Homoclinic Orbits for Hamiltonian Systems with Small Forced Terms

Chengyue LI*, Zhiwei XIAO, Mengmeng WANG
Faculty of Science, Minzu University of China, Beijing 100081, P. R. China

Abstract

By Brezis-Nirenberg type Mountain Pass Theorem, the research has focused on the existence of nontrivial homoclinic orbits for a class of second order Hamiltonian systems with non-Ambrosetti-Rabinowitz type superquadratic potentials and small forced terms.

Keywords Homoclinic orbits; Hamiltonian systems; Mountain Pass Theorem; critical points.
MR(2010) Subject Classification 58E05; 34C37; 70H05

1. Introduction

Since 1990, there have been a vast literatures (cf. [1-10] and references therein) on the subject of homoclinic orbits for Hamiltonian systems by variational methods. Firstly, Rabinowitz [1] discussed the existence of homoclinic orbits for second order periodic Hamiltonian systems

$$
\begin{equation*}
\ddot{q}(t)-L(t) q(t)+W_{q}(t, q(t))=0, t \in \mathbb{R} \tag{HS}
\end{equation*}
$$

where $q(t), W(t, q): \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ are \mathbb{C}^{1}-maps, T-periodic in $t, W_{q}(t, q)=\frac{\partial W}{\partial q}$ denotes the gradient of $W(t, q)$ with respect to q. If $0 \neq q(t) \in W^{1,2}\left(\mathbb{R}, \mathbb{R}^{n}\right)$ is a solution of (HS) such that $q(t) \rightarrow 0, q(\dot{t}) \rightarrow 0$ as $|t| \rightarrow \infty$, then we say it is a nontrivial homoclinic orbit of (HS). Rabinowitz assumed that $L(t)$ is a positive symmetrical matrix function, and $W(t, q)$ satisfies the so-called Ambrosetti-Rabinowitz type superquadratic condition:
(AR) There exists $\theta>2$ such that $0<\theta W(t, q) \leq q W_{q}(t, q), \forall(t, q) \in \mathbb{R} \times \mathbb{R}^{n} \backslash\{0\}$. For $k \geq 1$, he considered the approximate problem

$$
\left\{\begin{array}{l}
\ddot{q}(t)-L(t) q(t)+W_{q}(t, q(t))=0, t \in(-k T, k T), \tag{HSk}\\
q(-k T)=q(k T)
\end{array}\right.
$$

Solutions of (HSk) are obtained as critical points $q_{k}(t)$ of the functional

$$
f_{k}(q)=\frac{1}{2} \int_{-k T}^{k T}\left[|\dot{q}(t)|^{2}+(L(t) q(t), q(t))\right] \mathrm{d} t-\int_{-k T}^{k T} W(t, q(t)) \mathrm{d} t
$$

via minimax argument, and uniform estimates permit $q_{k}(t)$ to converge weakly to a nontrivial homoclinic orbit of (HS).

[^0]Later, Izydorek and Janczewska [2] used the same idea as in [1] to study homoclinic orbits for more general periodic Hamiltonian systems with a small forced term $f(t)$ as follows

$$
\begin{equation*}
\ddot{q}(t)-K_{q}(t, q(t))+W_{q}(t, q(t))=f(t), \quad t \in \mathbb{R} \tag{HSf}
\end{equation*}
$$

where $K(t, q), W(t, q): \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}^{n}, K_{q}(t, q)=\frac{\partial K}{\partial q}$ denotes the gradient of $K(t, q)$ with respect to q. They proved the following result:

Theorem 1.1([2]) Under the condition of (AR), suppose that $K(t, q), W(t, q)$ and $f(t)$ satisfy
$\left(H_{1}\right) \quad K(t, q), W(t):, \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ are \mathbb{C}^{1}-maps, T-periodic in the variable $t ;$
$\left(H_{2}\right)$ There are constants $b_{1}>0$ and $b_{2}>0$ such that

$$
b_{1}|q|^{2} \leq K(t, q) \leq b_{2}|q|^{2}, \forall(t, q) \in \mathbb{R} \times \mathbb{R}^{n}
$$

$\left(H_{3}\right) \quad K(t, q) \leq q K_{q}(t, q) \leq 2 K(t, q), \forall(t, q) \in \mathbb{R} \times \mathbb{R}^{n} ;$
$\left(H_{4}\right) \quad W_{q}(t, q)=o(|q|)$ as $q \rightarrow 0$ uniformly with respect to t;
$\left(H_{5}\right) \quad f(t): \mathbb{R} \rightarrow \mathbb{R}^{n}$ is a continuous and bounded function with $f(t) \in L^{2}(\mathbb{R})$.
Furthermore, if $\|f\|_{L^{2}(\mathbb{R})}$ is sufficiently small, then (HSf) possesses a nontrivial homoclinic orbit.
For the existence of homoclinic orbits for coercive or subquadratic Hamiltonian systems, we refer the reader to V. Cotizelati, I. Ekeland and E. Sere [3], W.Omana and M.Willem [4], Y.H. Ding and M. Girardi [5], E. Sere [6], P.L.Felmer, and Silva [7], P. Korman, A. C. Lazer [8], Y. Lv, Chun-Lei Tang [9], etc.

