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Abstract Let G be a simple graph. We first show that δi ≥ di −
√

⌊ i
2
⌋⌈ i

2
⌉, where δi and di

denote the i-th signless Laplacian eigenvalue and the i-th degree of vertex in G, respectively.

Suppose G is a simple and connected graph, then some inequalities on the distance signless

Laplacian eigenvalues are obtained by deleting some vertices and some edges from G. In

addition, for the distance signless Laplacian spectral radius ρQ(G), we determine the extremal

graphs with the minimum ρQ(G) among the trees with given diameter, the unicyclic and

bicyclic graphs with given girth, respectively.
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1. Introduction

Let G = G(V,E) be a graph with vertex set V and edge set E. The order and size of

G are defined as |V | and |E|, respectively. Denote by NG(u) the set of vertices adjacent to u,

called the neighbor set of u. Then the degree of u is defined as |NG(u)|. The signless Laplacian

matrix of a simple graph G is defined to be Q = A+D, where A denotes the adjacency matrix

and D is the diagonal matrix of vertex degrees of G. We suppose graph G to be connected

when distance of vertices is considered in G. The distance between vertex u and v, denoted by

dG(u, v), is the length of a shortest path from u to v. The transmission Tr(u) of vertex u is

defined to be the sum of distances from u to all other vertices, i.e., Tr(u) =
∑

v∈V (G) dG(v, u).

The distance matrix of G, denoted by D(G), is a symmetric real matirx with (i, j)-entry being

dG(vi, vj). Obviously, Tr(vi) is the sum of i-th row of D(G). Denote by diag(Tr) the diagonal

matrix of the vertex transmissions in G. Similar to the signless Laplacian matrix of a graph,

the distance signless Laplaian matrix of graph G is introduced by Aouchiche and Hansen [1],

defined as Q(G) = diag(Tr) +D(G). The eigenvalues of Q(G), called distance signless Laplaian

eigenvalues of G, are written as {q1(G), q2(G), . . . , qn(G)}. Without loss of generality, assume

that qn(G) ≤ · · · ≤ q2(G) ≤ q1(G). Denote by ρQ(G) = q1(G) the distance signless Laplacian

spectral radius. Let PQ(t) denote the distance signless Laplacian characteristic polynomial. As
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usual, we use Kn, Cn, Pn and Sn to denote the complete graph, the cycle, the path and the star

with order n, respectively. Ka,b means the complete bipartite graph with two colour classes of

order a and b. Identity matrix is denoted by I with order following from the context. Let Jn

be the matrix of order n with all entries one. The clique, regarded as an induced subgraph of

G, is a complete graph. Denote by G − e the graph obtained by removing edge e ∈ E(G) from

G. G − u denotes the graph obtained by deleting the vertex u and all the edges incident to it.

Generally, for S ⊂ V (G), G − S denotes the graph derived from deleting all the vertices of S

and edges incident to each vertex of S from graph G. Two graphs G1 and G2 are isomorphic if

there is a bijection, say φ, from V (G1) to V (G2), such that for x, y ∈ V (G1), x is adjacent to y

if and only if φ(x) is adjacent to φ(y), in G2. For the notions not mentioned here, readers can

see them among the text and can also refer to [1, 2].

So far, the signless Laplacian eigenvalues and distance eigenvalues have been studied deeply

[7–10, 12–14]. But the distance (signless) Laplacian matrix has just been proposed by Aouchiche

and Hansen [1], and not many papers are available on it. In [2], Aouchiche and Hansen investi-

gated some particular distance Laplacian eigenvalues and gave some properties of the distance

Laplacian spectrum. The unique graphs with minimum and second minimum distance signless

Laplacian spectral radius among bicyclic graphs with fixed vertex number were determined in

[3]. Xing, Zhou and Li [4] determined the graphs with minimum distance signless Laplacian

spectral radius among some classes of graphs with some given conditions.

2. Lower bound for the signless Laplacian eigenvalues of a graph

Before giving the main result, some well-known conclusions are necessary.

Lemma 2.1 (Interlacing theorem)([5, p.30]) Let A be a symmetric real matrix and B be a

principal submatrix of A with order n and s (s ≤ n), respectively. For the eigenvalues of A and

B, then

λi+n−s(A) ≤ λi(B) ≤ λi(A), 1 ≤ i ≤ s.

