Coquasitriangular Weak Hopf Group Algebras and Braided Monoidal Categories

Shuangjian GUO
School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guizhou 550025, P. R. China

Abstract

In this paper, we first give the definitions of a crossed left π - H-comodules over a crossed weak Hopf π-algebra H, and show that the category of crossed left π - H-comodules is a monoidal category. Finally, we show that a family $\sigma=\left\{\sigma_{\alpha, \beta}: H_{\alpha} \otimes H_{\beta} \rightarrow k\right\}_{\alpha, \beta \in \pi}$ of k-linear maps is a coquasitriangular structure of a crossed weak Hopf π-algebra H if and only if the category of crossed left π - H-comodules over H is a braided monoidal category with braiding defined by σ.

Keywords π - H-comodules; braided monoidal category; coquasitriangular structure.
MR(2010) Subject Classification 16 T 05

1. Introduction

The notion of a quasitriangular Hopf algebra was introduced by Drinfel'd [2] when he studied the Yang-Baxter equation. Because of their close connections with varied, a priori remote areas of mathematics and physics, this theory has got fast development and many fundamental achievements, see, for example, [5]. Recently, Turaev [7] introduced a Hopf π-coalgebra, which generalizes the notion of a Hopf algebra. Van Daele and Wang studied algebraic properties of weak Hopf group coalgebras and generalized many of the properties of quasitriangular weak Hopf algebras in [1] to the setting of quasitriangular weak Hopf group coalgebras in [8]. Wang also investigated properties of coquasitriangular Hopf group algebras in [9].

In this paper, we give the definitions of a crossed left π - H-comodules over a crossed weak Hopf π-algebra H, and show that the categories of crossed left π - H-comodules is a monoidal category. Finally, we show that a family $\sigma=\left\{\sigma_{\alpha, \beta}: H_{\alpha} \otimes H_{\beta} \rightarrow k\right\}_{\alpha, \beta \in \pi}$ is a coquasitriangular structure of a crossed weak Hopf π-algebra H if and only if the category of crossed left π - H comodules over H is a braided monoidal category with braiding defined by σ.

2. Preliminaries

Throughout the paper, we let π be a discrete group (with neutral element 1) and k be a

[^0]fixed field. All algebras and coalgebras, π-algebras, and Hopf π-algebras are defined over k. The definitions and properties of algebras, coalgebras, Hopf algebras and categories can be found in $[3,4,6]$. We use the standard Sweedler notation for comultiplication. The tensor product $\otimes=\otimes_{k}$ is always assumed to be over k. The following definitions and notations in this section can be found in [9].

2.1. π-algebras

A π-algebra is a family $H=\left\{H_{\alpha}\right\}_{\alpha \in \pi}$ of k-spaces together with a family of k-linear maps $m=\left\{m_{\alpha, \beta}: H_{\alpha} \otimes H_{\beta} \longrightarrow H_{\alpha \beta}\right\}_{\alpha, \beta \in \pi}$ (called a multiplication) and a k-linear map $\eta: k \longrightarrow H_{1}$ (called a unit), such that m is associative in the sense that, for any $\alpha, \beta, \gamma \in \pi$,

$$
\begin{aligned}
& m_{\alpha \beta, \gamma}\left(m_{\alpha, \beta} \otimes \operatorname{id}_{H_{\gamma}}\right)=m_{\alpha, \beta \gamma}\left(\operatorname{id}_{H_{\alpha}} \otimes m_{\beta, \gamma}\right), \\
& m_{\alpha, 1}\left(\operatorname{id}_{H_{\alpha}} \otimes \eta\right)=\operatorname{id}_{H_{\alpha}}=m_{1, \alpha}\left(\eta \otimes \operatorname{id}_{H_{\alpha}}\right) .
\end{aligned}
$$

2.2. Hopf π-algebras

A Hopf π-algebra H is a family $\left\{\left(H_{\alpha}, \Delta_{\alpha}, \varepsilon_{\alpha}\right)\right\}_{\alpha \in \pi}$ of k-coalgebras, here H_{α} is called the α th component of H, endowed with the following data.