Inspired by the above papers, particularly [1] and [2], we consider whether the conclusion of Theorem 1.1 still holds if $W(t, q)$ does not satisfy condition (AR) in Equation (HSf). Exactly, our main result is

Theorem 1.2 Assume that $K(t, q), W(t, q)$ and $f(t)$ satisfy $\left(H_{1}\right)-\left(H_{4}\right)$. Furthermore, assume that
$\left(\bar{H}_{5}\right) \quad f(t): \mathbb{R} \rightarrow \mathbb{R}^{n}$ is a continuous function with $f(t) \in L^{2}(\mathbb{R})$;
$\left(H_{6}\right) W(t, q) /|q|^{2} \rightarrow \infty(|q| \rightarrow \infty)$ uniformly with respect to t;
$\left(H_{7}\right)$ there are $d_{1}, d_{2}>0$ and $\lambda>1$ such that

$$
\left|W_{q}(t, q)\right| \leq d_{1}|q|^{\lambda}+d_{2}, \quad \forall t \in \mathbb{R}, q \in \mathbb{R}^{n}
$$

$\left(H_{8}\right)$ there are $h>0, d_{3}>0$ and $\mu>\lambda$ such that

$$
q W_{q}(t, q)-2 W(t, q) \geq d_{3}|q|^{\mu}, \quad \forall t \in \mathbb{R},|q|>h ;
$$

$\left(H_{9}\right) \quad q W_{q}(t, q)>2 W(t, q), \forall t \in \mathbb{R}, q \in \mathbb{R}^{n} \backslash\{0\}$,
then (HSf) possesses a nontrivial homoclinic orbit provided that $\|f\|_{L^{2}(\mathbb{R})}$ is sufficiently small.
Remark $1.3\left(\mathrm{H}_{4}\right)$ and $\left(\mathrm{H}_{6}\right)$ show that $W(t, q)$ is superquadratic at the origin and infinity.
Remark 1.4 Combining $\left(\mathrm{H}_{4}\right)$ with $\left(\mathrm{H}_{7}\right)$ implies that, for any small $\delta>0$, there exists $\bar{d}_{1}=$ $\bar{d}_{1}(\delta)>0$ such that

$$
\left|W_{q}(t, q)\right| \leq \bar{d}_{1}|q|^{\lambda}+\delta|q|^{2}, \quad \forall t \in \mathbb{R}, q \in \mathbb{R}^{n}
$$

Remark 1.5 From $\left(\mathrm{H}_{8}\right)$ and $\left(\mathrm{H}_{9}\right)$, we may assume that

$$
q W_{q}(t, q)-2 W(t, q) \geq d_{3}|q|^{\mu}, \quad \forall t \in \mathbb{R},|q|>h
$$

with the property that $0<d_{3}=d_{3}(h) \rightarrow 0$ as $h \rightarrow 0$.
Remark 1.6 If $W(t, q)$ satisfies condition (AR), then there exist $d_{4}>0, h^{\prime}>0$ such that $W(t, q) \geqslant d_{4}|q|^{\theta}, \forall t \in \mathbb{R},|q| \geqslant h^{\prime}$, thus, whenever $\theta>\gamma$, (AR) implies $\left(\mathrm{H}_{8}\right)$. However, for example, if we take $W(t, q)=|q|^{2} \ln \left(1+|q|^{2}\right)$, then it satisfies condition $\left(\mathrm{H}_{4}\right)$ and $\left(\mathrm{H}_{6}\right)-\left(\mathrm{H}_{9}\right)$, but does not satisfy (AR). In this sense, our result Theorem 1.2 generalizes the main conclusions in [1] and [2].

Remark 1.7 In [12], the author and Costa studied the existence of homoclinic type solutions of a class of differential equations with periodic potentials which also satisfy conditions $\left(\mathrm{H}_{6}\right)-\left(\mathrm{H}_{9}\right)$ with $\mu>\lambda-1$ instead of $\mu>\lambda$ in $\left(\mathrm{H}_{8}\right)$, however, all of them do not contain a non-periodic small forced term. By [12], we also guess that our Theorem 1.2 may still hold with $\mu>\lambda-1$ instead of $\mu>\lambda$ in $\left(\mathrm{H}_{8}\right)$.

In the next section, different from the arguments in [1] and [2], we shall employ the following Brezis-Nirenberg type Mountain Pass Theorem [11] to prove our Theorem 1.2 directly.

Theorem 1.8 (Brezis-Nirenberg [11]) Let X be a Banach space and $\varphi \in \mathbb{C}^{1}(X, \mathbb{R})$ with $\varphi(0)=$ 0 . Suppose that φ satisfies
(i) there are constants $\omega>0$ and $\rho>0$ such that $\varphi(u) \geq \omega, \forall\|u\|=\rho$;
(ii) there exists $e \in X \backslash B_{\rho}(0)$ such that $\varphi(e)<0$.