Lemma 2.2 (Courant-Weyl inequality)([5, p.31]) Let H1 and H2 be symmetric real matrices

with order n. For 1 ≤ i ≤ n, the eigenvalues of H1 and H2 satisfy:

λn(H2) + λi(H1) ≤ λi(H1 +H2) ≤ λi(H1) + λ1(H2).

Lemma 2.3 ([11, Proposition 2]) Let G be a simple graph of order n. Then the least eigenvalue

λn(A) of the adjacency matrix A of G satisfies:

λn(A) ≥ −
√
⌊n
2
⌋⌈n

2
⌉,

and the equality holds if and only if G = K⌊n
2 ⌋⌈n

2 ⌉, where K⌊n
2 ⌋⌈n

2 ⌉ is the complete bipartite

graph with two color classes of order ⌊n
2 ⌋ and ⌈n

2 ⌉.
The following theorem demonstrates a lower bound for each signless Laplacian eigenvalue.

Theorem 2.4 Let G be a simple graph of order n, and let δ1 ≥ δ2 ≥ · · · ≥ δn be the signless
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Laplacian eigenvalues of G. For 1 ≤ i ≤ n, then

δi ≥ di −
√
⌊ i
2
⌋⌈ i

2
⌉.

Proof Without loss of generality let us take d1 ≥ d2 ≥ · · · ≥ dn, where di means the degree of

vi. Let M and A′ be the left-top i × i principal submatrix of the signless Laplacian matrix Q

and the adjacency matrix A, respectively. Let H = diI + A′ where I is the identity matrix of

order i. Then let P = diag{d1 − di, d2 − di, . . . , di−1 − di, 0} be a diagonal matrix with the least

eigenvalue 0. Obviously, M = H + P where M,H and P are Hermitian matrices of order i.

By Lemmas 2.1 and 2.2, we have δi ≥ λi(M) ≥ λi(H) + λi(P ) = λi(H). Moreover, the

eigenvalues ofH are λk(H) = di+λk(A
′), k = 1, 2, . . . , i. Actually, the matrix A′ is the adjacency

matrix of the subgraph indexed by {v1, v2, . . . , vi} of G. Then λk(A
′) ≥ −

√
⌊ i
2⌋⌈

i
2⌉ (k =

1, 2, . . . , i) follows from Lemma 2.3. Finally, we get

δi ≥ λi(M) ≥ λi(H) + λi(P ) ≥ di −
√
⌊ i
2
⌋⌈ i

2
⌉. �

3. Inequalities on the distance signless Laplacian eigenvalues

For a simple and connected graph G, obviously, Q(G) is a symmetric real matrix. Then by

Lemma 2.1, the following corollary is clear.

Corollary 3.1 Let G be a graph with order n. Let M be the principal submatrix of Q(G) with

order n− 1. Then,

q1(G) ≥ λ1(M) ≥ q2(G) ≥ · · · ≥ λn−1(M) ≥ qn(G).

A pendent vertex in a graph is a vertex with degree one. The diameter of graph G, denoted

by d(G) (d, for brevity), is defined as the largest value of distances of any two vertices in G. For

two matrices A = [aij ] and B = [bij ] with order n, if aij ≤ bij (1 ≤ i, j ≤ n), we say A ≤ B and

A < B, if aij < bij (1 ≤ i, j ≤ n).

Theorem 3.2 Let u be a pendent vertex of G and d(G) = d be the diameter of G. For

i = 1, 2, . . . , n− 1,

qi+1(G)− d ≤ qi(G− u) ≤ qi(G)− 1.

Proof Since u is a pendent vertex, we can easily get dG−u(x, y) = dG(x, y) for x, y ∈ V (G− u),

and 1 ≤ dG(u,w) ≤ d for w ∈ V (G − u). Therefore, TrG(w) > TrG−u(w), w ∈ V (G − u). Let

M be the principal submatrix of Q(G) obtained by deleting the row and column corresponding

to u. Then M ≥ Q(G− u) and M ̸= Q(G− u). Let P = M −Q(G− u). Then P is a diagonal

matrix with the least diagonal entries not less than one and the largest diagonal entries not more

than d obviously, i.e., the eigenvalues of P satisfy

1 ≤ λi(P ) ≤ d, i = 1, 2, . . . , n− 1. (3.1)
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Thus by Lemma 2.2 and inequality (3.1), for M,Q(G− u) and P , we can get

qi(G− u) + 1 ≤ λi(M) ≤ qi(G− u) + d, i = 1, 2, . . . , n− 1. (3.2)