- A family of k-linear maps $m=\left\{m_{\alpha, \beta}: H_{\alpha} \otimes H_{\beta} \longrightarrow H_{\alpha \beta}\right\}_{\alpha, \beta \in \pi}$, called multiplication, that is associative, in the sense that, for any $\alpha, \beta, \gamma \in \pi$,

$$
\begin{align*}
& m_{\alpha \beta, \gamma}\left(m_{\alpha, \beta} \otimes \operatorname{id}_{\gamma}\right)=m_{\alpha, \beta \gamma}\left(\operatorname{id}_{\alpha} \otimes m_{\beta, \gamma}\right) \tag{2.1}\\
& m_{\alpha, 1}\left(\operatorname{id}_{H_{\alpha}} \otimes \eta\right)=\operatorname{id}_{H_{\alpha}}=m_{1, \alpha}\left(\eta \otimes \operatorname{id}_{H_{\alpha}}\right) \tag{2.2}
\end{align*}
$$

Given $h \in H_{\alpha}$ and $g \in H_{\beta}$, with $\alpha, \beta \in \pi$, we set $h g=m_{\alpha, \beta}(h \otimes g)$. With this notation, Eq. (2.1) can be simply rewritten as $(h g) l=h(g l)$ for any $h \in H_{\alpha}, g \in H_{\beta}, l \in H_{\gamma}$ and $\alpha, \beta, \gamma \in \pi$.

- The map $m_{\alpha, \beta}: H_{\alpha} \otimes H_{\beta} \longrightarrow H_{\alpha \beta}$ is a morphism of coalgebras such that

$$
\begin{align*}
& \Delta_{\alpha \beta} m_{\alpha, \beta}=\left(m_{\alpha} \otimes m_{\beta}\right) \Delta_{\alpha \beta}, \tag{2.3}\\
& \left(\varepsilon_{\alpha} \otimes \xi_{\beta}\right)=\xi_{\alpha \beta} m_{\alpha, \beta}, \tag{2.4}
\end{align*}
$$

where we used Sweedler's notation: $\Delta_{\beta}(g)=g_{(1, \beta)} \otimes g_{(2, \beta)}$ for any $h \in H_{\alpha}, g \in H_{\beta}, l \in H_{\gamma}$ and $\alpha, \beta, \gamma \in \pi$.

- A set of k-linear maps $S=\left\{S_{\alpha}: H_{\alpha} \longrightarrow H_{\alpha^{-1}}\right\}_{\alpha \in \pi}$, the antipode, such that,

$$
\begin{equation*}
m_{\alpha^{-1}, \alpha}\left(S_{\alpha} \otimes \operatorname{id}_{H_{\alpha}}\right) \Delta_{\alpha}=\varepsilon_{\alpha} 1_{1}=m_{\alpha, \alpha^{-1}}\left(\operatorname{id}_{H_{\alpha}} \otimes S_{\alpha}\right) \Delta_{\alpha} \tag{2.5}
\end{equation*}
$$

for any $h \in H_{\alpha}$ and $\alpha \in \pi$.
Furthermore, the Hopf π-algebra H is called crossed if the following condition holds: There exists a family of coalgebra isomorphisms $\xi=\left\{\xi_{\beta}: H_{\alpha} \longrightarrow H_{\beta \alpha \beta^{-1}}\right\}$, called conjugation, such that
$-\xi$ is multiplicative, i.e., for any α, β and $\gamma \in \pi$, one has $\xi_{\beta} \xi_{\gamma}=\xi_{\beta \gamma}: H_{\alpha} \longrightarrow H_{(\beta \gamma) \alpha(\beta \gamma)^{-1}}$, in particular, $\xi_{1} \mid H_{\alpha}=i d_{\alpha}$.
$-\xi$ is compatible with m, i.e., for any $\beta \in \pi$, we have $\xi_{\beta}(h g)=\xi_{\beta}(h) \psi_{\beta}(g)$.
$-\xi$ is compatible with 1 , i.e., for any $\beta \in \pi$, we have $\xi_{\beta}(1)=1$.
$-\xi$ preserves the antipode, i.e., $\xi_{\beta} S_{\alpha}=S_{\beta \alpha \beta^{-1}} \xi_{\beta}$.
The weak Hopf π-algebra H is said to be of finite type if, for all $\alpha \in \pi, H_{\alpha}$ is finitedimensional as k-space. Note that it does not mean that $\bigoplus_{\alpha \in \pi} H_{\alpha}$ is finite dimensional (unless $H_{\alpha}=0$ for all but a finite number of $\alpha \in \pi$). Hence, in this case the dual of weak Hopf π-algebra is not a weak Hopf π-coalgebra. The antipode $S=\left\{S_{\alpha}\right\}_{\alpha \in \pi}$ of H is called bijective if each S_{α} is bijective.