Define $\beta=\inf _{\gamma \in \Gamma} \varphi(\gamma(s))$ with

$$
\Gamma=\{\gamma \in([0,1], X): \gamma(0)=0, \gamma(1)=e\}
$$

then $\omega \leq \beta<\infty$ and φ has at least a $(C e)_{\beta}$ sequence, namely, there exists a sequence $\left\{q_{m}\right\}$ in X such that

$$
\varphi\left(q_{m}\right) \rightarrow \beta,\left(1+\left\|q_{m}\right\|\right)\left\|\varphi^{\prime}\left(q_{m}\right)\right\| \rightarrow 0
$$

2. Some lemmas

Denote by $E=W^{1,2}\left(\mathbb{R}, \mathbb{R}^{n}\right)$ the usual Sobolev space with the norm

$$
\begin{equation*}
\|q\|=\left(\int_{\mathbb{R}}\left(|\dot{q}(t)|^{2}+|q(t)|^{2}\right) \mathrm{d} t\right)^{\frac{1}{2}} \tag{2.1}
\end{equation*}
$$

Let $\eta(q)=\left(\int_{\mathbb{R}}\left[|\dot{q}(t)|^{2}+2 K(t, q)\right] \mathrm{d} t\right)^{\frac{1}{2}}$. Then $\left(\mathrm{H}_{2}\right)$ implies

$$
\begin{equation*}
\overline{b_{1}}\|q\|^{2} \leq \eta^{2}(q) \leq \overline{b_{2}}\|q\|^{2}, \quad \forall q \in E \tag{2.2}
\end{equation*}
$$

with $\overline{b_{1}}=\min \left\{1,2 b_{1}\right\}$ and $\overline{b_{2}}=\max \left\{1,2 b_{2}\right\}$. Set

$$
\begin{align*}
I(q) & =\frac{1}{2} \int_{\mathbb{R}}\left[|\dot{q}(t)|^{2}+2 K(t, q(t))\right] \mathrm{d} t-\int_{\mathbb{R}} W(t, q(t)) \mathrm{d} t+\int_{\mathbb{R}} f(t) q(t) \mathrm{d} t \\
& =\frac{1}{2} \eta^{2}(q)-\int_{\mathbb{R}} W(t, q(t)) \mathrm{d} t+\int_{\mathbb{R}} f(t) q(t) \mathrm{d} t, \quad q \in E . \tag{2.3}
\end{align*}
$$

Using $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ and $\left(\mathrm{H}_{5}\right)$, we know that $I(q) \in \mathbb{C}^{1}(E)$, critical points of $I(q)$ in E are classical solutions of (HSf).

Lemma 2.1 Under the assumptions of $\left(H_{1}\right)-\left(H_{4}\right)$ and $\left(\bar{H}_{5}\right)$, there exist $\omega>0$ and $\rho>0$ such that $I(q)>\omega \forall\|q\|=\rho$.

Proof By the Sobolev inequalities, we have

$$
\|q\|_{L^{2}(\mathbb{R})} \leq\|q\|,\|q\|_{L^{\infty}(\mathbb{R})} \leq\|q\|, \quad \forall q \in E .
$$

According to $\left(\mathrm{H}_{4}\right)$, for $c_{1} \triangleq \overline{b_{1}} / 4$, there exists $\rho \in(0,1)$ such that $|W(t, q)| \leq c_{1}|q|^{2}, \forall|q| \leq \rho$ uniformly in $t \in \mathbb{R}$. If $q \in E$ with $\|q\|=\rho$, then $|q(t)| \leq \rho, \forall t \in \mathbb{R}$. Thus we obtain

$$
\begin{gather*}
\int_{\mathbb{R}} W(t, q(t)) \mathrm{d} t \leq c_{1}\|q\|_{L^{2}(\mathbb{R})}^{2} \leq c_{1}\|q\|^{2}=c_{1} \rho^{2} \tag{2.4}\\
\left|\int_{\mathbb{R}} f(t) q(t) \mathrm{d} t\right| \leq\|f\|_{L^{2}(\mathbb{R})}\|q\|_{L^{2}(\mathbb{R})} \leq \rho\|f\|_{L^{2}(\mathbb{R})} \tag{2.5}
\end{gather*}
$$

Hence, we have the estimate

$$
\begin{equation*}
I(q) \geq c_{1} \rho^{2}-\rho\|f\|_{L^{2}(\mathbb{R})} \tag{2.6}
\end{equation*}
$$

Therefore, for $c_{2} \triangleq \frac{1}{2} \rho c_{1}$, if $\|f\|_{L^{2}(\mathbb{R})} \leq c_{2}$, then by (2.6), we have

$$
\begin{equation*}
I(q) \geq \frac{1}{2} c_{1} \rho^{2} \triangleq \omega>0 \tag{2.7}
\end{equation*}
$$

So we complete the proof.
Lemma 2.2 Under the assumptions of $\left(H_{1}\right)-\left(H_{4}\right),\left(\bar{H}_{5}\right)$ and $\left(H_{6}\right)$, there is $e \in E \backslash B_{\rho}(0)$ such that $I(e)<0$.

