r+1 − ∥f∥L2(R) ∥qm∥ . (2.18)

By 0 < r < r + 1 < 2, c5 > 0 , (2.12) and (2.18), we infer that {qm} is bounded in E. �

3. Proof of Theorem 1.2

Proof of Theorem 1.2 By Lemma 2.3, we know that I (q) has a bounded (Ce)d sequence

{qm}, thus, without loss of generality, we may assume that there exists q0 = q0 (t) ∈ E such that

qm ⇀ q0 weakly in E, qm → q0 in L2
loc (R) , qm → q0 in Cloc (R) .

Therefore, for ∀υ ∈ C∞
0 (R), from the following

I ′ (qm) ν =

∫
R

˙qm (t) ν (t) dt+

∫
R
Kq (t, qm (t)) ν (t) dt−∫

R
Wq (t, qm (t)) ν (t) dt+

∫
R
f (t) ν (t) dt → 0, (3.1)

we can show that

0 =

∫
R
q̇0 (t) ν (t) dt+

∫
R
Kq (t, q0 (t)) ν (t) dt−

∫
R
Wq (t, q0 (t)) ν (t) dt+

∫
R
f (t) ν (t) dt, (3.2)

that is, q0 ∈ E is a critical point of the functional I in (2.3), and q0 = q0 (t) is one solution of

(HSf).

Case (I) If f (t) ̸= 0, then clearly q0 ̸= 0.

Case (II) If f (t) = 0, then, for ∀m, there is jm ∈ Z such that the maximum of |qm (t+ jmT )|
occurs in [0, T ]. Let wm (t)

∆
= qm (t+ jmT ) . By (H1) and (2.12), we have ∥wm∥ = ∥qm∥,
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I (wm) = I (qm), I ′ (wm) = I ′ (qm) → 0. Thus, we also assume that there exists w0 = w0 (t) ∈ E

such that

wm ⇀ w0 weakly in E, wm → w0 in L2
loc (R) , and wm → w0 in Cloc (R) .

Thus for any ν ∈ Cloc (R), we have

|I ′ (wm) ν (·)| = |I ′ (qm) ν (· − jmT )| ≤ ∥I ′ (qm)∥ ∥ν (· − jmT )∥ = ∥I ′ (qm)∥ ∥ν (·)∥ → 0. (3.3)

Just similarly to (3.1), (3.2), we can prove that w0 ∈ E is a critical point of the functional I. We

claim that w0 ̸= 0. If this is not true, then we have

∥qm∥L∞(R) = ∥wm∥L∞(R) = ∥wm∥L∞([0,T ]) → 0. (3.4)

Thus by (H4), given ε > 0, we have, for m sufficiently large and ∀t ∈ R

|W (t, qm (t))| ≤ ε |qm (t)|2 , |qm (t)Wq (t, qm) (t)| ≤ ε |qm (t)|2 . (3.5)

So, in view of (H3) and (3.5), noticing f(t) = 0, we have

∥q̇m∥2L2(R) +

∫
R
K (t, qm (t)) dt ≤ ∥q̇m∥2L2(R) +

∫
R
Kq (t, qm (t)) qm (t) dt

= I ′ (qm) qm +

∫
R
Wq (t, qm (t)) qm (t) dt

≤ I ′ (qm) qm + ε

∫
R
|qm (t)|2 dt

≤ ∥ I ′ (qm)∥ ∥qm∥+ ε ∥qm∥2 . (3.6)

And (3.5) and (3.6) imply

0 < I (qm) =
1

2

∫
R

[
|q̇m (t)|2 + 2K (t, qm (t))

]
dt−

∫
R
W (t, qm (t)) dt

≤ ∥ ˙qm∥2L2(R) +

∫
R
K (t, qm (t)) dt−

∫
R
W (t, qm (t)) dt

≤ ∥I ′ (qm)∥ ∥qm∥+ 2ε ∥qm∥2 . (3.7)

Since ∥qm∥ is bounded, ε is arbitrary, (2.12) and (3.7) show I (qm) → 0, which contradicts (2.12).

So w0 ̸= 0.

Under the above two cases, we get a nontrivial solution q∗ (t) of (HSf): q∗ (t) = q0 (t) or

q∗ (t) = w0 (t), respectively.

Finally, we claim that q∗ (t) → 0 and q̇∗ (t) → 0 as |t| → ∞. For the proof we refer to [2].

For the sake of completeness, we sketch it. Indeed, q∗ ∈ E implies q∗ (t) → 0 as |t| → ∞. Since

q∗ (t) is a solution of (HSf), we have

q̈∗ (t) = f (t)− Vq (t, q∗ (t)) ∈ L2
loc (R,Rn) (3.8)

is continuous, where V (t, q) = −K (t, q) + W (t, q). Thus from q̇∗ ∈ L2 (R), f ∈ L2 (R) and

Vq (t, 0) = 0, one can show that (see [2] for details)∫ t+ 1
2

t− 1
2

|q̇∗ (s)|2 ds → 0, (3.9)
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2

t− 1
2

|q̈∗ (s)|2 ds ≤
∫ t+ 1

2

t− 1
2

|f (s)|2 ds+
∫ t+ 1

2

t− 1
2

|Vq (t, q∗ (s))|2 ds+

2

∫ t+ 1
2

t− 1
2

|f (s)| |Vq (t, q∗ (s))| ds → 0 (3.10)

as |t| → ∞. Therefore, by (3.9), (3.10), we have the estimate as follows

|q̇∗ (t)|2 ≤ 2

∫ t+ 1
2

t− 1
2

|q̇∗ (s)|2 ds+ 2

∫ t+ 1
2

t− 1
2

|q̈∗ (s)|2 ds → 0, as |t| → ∞. (3.11)

The proof of Theorem 1.2 is completed. �
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