2.3. Left π - H-comodules

Assume that $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ is a family of coalgebras. A left H - π-comodule over H is a family $M=\left\{M_{\alpha}\right\}_{\alpha \in \pi}$ of k-spaces such that M_{α} is a left H_{α}-comodule for any $\alpha \in \pi$. We denote the structure maps of left H_{α}-comodule M_{α} and left π - H-comodule M by $\rho^{M_{\alpha}}: M_{\alpha} \rightarrow H_{\alpha} \otimes M_{\alpha}$ and $\rho^{M}=\left\{\rho^{M_{\alpha}}\right\}_{\alpha \in \pi}$, respectively.

We use the Sweedler's notation in the following way; for $m \in M_{\alpha}$, we write

$$
\rho^{M_{\alpha}}(m)=m_{(-1, \alpha)} \otimes m_{(0, \alpha)}
$$

2.4. Left π - H-comodule maps

Assume that $H=\left\{H_{\alpha}\right\}_{\alpha \in G}$ is a family of coalgebras. Let $M=\left\{M_{\alpha}\right\}_{\alpha \in \pi}, N=\left\{N_{\alpha}\right\}_{\alpha \in \pi}$ be two left π-comodules over H. A left π - H-comodule map $f: M \rightarrow N$ is a family $f=\left\{f_{\alpha}\right.$: $\left.M_{\alpha} \rightarrow N_{\alpha}\right\}_{\alpha \in \pi}$ of k-linear maps such that $\rho^{N_{\alpha}} f_{\alpha}=\left(\operatorname{id}_{H_{\alpha}} \otimes f_{\alpha}\right) \rho^{M_{\alpha}}$ for all $\alpha \in \pi$.

3. Weak Hopf π-algebras

In this section, we mainly study some structure properties of weak Hopf π-algebras.
Definition 3.1 A weak Hopf π-algebra H is a family $\left\{\left(H_{\alpha}, \Delta_{\alpha}, \varepsilon_{\alpha}\right)\right\}_{\alpha \in \pi}$ of k-coalgebras, here H_{α} is called the α th component of H, endowed with the following data.

- A family of k-linear maps $m=\left\{m_{\alpha, \beta}: H_{\alpha} \otimes H_{\beta} \longrightarrow H_{\alpha \beta}\right\}_{\alpha, \beta \in \pi}$, called multiplication, that is associative, in the sense that, for any $\alpha, \beta, \gamma \in \pi$,

$$
\begin{equation*}
m_{\alpha \beta, \gamma}\left(m_{\alpha, \beta} \otimes \mathrm{id}_{\gamma}\right)=m_{\alpha, \beta \gamma}\left(\mathrm{id}_{\alpha} \otimes m_{\beta, \gamma}\right) \tag{3.1}
\end{equation*}
$$

Given $h \in H_{\alpha}$ and $g \in H_{\beta}$, with $\alpha, \beta \in \pi$, we set $h g=m_{\alpha, \beta}(h \otimes g)$. With this notation, Eq. (3.1) can be simply rewritten as (hg)l=h(gl) for any $h \in H_{\alpha}, g \in H_{\beta}, l \in H_{\gamma}$ and $\alpha, \beta, \gamma \in \pi$.