Proof Choose $0 \neq g=g(t) \in \mathbb{C}_{0}^{\infty}\left(\mathbb{R}, \mathbb{R}^{n}\right) \subset E$ and $\sigma>0$ such that

$$
\begin{equation*}
\operatorname{Supp}\{g(t)\} \subset(0, T), \quad 0<\sigma\|g\| \leq\|g\|_{L^{2}(0, T)} \tag{2.8}
\end{equation*}
$$

By $\left(\mathrm{H}_{6}\right)$, there is $\alpha>0$ such that

$$
\begin{equation*}
W(t, q) \geq c_{3}|q|^{2}-\alpha, \quad \forall t \in \mathbb{R}, q \in \mathbb{R}^{n} \tag{2.9}
\end{equation*}
$$

with $c_{3} \triangleq 1+\frac{\overline{b_{2}}}{2 \sigma^{2}}$. Consequently, for $\forall \tau>1$

$$
\begin{align*}
I(\tau g) & =\frac{1}{2} \eta^{2}(\tau g)-\int_{0}^{T} W(t, \tau g(t)) \mathrm{d} t+\tau \int_{0}^{T} f(t) g(t) \mathrm{d} t \\
& \leq \frac{\tau^{2} \overline{b_{2}}}{2 \sigma^{2}} \int_{0}^{T}|g(t)|^{2} \mathrm{~d} t-\int_{0}^{T} W(t, \tau g(t)) \mathrm{d} t+\tau \int_{0}^{T} f(t) g(t) \mathrm{d} t \\
& \leq \frac{\tau^{2} \overline{b_{2}}}{2 \sigma^{2}} \int_{0}^{T}|g(t)|^{2} \mathrm{~d} t-c_{3} \tau^{2} \int_{0}^{T}|g(t)|^{2} \mathrm{~d} t+\tau \int_{0}^{T} f(t) g(t) \mathrm{d} t+\alpha T \\
& =-\frac{1}{2} \tau^{2} \int_{0}^{T}|g(t)|^{2} \mathrm{~d} t+\tau \int_{0}^{T} f(t) g(t) \mathrm{d} t+\alpha T \rightarrow-\infty, \quad \text { as } \tau \rightarrow \infty \tag{2.10}
\end{align*}
$$

Clearly, we can take $e=e(t)=\tau g(t) \in E$ such that $\|e\|>\rho$ and $\varphi(e)<0$ for τ large enough.

Lemma 2.3 Under the assumptions of Theorem 1.2, there exists $d>0$ such that $I(q)$ has a bounded $(C e)_{d}$ sequence $\left\{q_{m}\right\}$ in E.

Proof By Lemmas 2.1, 2.2 and Theorem 1.8, for $d>0$ defined by

$$
\begin{equation*}
d=\inf _{\gamma \in \Gamma} \max _{0 \leq s \leq 1} I(\gamma(s)) \geq \omega>0 \tag{2.11}
\end{equation*}
$$

with

$$
\Gamma=\{\gamma \in \mathbb{C}([0,1], E): \gamma(0)=0, \gamma(1)=e\}
$$

$I(q)$ has a $(C e)_{d}$ sequence $\left\{q_{m}\right\}$ satisfying that

$$
\begin{equation*}
I\left(q_{m}\right) \rightarrow d>0,\left(1+\left\|q_{m}\right\|\right)\left\|I^{\prime}\left(q_{m}\right)\right\| \rightarrow 0 \tag{2.12}
\end{equation*}
$$

Setting $c_{4} \triangleq \min \left\{1, b_{1}\right\}>0$, by Remark 1.4, we can take $\delta=\frac{1}{3} c_{4}>0$ and the corresponding $\bar{d}_{1}=\bar{d}_{1}(\delta)>0$. Clearly, there exists small $h>0$ such that $0<\bar{d}_{1} h^{\lambda-1}<\frac{1}{3} c_{4}$. So, we have

$$
c_{5} \triangleq c_{4}-\bar{d}_{1} h^{\lambda-1}-\delta \geq \frac{1}{3} c_{4}>0
$$

thus, from $\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$, Remaks 1.4 and 1.5, we infer that