By Corollary 3.1, it is obtained that

qi(G) ≥ λi(M) ≥ qi+1(G), i = 1, 2, . . . , n− 1. (3.3)

Combining the left inequalities of (3.2) and (3.3), we have

qi(G− u) + 1 ≤ qi(G), i = 1, 2, . . . , n− 1. (3.4)

Similarly, combining the right inequalities of (3.2) and (3.3) gives

qi+1(G) ≤ qi(G− u) + d, i = 1, 2, . . . , n− 1. (3.5)

The proof is completed by (3.4) and (3.5). �

Corollary 3.3 Let G be a graph on n vertices with diameter d(G) = 2. Suppose vertex v

is adjacent to any other vertex of G and G − v is connected with d(G − v) = d(G), then the

eigenvalues of Q(G− v) interlace those of Q(G)− I, i.e.,

qi+1(G)− 1 ≤ qi(G− v) ≤ qi(G)− 1, i = 1, 2, . . . , n− 1.

Proof Since v is adjacent to any other vertex of G and d(G − v) = d(G) = 2, we obtain

dG−v(x, y) = dG(x, y) for any x, y ∈ V (G − v). Hence, TrG(x) = TrG−v(x) + 1 for each

x ∈ V (G − v). Let M be the principal submatrix of Q(G) derived from deleting the row and

column corresponding to v and P = M −Q(G − v). Then P is equal to the identity matrix I.

By Lemma 2.2, it is obtained that

qi(G− v) + 1 ≤ λi(M) ≤ qi(G− v) + 1, i = 1, 2, . . . , n− 1,

where λi(M) denotes the i-th largest eigenvalue of M .

From Corollary 3.1, we see qi(G) ≥ λi(M) ≥ qi+1(G), i = 1, 2, . . . , n − 1, where λi(M) is

defined as above. Thus similar to the method of Theorem 3.2, the conclusion is obtained. �
For graph G, u, v ∈ V (G) are called multiplicate vertices, if NG(u) = NG(v). Suppose u

is adjacent to v and NG−v(u) = NG−u(v), then u, v are called quasi-multiplicate vertices. In

general, S ⊂ V (G) is a multiplicate vertex set, if NG(u) = NG(v) for u, v ∈ S; C ⊂ V (G) is a

quasi-multiplicate vertex set, if the vertices of C induce a clique and NG(u) − C = NG(v) − C

for u, v ∈ C. Obviously, if we add edges to any two vertices of a multiplicate vertex set, then we

obtain a quasi-multiplicate vertex set.

Corollary 3.4 For graph G of order n and u, v ∈ V (G), if u, v are multiplicate (or quasi-

multiplicate) vertices, then

qi+1(G)− d ≤ qi(G− v) ≤ qi(G)− 1.

In fact, in Corollary 3.4, since u, v are multiplicate (or quasi-multiplicate) vertices, then

dG(u,w) = dG(v, w), for w ∈ V (G) and w ̸= u, v. Moreover, for x, y ∈ V (G − v), dG−v(x, y) =
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dG(x, y). Then by Lemma 2.2 and Corollary 3.1, the conclusion can be proved in the similar way

as Theorem 3.2.

In [1], the authors demonstrate that the eigenvalues of Q(G) are non-decreasing when some

edges are removed with the resultant graph also connected. The following lemma is on the

behavior of distance signless Laplacian eigenvalues when the edge between quasi-multiplicate

vertices is removed. And by it, we have a theorem in general.

Lemma 3.5 Let x and y be quasi-multiplicate vertices of G and |V (G)| = n ≥ 3. Denote

the edge between x and y by e. Let qi be the eigenvalues of Q(G) and q′i be the eigenvalues of

Q(G− e). For i = 1, 2, . . . , n, then qi ≤ q′i ≤ qi + 2.