- The map $m_{\alpha, \beta}: H_{\alpha} \otimes H_{\beta} \longrightarrow H_{\alpha \beta}$ is a (not necessary counit-preserving) morphism of coalgebras such that

$$
\begin{equation*}
\varepsilon_{\alpha \beta \gamma}(h g l)=\varepsilon_{\alpha \beta}\left(h g_{(1, \beta)}\right) \varepsilon_{\beta \gamma}\left(g_{(2, \beta)} l\right)=\varepsilon_{\alpha \beta}\left(h g_{(2, \beta)}\right) \varepsilon_{\beta \gamma}\left(g_{(1, \beta)} l\right) \tag{3.2}
\end{equation*}
$$

where we used Sweedler's notation: $\Delta_{\beta}(g)=g_{(1, \beta)} \otimes g_{(2, \beta)}$ for any $h \in H_{\alpha}, g \in H_{\beta}, l \in H_{\gamma}$ and $\alpha, \beta, \gamma \in \pi$.

- An algebra morphism $\eta: k \longrightarrow H_{1}$, called unit, such that, if we set $1=\eta\left(1_{k}\right)$, then,

$$
\begin{equation*}
1 h=h=h 1, \quad \text { for any } h \in H_{\alpha} \text { with } \alpha \in \pi, \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\left(\Delta_{1} \otimes \mathrm{id}\right) \Delta_{1}(1,1)=1_{(1,1)} \otimes 1_{(2,1)} 1_{(1,1)}^{\prime} \otimes 1_{(2,1)}^{\prime}=1_{(1,1)} \otimes 1_{(1,1)}^{\prime} 1_{(2,1)} \otimes 1_{(2,1)}^{\prime} \tag{3.4}
\end{equation*}
$$

where $1=1^{\prime}$.

- A set of k-linear maps $S=\left\{S_{\alpha}: H_{\alpha} \longrightarrow H_{\alpha^{-1}}\right\}_{\alpha \in \pi}$, the antipode, such that,

$$
\begin{gather*}
m_{\alpha^{-1}, \alpha}\left(S_{\alpha} \otimes \operatorname{id}_{\alpha}\right) \Delta_{\alpha}(h)=1_{\left(1, \alpha^{-1}\right)} \varepsilon_{\alpha}\left(h 1_{(2, \alpha)}\right), \tag{3.5}\\
m_{\alpha, \alpha^{-1}}\left(\operatorname{id}_{\alpha} \otimes S_{\alpha}\right) \Delta_{\alpha}(h)=\varepsilon_{\alpha}\left(1_{(1, \alpha)} h\right) 1_{\left(2, \alpha^{-1}\right)}, \tag{3.6}\\
S_{\alpha}\left(h_{(1, \alpha)}\right) h_{\left(2, \alpha^{-1}\right)} S_{\alpha}\left(h_{(3, \alpha)}\right)=S_{\alpha}(h) \tag{3.7}
\end{gather*}
$$

for any $h \in H_{\alpha}$ and $\alpha \in \pi$.
Definition 3.2 A weak Hopf π-algebra H is called crossed if the following condition holds: There exists a family of coalgebra isomorphisms $\xi=\left\{\xi_{\beta}: H_{\alpha} \longrightarrow H_{\beta \alpha \beta^{-1}}\right\}$, called conjugation, such that
$-\xi$ is multiplicative, i.e., for any α, β and $\gamma \in \pi$, one has $\xi_{\beta} \xi_{\gamma}=\xi_{\beta \gamma}: H_{\alpha} \longrightarrow H_{(\beta \gamma) \alpha(\beta \gamma)^{-1}}$, in particular, $\xi_{1} \mid H_{\alpha}=\operatorname{id}_{\alpha}$.
$-\xi$ is compatible with m, i.e., for any $\beta \in \pi$, we have $\xi_{\beta}(h g)=\xi_{\beta}(h) \xi_{\beta}(g)$.
$-\xi$ is compatible with 1 , i.e., for any $\beta \in \pi$, we have $\xi_{\beta}(1)=1$.
Example 3.3 Recall that a finite groupoid G is a category, in which every morphism is an isomorphism, with a finite number of objects. The set of objects of G will be denoted by G_{0}, and the set of morphisms by G_{1}. The identity morphism on $x \in G_{0}$ will also be denoted by x. The source and target maps will be denoted by s and t respectively, i.e., for $\alpha: x \longrightarrow y$ in G_{1}, we have $s(\alpha)=x$ and $t(\alpha)=y$. For every $x \in G, G_{x}=\{\alpha \in G \mid s(\alpha)=t(\alpha)=x\}$ is a group.