$$
\begin{align*}
I^{\prime}\left(q_{m}\right) q_{m}= & \left\|q_{m}\right\|_{L^{2}(\mathbb{R})}^{2}+\int_{\mathbb{R}} q_{m}(t) K_{q}\left(t, q_{m}(t)\right) \mathrm{d} t-\int_{\mathbb{R}} W_{q}\left(t, q_{m}(t)\right) q_{m}(t) \mathrm{d} t+\int_{\mathbb{R}} f(t) q_{m}(t) \mathrm{d} t \\
\geq & c_{4}\left\|q_{m}\right\|^{2}-\int_{\mathbb{R}}\left|W_{q}\left(t, q_{m}(t)\right)\right|\left|u_{m}(t)\right| \mathrm{d} t+\int_{\mathbb{R}} f(t) q_{m}(t) \mathrm{d} t \\
\geq & c_{4}\left\|q_{m}\right\|^{2}-\bar{d} 1 \int_{\mathbb{R}}\left|q_{m}(t)\right|^{\lambda+1} \mathrm{~d} t-\delta \int_{\mathbb{R}}\left|q_{m}(t)\right|^{2} \mathrm{~d} t+\int_{\mathbb{R}} f(t) q_{m}(t) \mathrm{d} t \\
= & c_{4}\left\|q_{m}\right\|^{2}-\bar{d}_{1} \int_{\left|q_{m}(t)\right| \geq h}\left|q_{m}(t)\right|^{\lambda+1} \mathrm{~d} t-\bar{d}_{1} \int_{\left|q_{m}(t)\right| \leq h}\left|q_{m}(t)\right|^{\lambda+1} \mathrm{~d} t- \\
& \delta \int_{\mathbb{R}}\left|q_{m}(t)\right|^{2} \mathrm{~d} t+\int_{\mathbb{R}} f(t) q_{m}(t) \mathrm{d} t \\
\geq & c_{4}\left\|q_{m}\right\|^{2}-\bar{d}_{1} \int_{\left|q_{m}(t)\right| \geq h}\left|q_{m}(t)\right|^{\lambda+1} \mathrm{~d} t-\bar{d}_{1} h^{\lambda-1} \int_{\mathbb{R}}\left|q_{m}(t)\right|^{2} \mathrm{~d} t- \\
& \delta \int_{\mathbb{R}}\left|q_{m}(t)\right|^{2} \mathrm{~d} t+\int_{\mathbb{R}} f(t) q_{m}(t) \mathrm{d} t \\
\geq & c_{4}\left\|q_{m}\right\|^{2}-\bar{d}_{1} \int_{\left|q_{m}(t)\right| \geq h}\left|q_{m}(t)\right|^{\lambda+1} \mathrm{~d} t-\bar{d}_{1} h^{\lambda-1}\left\|q_{m}\right\|^{2}-\delta\left\|q_{m}\right\|^{2}-\|f\|_{L^{2}(\mathbb{R})}\left\|q_{m}\right\| \\
= & c_{5}\left\|q_{m}\right\|^{2}-\bar{d}_{1} \int_{\left|q_{m}(t)\right| \geq h}\left|q_{m}(t)\right|^{\lambda+1} \mathrm{~d} t-\|f\|_{L^{2}(\mathbb{R})}\left\|q_{m}\right\| . \tag{2.13}
\end{align*}
$$

Since $\lambda<\mu$, we can take $r \in(0,1)$ such that $\lambda+1-r<\mu$, so, we can make the estimate for the integral term $\int_{\left|q_{m}(t)\right| \geq h}\left|q_{m}(t)\right|^{\lambda+1} \mathrm{~d} t$ in (2.13) as follows.

$$
\begin{align*}
\int_{\left|q_{m}(t)\right| \geq h}\left|q_{m}(t)\right|^{\lambda+1} \mathrm{~d} t & \leq\left\|q_{m}\right\|_{L^{\infty}}^{r} \int_{\left|q_{m}(t)\right| \geq h}\left|q_{m}(t)\right|^{\lambda+1-r} \mathrm{~d} t \\
& \leq h^{\lambda+1-r-\mu}\left\|q_{m}\right\|_{L^{\infty}}^{r} \int_{\left|q_{m}(t)\right| \geq h}\left|q_{m}(t)\right|^{\mu} \mathrm{d} t \\
& \leq h^{\lambda+1-r-\mu}\left\|q_{m}\right\|^{r} \int_{\left|q_{m}(t)\right| \geq h}\left|q_{m}(t)\right|^{\mu} \mathrm{d} t \tag{2.14}
\end{align*}
$$

Combining (2.13) with (2.14), we deduce that

$$
\begin{equation*}
I^{\prime}\left(q_{m}\right) q_{m} \geq c_{5}\left\|q_{m}\right\|^{2}-\bar{d}_{1} h^{\lambda+1-r-\mu}\left\|q_{m}\right\|^{r} \int_{\left|q_{m}(t)\right| \geq h}\left|q_{m}(t)\right|^{\mu} \mathrm{d} t-\|f\|_{L^{2}(\mathbb{R})}\left\|q_{m}\right\| \tag{2.15}
\end{equation*}
$$