Proof As x and y are quasi-multiplicate vertices, apart from the change of distance between x

and y from one to two, the distances of other vertices are invariable. So Q(G− e) ≥ Q(G) and

let P = Q(G− e)−Q(G). Then P can be partitioned into

(
J2 0

0 0

)
and the eigenvalues of P

are 2 and 0 with multiplicity 1 and n−1, respectively. Thus, the conclusion follows by Lemma

2.2. �

Theorem 3.6 Let C ⊂ V (G) be a quasi-multiplicate set of graph G and 2 ≤ m = |C| <
|V (G)| = n. Suppose G′ is the graph obtained by removing all the edges between vertices of C.

Let qi be the eigenvalues of Q(G) and q′i be those of Q(G′), i = 1, 2, . . . , n. Then,

qi ≤ q′i ≤ qi + 2m− 2, i = 1, 2, . . . , n.

Proof Obviously, C becomes a multiplicate set in G′. Similarly to Lemma 3.5, in the process of

deleting edges, only the distances of vertices in C change from one to two. Let P = Q(G′)−Q(G).

Then P can be partitioned into

(
M 0

0 0

)
, where M = (m− 2)I + Jm with order m. It is easy

to know the eigenvalues of M are 2m− 2 and m− 2 with multiplicity 1 and m− 1, respectively.

Hence, the eigenvalues of P are 2m − 2, m − 2 and 0 with multiplicity 1, m − 1 and n − m,

respectively. Thus the theorem follows from Lemma 2.2. �

4. Extremal graphs with minimum ρQ(G)

For trees with given diameter d, the following theorem shows that Pd+1 is the extremal

graph with the minimum ρQ(G).

Theorem 4.1 Let Td be the set of all trees with given diameter d ≥ 1. Then for any tree

T ∈ Td, the distance signless Laplacian spectral radius ρQ(T ) ≥ ρQ(Pd+1) with equality if and

only if T = Pd+1, where Pd+1 denotes the path of order d+ 1.

Proof Let tree T ∈ Td with order n ≥ d+1. From Theorem 3.2, we see that q1(G−u) ≤ q1(G)−1,

i.e., q1(G − u) < q1(G) where u is a pendent vertex. In other words, the distance signless

Laplacian spectral radius ρQ(G) strictly decreases when the pendent vertices are removed from
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G. Thus, the conclusion follows by continuously deleting the pendent vertices which are not on

the diametrical line. �

Lemma 4.2 ([1]) The distance signless Laplacian characteristic polynomial of cycle Cn is as

follows.

PQ(t) =



(t− n2

4
)k−1 · (t− n2

2
) ·

k∏
j=1

(t− n2

4
+ csc2(

π(2j − 1)

n
)), if n = 2k;

(t− n2 − 1

2
) ·

k∏
j=1

(t− n2 − 1

4
+

1

4
sec2(

πj

n
))(t− n2 − 1

4
+

1

4
csc2(

π(2j − 1)

2n
)),

if n = 2k + 1.

Then by calculating, for the distance signless Laplacian spectral radius of Cn, we have

ρQ(Cn) =


n2

2
, if n = 2k (i.e., even);

n2 − 1

2
, if n = 2k + 1 (i.e., odd).

A simple connected graph G is called unicyclic if |V (G)| = |E(G)|, bicyclic if |V (G)|+ 1 =

|E(G)|. The girth of graph G is the length of the shortest cycle (if exists).

Theorem 4.3 Let Ug be the set of all unicyclic graphs with given girth g ≥ 3. For any unicyclic

graph G ∈ Ug,

(i) ρQ(G) ≥ g2

2 , if g is even;

(ii) ρQ(G) ≥ g2−1
2 , if g is odd.

Equalities hold if and only if G = Cg.

Proof LetG ∈ Ug and V (G) = V1

∪
V2. Without loss of generality, let the vertices of the cycle be

V1 = {v1, v2, . . . , vg}. Then the components of subgraph induced by V2 = {vg+1, vg+2, . . . , vn} are
isolated vertices or trees. Assume that G has the minimum distance signless Laplacian spectral

radius with order n > g, then V2 ̸= ∅. By Theorem 3.2, we obtain another graph G−vi with less

distance signless Laplacian spectral radius, where vi ∈ V2 is a pendent vertex, a contradiction.