Let G be a groupoid. The groupoid algebra is the direct product $k[G]=\bigoplus_{\alpha \in G_{1}} k u_{\alpha}$, with multiplication defined by the rule $u_{\alpha} u_{\beta}=u_{\alpha \beta}$ if $s(\alpha)=t(\beta)$ and $u_{\alpha} u_{\beta}=0$ if $s(\alpha) \neq t(\beta)$. The unit is $1=\sum_{x \in G_{0}} u_{x} . k[G]$ is a weak Hopf algebra, with comultiplication, counit and antipode given by the formulas

$$
\Delta\left(u_{\alpha}\right)=u_{\alpha} \otimes u_{\alpha}, \quad \varepsilon\left(u_{\alpha}\right)=1 \text { and } S\left(u_{\alpha}\right)=u_{\alpha^{-1}} .
$$

Using $\Delta(1)=\bigoplus_{x \in G_{0}} u_{x} \otimes u_{x}$, we have that $\varepsilon^{t}: k G \longrightarrow k G$ is given by $\varepsilon^{t}\left(u_{\alpha}\right)=$ $\sum_{x \in G_{0}} \varepsilon\left(u_{x} u_{\alpha}\right)=u_{t(\alpha)}$. Similarly, we have that $\varepsilon^{s}: k G \longrightarrow k G$ is given by $\varepsilon^{s}\left(u_{\alpha}\right)=$ $\sum_{x \in G_{0}} \varepsilon\left(u_{\alpha} u_{x}\right)=u_{s(\alpha)}$.

The dual of $k G$ is the weak Hopf algebra $k(G)=k^{G}$ of functions $G \longrightarrow k$. It has a basis $\left(e_{g}: G \longrightarrow k\right)_{g \in G_{1}}$ defined by $\left\langle e_{g}, h\right\rangle=\delta_{g, h}$. That is, as a k-space we have $k[G]=\sum_{g \in G_{1}} k e_{g}$. The weak Hopf algebra structure of $k(G)$ are given by

$$
\begin{aligned}
& e_{g} e_{h}=\delta_{g, h} e_{g} ; \quad 1=\sum_{g \in G_{1}} e_{g} ; \\
& \Delta\left(e_{g}\right)=\sum_{x y=g} e_{x} \otimes e_{y}=\sum_{t(x)=t(g)} e_{x} \otimes e_{x-1} ; \quad \varepsilon\left(\sum_{g \in G_{1}} a_{g} e_{g}\right)=\sum_{x \in G_{0}} a_{x} e_{x} ; \\
& S\left(e_{g}\right)=e_{g^{-1}} ; \quad \Delta(1)=1_{(1)} \otimes 1_{(2)}=\sum_{t(g)=s(h)} e_{g} \otimes e_{h}
\end{aligned}
$$

for any $g, h \in G_{1}$.
Set $\phi: k[G] \longrightarrow \operatorname{Aut}(k[G])$ defined by $\phi_{g}(h)=g h g^{-1}$. It is a well defined group homomorphism. This data leads to a quasi-triangular weak Hopf G_{1}-coalgebra $\overline{D(k[G], k(G))}=$ $\left\{D(k[G], k(G))_{(\alpha, \beta)}=D(k[G], k(G),\langle,\rangle, \phi) / I_{(\alpha, \beta)}\right\}_{(\alpha, \beta) \in \mathscr{S}\left(G_{1}\right)}$ which will be denoted by $\overline{D_{G}(G)}=$ $\left\{\bar{D}_{(\alpha, \beta)}(G)\right\}_{(\alpha, \beta) \in G_{1}}$. More explicitly, $\overline{D_{G}(G)}$ is described as follows:

For any $\alpha, \beta \in G_{1}$, the algebra structure of $\overline{D_{(\alpha, \beta)}(G)}$, which is equal to $k[G] \otimes k(G)$ as a k-space, is given by

$$
\begin{aligned}
& {\left[g \otimes e_{h}\right]\left[g^{\prime} \otimes e_{h^{\prime}}\right]=\delta_{\alpha g^{\prime} \alpha^{-1}, h^{-1} \beta g^{\prime} \beta^{-1} h^{\prime}} g g^{\prime} \otimes e_{h^{\prime}} \text { for all } g, g^{\prime}, h, h^{\prime} \in G_{1},} \\
& 1_{\overline{D_{(\alpha, \beta)}(G)}}=\sum_{x \in G_{0}, g \in G_{1}}\left[u_{x} \otimes e_{g}\right] .
\end{aligned}
$$

The crossed weak Hopf G-coalgebra structures of $D_{G}(G)$ are given, for any $\alpha, \beta, \lambda, \gamma \in G_{1}$ and $g, h \in G_{1}$, by

$$
\begin{gathered}
\bar{\Delta}_{(\alpha, \beta),(\lambda, \gamma)}\left(\left[g \otimes e_{h}\right]\right)=\sum_{x y=h}\left[g \otimes e_{\gamma x \gamma^{-1}}\right] \otimes\left[g \otimes e_{\gamma \alpha \gamma^{-1} y \gamma \alpha^{-1} \gamma^{-1}}\right], \\
\bar{\varepsilon}\left(\left[g \otimes e_{h}\right]_{(1,1)}\right)=\delta_{h, 1}, \\
S_{(\alpha, \beta)}\left(\left[g \otimes e_{h}\right]\right)=\left[g^{-1} \otimes e_{\left.\alpha \beta \alpha^{-1} g \alpha h^{-1} \beta g^{-1} \beta^{-1} \alpha^{-1}\right]},\right. \\
\varphi_{(\alpha, \beta)}^{(\lambda, \gamma)}\left(\left[g \otimes e_{h}\right]\right)=\left[\beta^{-1} \alpha g \alpha^{-1} \beta \otimes e_{\left.\gamma \alpha^{-1} \gamma^{-1} \beta h \beta^{-1} \gamma \alpha \gamma^{-1}\right]}\right]
\end{gathered}
$$

Then $D_{G}(G)^{*}=\bigoplus_{\alpha \in G} D_{G}(G)_{\alpha}^{*}$ is a crossed weak Hopf G-algebra.
Lemma 3.4 It is easy to get the following identities:
(a) $\xi_{1} \mid H_{\alpha}=\operatorname{id}_{H_{\alpha}}$ for all $\alpha \in \pi$.
(b) $\xi_{\alpha}^{-1}=\xi_{\alpha^{-1}}$ for all $\alpha \in \pi$.
(c) ξ preserves the antipode, i.e., $\xi_{\beta} \circ S_{\alpha}=S_{\beta \alpha \beta^{-1}} \circ \xi_{\beta}$ for all $\alpha, \beta \in \pi$.

Let H be a weak Hopf π-algebra. Define a family of linear maps $\varepsilon^{t}=\left\{\varepsilon_{\alpha}^{t}: H_{\alpha} \rightarrow H_{1}\right\}_{\alpha \in \pi}$ by $\varepsilon_{\alpha}^{t}(h)=\varepsilon_{\alpha}\left(1_{(1,1)} h\right) 1_{(2,1)}$ and $\varepsilon^{s}=\left\{\varepsilon_{\alpha}^{s}: H_{\alpha} \rightarrow H_{1}\right\}_{\alpha \in \pi}$ by $\varepsilon_{\alpha}^{s}(h)=1_{(1,1)} \varepsilon_{\alpha}\left(h 1_{(2,1)}\right)$ for all $h \in H_{\alpha}$, where $\varepsilon^{t}, \varepsilon^{s}$ are called the π-target and π-source counital maps. Introduce the notations $H^{t}:=\varepsilon^{t}(H)=\left\{H_{1}^{t}=\varepsilon_{\alpha}^{t}\left(H_{\alpha}\right)\right\}_{\alpha \in \pi}$ and $H^{s}:=\varepsilon^{s}(H)=\left\{H_{1}^{s}=\varepsilon_{\alpha}^{s}\left(H_{\alpha}\right)\right\}_{\alpha \in \pi}$ for their images.