Next, with the aid of $\left(\mathrm{H}_{3}\right),\left(\mathrm{H}_{8}\right)-\left(\mathrm{H}_{9}\right)$, we have for the above $h>0$ in (2.13)

$$
\begin{align*}
2 I\left(q_{m}\right)-I^{\prime}\left(q_{m}\right) q_{m}= & \int_{\mathbb{R}}\left[2 K\left(t, q_{m}(t)\right)-K_{q}\left(t, q_{m}(t)\right) q_{m}(t)\right] \mathrm{d} t+ \\
& \int_{\mathbb{R}}\left[W_{q}\left(t, q_{m}(t)\right) q_{m}(t)-2 W\left(t, q_{m}(t)\right)\right] \mathrm{d} t+\int_{\mathbb{R}} f(t) q_{m}(t) \mathrm{d} t \\
\geq & \int_{\mathbb{R}}\left[W_{q}\left(t, q_{m}(t)\right) q_{m}(t)-2 W\left(t, q_{m}(t)\right)\right] \mathrm{d} t+\int_{\mathbb{R}} f(t) q_{m}(t) \mathrm{d} t \\
\geq & d_{3}(h) \int_{\left|q_{m}(t)\right| \geq h}\left|q_{m}(t)\right|^{\mu} \mathrm{d} t-\|f\|_{L^{2}(\mathbb{R})}\left\|q_{m}\right\| \tag{2.16}
\end{align*}
$$

Thus, by (2.12) and (2.16), there exist $c_{6}=c_{6}(h)>0, c_{7}=c_{7}(h)>0$ such that

$$
\begin{equation*}
\int_{\left|q_{m}(t)\right|>h}\left|q_{m}(t)\right|^{\mu} \mathrm{d} t \leq c_{6}+c_{7}\|f\|_{L^{2}(\mathbb{R})}\left\|q_{m}\right\| \tag{2.17}
\end{equation*}
$$

We substitute (2.17) into (2.15), and obtain

$$
\begin{align*}
I^{\prime}\left(q_{m}\right) q_{m} \geq & c_{5}\left\|q_{m}\right\|^{2}-\bar{d}_{1} c_{6} h^{\lambda+1-r-\mu}\left\|q_{m}\right\|^{r}- \\
& \bar{d}_{1} c_{7} h^{\lambda+1-r-\mu}\|f\|_{L^{2}(\mathbb{R})}\left\|q_{m}\right\|^{r+1}-\|f\|_{L^{2}(\mathbb{R})}\left\|q_{m}\right\| . \tag{2.18}
\end{align*}
$$

By $0<r<r+1<2, c_{5}>0,(2.12)$ and (2.18), we infer that $\left\{q_{m}\right\}$ is bounded in E.

3. Proof of Theorem 1.2

Proof of Theorem 1.2 By Lemma 2.3, we know that $I(q)$ has a bounded $(C e)_{d}$ sequence $\left\{q_{m}\right\}$, thus, without loss of generality, we may assume that there exists $q_{0}=q_{0}(t) \in E$ such that

$$
q_{m} \rightharpoonup q_{0} \text { weakly in } E, q_{m} \rightarrow q_{0} \text { in } L_{\mathrm{loc}}^{2}(\mathbb{R}), q_{m} \rightarrow q_{0} \text { in } \mathbb{C}_{\mathrm{loc}}(\mathbb{R})
$$

Therefore, for $\forall v \in \mathbb{C}_{0}^{\infty}(\mathbb{R})$, from the following

$$
\begin{align*}
I^{\prime}\left(q_{m}\right) \nu= & \int_{\mathbb{R}} \dot{m}_{m}(t) \nu(t) \mathrm{d} t+\int_{\mathbb{R}} K_{q}\left(t, q_{m}(t)\right) \nu(t) \mathrm{d} t- \\
& \int_{\mathbb{R}} W_{q}\left(t, q_{m}(t)\right) \nu(t) \mathrm{d} t+\int_{\mathbb{R}} f(t) \nu(t) \mathrm{d} t \rightarrow 0 \tag{3.1}
\end{align*}
$$

we can show that

$$
\begin{equation*}
0=\int_{\mathbb{R}} \dot{q}_{0}(t) \nu(t) \mathrm{d} t+\int_{\mathbb{R}} K_{q}\left(t, q_{0}(t)\right) \nu(t) \mathrm{d} t-\int_{\mathbb{R}} W_{q}\left(t, q_{0}(t)\right) \nu(t) \mathrm{d} t+\int_{\mathbb{R}} f(t) \nu(t) \mathrm{d} t, \tag{3.2}
\end{equation*}
$$

that is, $q_{0} \in E$ is a critical point of the functional I in (2.3), and $q_{0}=q_{0}(t)$ is one solution of (HSf).