Thus G = Cg has the minimum distance signless Laplacian spectral radius and the conclusion

follows from Lemma 4.2. �
For graph G, let e ∈ E(G) and the two incident vertices be u and v. Replace e with a new

vertex, say h /∈ V (G), and make h adjacent to u and v. This operation of graph is known as

edge subdivision. Remove e from graph G and identify the two vertices incident to e. We call

this operation edge contraction. A cut-edge of connected graph G is an edge e ∈ E(G) such that

G− e is disconnected.

Recall that the spectral radius of a nonnegative irreducible matrix increases if an entry

increases [6, p.38]. Then before demonstrating the conclusion on bicyclic graphs, we first give

the following important and useful lemmas.

Lemma 4.4 Let Gs be the graph derived from subdividing an edge, say e, of graph G. Then
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ρQ(Gs) > ρQ(G).

Proof Let the new vertex be h. Then V (Gs) = V (G)
∪
{h}. For ∀x, y ∈ V (G), by the definition

of distance of vertex, we easily obtain dG(x, y) ≤ dGs(x, y) and TrGs(x) > TrG(x). Suppose M

is the principal submatrix of Q(Gs) derived from deleting the row and column corresponding to

h. So 0 < M is an irreducible matrix and M ≥ Q(G) (M ̸= Q(G)). Thus we get ρ(M) > ρQ(G),

where ρ(M) denotes the spectral radius of M . Therefore, ρQ(Gs) ≥ ρ(M) > ρQ(G) from Lemma

2.1. �

Lemma 4.5 Let e ∈ E(G) be a cut-edge of graph G. Let Gc be the graph obtained by

contracting e. Then ρQ(Gc) < ρQ(G).

Proof Let the vertices incident to edge e be u and v. By contracting e, without loss of generality,

let v be identified with u. Thus V (G) = V (Gc)
∪
{v}. Moveover, in fact, dG(x, y) ≥ dGc(x, y)

and TrG(x) > TrGc(x) for any x, y ∈ V (Gc). The remaining proof is similar to that of Lemma

4.4, and is omitted. �
For bicyclic graph G, we call it type of ∞, if it has an induced subgraph isomorphic to G1

(see Figure 1), and type of Θ, if it has an induced subgraph isomorphic to G2 (see Figure 1).

Pm
Pk

G  : m > 0 G GG   : k >11 2  3 4

g

g
gg

Figure 1 The graphs G1, G2 and G3, G4 (g denotes the length of cycle)

Theorem 4.6 Let G be a bicyclic graph with given girth g ≥ 3. Then,

(i) If G is type of ∞, ρQ(G) ≥ ρQ(G3);

(ii) If G is type of Θ, ρQ(G) ≥ ρQ(G4).

For (i) and (ii), equalities hold if and only if G is isomorphic to G3 and G4 (see Figure 1),

respectively.

Proof (i) Assume bicyclic graph G with girth g having the minimum distance signless Laplacian

spectral radius is not isomorphic to G3. Then through the following steps we get contradictions.

Step 1. Let G(1) be the induced subgraph of G isomorphic to G1. If G(1) is the proper

induced subgraph of G, i.e., the order of G is more than that of G(1). By the method of deleting

pendent vertices and Theorem 3.2, we obtain ρQ(G) > ρQ(G
(1)), a contradiction.

Step 2. From Step 1, if G has the minimum ρQ(G), G is necessarily isomorphic to G1. Then

we let G be isomorphic to G1. Furthermore assume the length of the other cycle in G is larger

than g. Then by the inverse of Lemma 4.4, we can get a graph, say G(2), possessing less distance

signless Laplacian spectral radius, which has two cycles with the same length g, a contradiction.
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Step 3. After the above steps, let G be isomorphic to G1 and have same length g of cycles.

Suppose the length of the path Pm (see G1 in Figure 1) between the two cycles of G is more

than zero (i.e., m ≥ 2). If m = 2, by Lemma 4.5, we derive a new graph, say G(3), with less

distance signless Laplacian spectral radius than G. If m > 2, we also obtain a contradiction from

Lemmas 4.4 and 4.5. Thus the length of Pm in G is zero.

By the three steps, if G is type of ∞ and has the minimum ρQ(G), G is isomorphic to G3.

Then the proof of (i) is done.

The proof of (ii) can be testified in the similar way, omitted. �
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