Case (I) If $f(t) \neq 0$, then clearly $q_{0} \neq 0$.
Case (II) If $f(t)=0$, then, for $\forall m$, there is $j_{m} \in \mathbb{Z}$ such that the maximum of $\left|q_{m}\left(t+j_{m} T\right)\right|$ occurs in $[0, T]$. Let $w_{m}(t) \triangleq q_{m}\left(t+j_{m} T\right)$. By $\left(\mathrm{H}_{1}\right)$ and (2.12), we have $\left\|w_{m}\right\|=\left\|q_{m}\right\|$,
$I\left(w_{m}\right)=I\left(q_{m}\right), I^{\prime}\left(w_{m}\right)=I^{\prime}\left(q_{m}\right) \rightarrow 0$. Thus, we also assume that there exists $w_{0}=w_{0}(t) \in E$ such that

$$
w_{m} \rightharpoonup w_{0} \text { weakly in } E, w_{m} \rightarrow w_{0} \text { in } L_{\mathrm{loc}}^{2}(\mathbb{R}), \text { and } w_{m} \rightarrow w_{0} \text { in } \mathbb{C}_{\mathrm{loc}}(\mathbb{R})
$$

Thus for any $\nu \in \mathbb{C}_{\text {loc }}(\mathbb{R})$, we have

$$
\begin{equation*}
\left|I^{\prime}\left(w_{m}\right) \nu(\cdot)\right|=\left|I^{\prime}\left(q_{m}\right) \nu\left(\cdot-j_{m} T\right)\right| \leq\left\|I^{\prime}\left(q_{m}\right)\right\|\left\|\nu\left(\cdot-j_{m} T\right)\right\|=\left\|I^{\prime}\left(q_{m}\right)\right\|\|\nu(\cdot)\| \rightarrow 0 \tag{3.3}
\end{equation*}
$$

Just similarly to (3.1), (3.2), we can prove that $w_{0} \in E$ is a critical point of the functional I. We claim that $w_{0} \neq 0$. If this is not true, then we have

$$
\begin{equation*}
\left\|q_{m}\right\|_{L^{\infty}(\mathbb{R})}=\left\|w_{m}\right\|_{L^{\infty}(\mathbb{R})}=\left\|w_{m}\right\|_{L^{\infty}([0, T])} \rightarrow 0 \tag{3.4}
\end{equation*}
$$

Thus by $\left(\mathrm{H}_{4}\right)$, given $\varepsilon>0$, we have, for m sufficiently large and $\forall t \in \mathbb{R}$

$$
\begin{equation*}
\left|W\left(t, q_{m}(t)\right)\right| \leq \varepsilon\left|q_{m}(t)\right|^{2},\left|q_{m}(t) W_{q}\left(t, q_{m}\right)(t)\right| \leq \varepsilon\left|q_{m}(t)\right|^{2} \tag{3.5}
\end{equation*}
$$

So, in view of $\left(\mathrm{H}_{3}\right)$ and (3.5), noticing $f(t)=0$, we have

$$
\begin{align*}
\left\|\dot{q}_{m}\right\|_{L^{2}(\mathbb{R})}^{2}+\int_{\mathbb{R}} K\left(t, q_{m}(t)\right) \mathrm{d} t & \leq\left\|\dot{q}_{m}\right\|_{L^{2}(\mathbb{R})}^{2}+\int_{\mathbb{R}} K_{q}\left(t, q_{m}(t)\right) q_{m}(t) \mathrm{d} t \\
& =I^{\prime}\left(q_{m}\right) q_{m}+\int_{\mathbb{R}} W_{q}\left(t, q_{m}(t)\right) q_{m}(t) \mathrm{d} t \\
& \leq I^{\prime}\left(q_{m}\right) q_{m}+\varepsilon \int_{\mathbb{R}}\left|q_{m}(t)\right|^{2} \mathrm{~d} t \\
& \leq\left\|I^{\prime}\left(q_{m}\right)\right\|\left\|q_{m}\right\|+\varepsilon\left\|q_{m}\right\|^{2} \tag{3.6}
\end{align*}
$$

And (3.5) and (3.6) imply

$$
\begin{align*}
0<I\left(q_{m}\right) & =\frac{1}{2} \int_{\mathbb{R}}\left[\left|\dot{q}_{m}(t)\right|^{2}+2 K\left(t, q_{m}(t)\right)\right] \mathrm{d} t-\int_{\mathbb{R}} W\left(t, q_{m}(t)\right) \mathrm{d} t \\
& \leq\left\|\dot{q}_{m}\right\|_{L^{2}(\mathbb{R})}^{2}+\int_{\mathbb{R}} K\left(t, q_{m}(t)\right) \mathrm{d} t-\int_{\mathbb{R}} W\left(t, q_{m}(t)\right) \mathrm{d} t \\
& \leq\left\|I^{\prime}\left(q_{m}\right)\right\|\left\|q_{m}\right\|+2 \varepsilon\left\|q_{m}\right\|^{2} . \tag{3.7}
\end{align*}
$$

Since $\left\|q_{m}\right\|$ is bounded, ε is arbitrary, (2.12) and (3.7) show $I\left(q_{m}\right) \rightarrow 0$, which contradicts (2.12). So $w_{0} \neq 0$.

Under the above two cases, we get a nontrivial solution $q_{*}(t)$ of $(\mathrm{HSf}): q_{*}(t)=q_{0}(t)$ or $q_{*}(t)=w_{0}(t)$, respectively.

Finally, we claim that $q_{*}(t) \rightarrow 0$ and $\dot{q}_{*}(t) \rightarrow 0$ as $|t| \rightarrow \infty$. For the proof we refer to [2]. For the sake of completeness, we sketch it. Indeed, $q_{*} \in E$ implies $q_{*}(t) \rightarrow 0$ as $|t| \rightarrow \infty$. Since $q_{*}(t)$ is a solution of (HSf), we have

$$
\begin{equation*}
\ddot{q}_{*}(t)=f(t)-V_{q}\left(t, q_{*}(t)\right) \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}, \mathbb{R}^{n}\right) \tag{3.8}
\end{equation*}
$$

is continuous, where $V(t, q)=-K(t, q)+W(t, q)$. Thus from $\dot{q}_{*} \in L^{2}(\mathbb{R}), f \in L^{2}(\mathbb{R})$ and $V_{q}(t, 0)=0$, one can show that (see [2] for details)

$$
\begin{equation*}
\int_{t-\frac{1}{2}}^{t+\frac{1}{2}}\left|\dot{q}_{*}(s)\right|^{2} \mathrm{~d} s \rightarrow 0 \tag{3.9}
\end{equation*}
$$

$$
\begin{align*}
\int_{t-\frac{1}{2}}^{t+\frac{1}{2}}\left|\ddot{q}_{*}(s)\right|^{2} \mathrm{~d} s \leq & \int_{t-\frac{1}{2}}^{t+\frac{1}{2}}|f(s)|^{2} \mathrm{~d} s+\int_{t-\frac{1}{2}}^{t+\frac{1}{2}}\left|V_{q}\left(t, q_{*}(s)\right)\right|^{2} \mathrm{~d} s+ \\
& 2 \int_{t-\frac{1}{2}}^{t+\frac{1}{2}}|f(s)|\left|V_{q}\left(t, q_{*}(s)\right)\right| \mathrm{d} s \rightarrow 0 \tag{3.10}
\end{align*}
$$

as $|t| \rightarrow \infty$. Therefore, by (3.9), (3.10), we have the estimate as follows

$$
\begin{equation*}
\left|\dot{q}_{*}(t)\right|^{2} \leq 2 \int_{t-\frac{1}{2}}^{t+\frac{1}{2}}\left|\dot{q}_{*}(s)\right|^{2} \mathrm{~d} s+2 \int_{t-\frac{1}{2}}^{t+\frac{1}{2}}\left|\ddot{q}_{*}(s)\right|^{2} \mathrm{~d} s \rightarrow 0, \text { as }|t| \rightarrow \infty . \tag{3.11}
\end{equation*}
$$

The proof of Theorem 1.2 is completed.

References

[1] P. H. RABINOWITZ. Homoclinic solutions for a class of Hamiltonian systems. Proc. R. Soc. Edinb., 1990, 114: 33-38.
[2] M. IZYDOREK, J. JANCZEWSKA. Homoclinic solutions for a class of the second order Hamiltonian systems. J. Differential Equations, 2005, 219(2): 375-389.
[3] V. COTIZELATI, I. EKELAND, E. SERE. A variational approach to homoclinic solutions in Hamiltonian systems. Math. Ann., 1990, 288(1): 133-160.
[4] W. OMANA, M. WILLEM. Homoclinic solutions for a class of Hamiltonian systems. Differential Integral Equations, 1992, 5(5): 1115-1120.
[5] Yanheng DING, M. GIRARDI. Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign. Dynam. Systems Appl., 1993, 2(1): 131-145.
[6] E. SERE. Existence of infinitely many homoclinic solutions in Hamiltonian systems. Math. Z., 1992, 209(1): 27-42.
[7] P. L. FELMER, E. A. DE B. E. SILVA. Homoclinic and periodic solutions for Hamiltonian systems. Ann. Sc. Norm. Super. Pisa Cl. Sci., 1998, 26(2): 285-301.
[8] P. KORMAN, A. C. LAZER. Homoclinic solutions for a class of symmetric Hamiltonian systems. Electron J. Differential Equations, 1994, 1: 1-10.
[9] Ying LV, Chunlei TANG. Existence of even homoclinic orbits for second-order Hamiltonian systems. Nonlinear Anal., 2007, 67(7): 2189-2198.
[10] P. H. RABINOWITZ. Minimax methods in critical point theory with applications to differential equations. American Mathematical Society, Providence, RI, 1986.
[11] H. BREZIS, L. NIRENBERG. Remarks on finding critical points. Comm. Pure Appl. Math., 1991, 44(8-9): 939-963.
[12] D. G. COSTA, Chengyue LI. Homoclinic type solutions for a class of differential equations with periodic coefficients. Bonheure, Denis (ed.) et al., Nonlinear elliptic partial differential equations. Workshop in celebration of Jean-Pierre Gossez's 65th birthday, Bruxelles, Belgium, September 2-4, 2009. Providence, RI: American Mathematical Society (AMS). Contemporary Mathematics, 2011, 540:65-78.

[^0]: Received August 23, 2013; Accepted January 14, 2014

 * Corresponding author

 E-mail address: cunlcy@163.com (Chengyue LI); paopao_0811@126.com (Zhiwei XIAO); wang-meng1989@163. com (Mengmeng WANG)