By Eq. (3.2), one immediately obtains the following identities:

$$
\begin{align*}
\varepsilon_{\alpha \beta}(g h)= & \varepsilon_{\alpha}\left(g \varepsilon_{\beta}^{t}(h)\right), \tag{3.8}\\
\varepsilon_{1}^{t} \circ \varepsilon_{\alpha}^{t}=\varepsilon_{\alpha}^{t}, & \varepsilon_{1}^{s} \circ \varepsilon_{\alpha}^{s}=\varepsilon_{\alpha}^{s} \tag{3.9}
\end{align*}
$$

Lemma 3.5 Let H be a weak Hopf π-algebra. Then we have, for all $x \in H_{\alpha}, y \in H_{\beta}$ and $\alpha, \beta \in \pi$
(i) $x_{(1, \alpha)} \otimes \varepsilon_{\alpha}^{t}\left(x_{(2, \alpha)}\right)=1_{(1,1)} x \otimes 1_{(2,1)}$,
(ii) $\varepsilon_{\alpha}^{s}\left(x_{(1, \alpha)}\right) \otimes x_{(2, \alpha)}=1_{(1,1)} \otimes x 1_{(2,1)}$,
(iii) $x \varepsilon_{\beta}^{t}(y)=\varepsilon_{\alpha \beta}\left(x_{(1, \alpha)} y\right) x_{(2, \alpha)}$,
(iv) $\varepsilon_{\beta}^{s}(y) x=x_{(1, \alpha)} \varepsilon_{\beta \alpha}\left(y x_{(2, \alpha)}\right)$,
(v) H_{1}^{t} and H_{1}^{s} are subalgebras of H_{1} containing the unit 1 and we have

$$
\begin{equation*}
h^{t} g^{s}=g^{s} h^{t} \text { for all } h^{t} \in H_{1}^{t} \text { and } g^{s} \in H_{1}^{s} . \tag{3.14}
\end{equation*}
$$

Proof (i) We compute as follows

$$
\begin{aligned}
x_{(1, \alpha)} \otimes \varepsilon_{\alpha}^{t}\left(x_{(2, \alpha)}\right) & =x_{(1, \alpha)} \otimes \varepsilon_{\alpha}\left(1_{(1,1)} x_{(2,1)}\right) 1_{(2,1)}=\widetilde{1}_{(1,1)} x_{(1, \alpha)} \otimes \varepsilon\left(1_{(1,1)} \tilde{1}_{(2,1)} x_{(2, \alpha)}\right) 1_{(2,1)} \\
& =1_{(1,1)} x_{(1, \alpha)} \otimes \varepsilon\left(1_{(2,1)} x_{(2, \alpha)}\right) 1_{(3,1)}=1_{(1,1)} x \otimes 1_{(2,1)} .
\end{aligned}
$$

(ii) is similar to (i).
(iii) and (iv) are immediate consequence of (ii) and (i).
(v) Obviously, $1 \in H_{1}^{t} \cap H_{1}^{s}$ since $\varepsilon_{\alpha}^{t}\left(1_{\alpha}\right)=\varepsilon_{\alpha}^{s}\left(1_{\alpha}\right)=1$, and H_{1}^{t} and H_{1}^{s} commute with each other. Finally, the fact that H_{1}^{t} and H_{1}^{s} are subalgebras of H_{1} follows from the formulae:

$$
\begin{align*}
& 1_{(1, \alpha)} \otimes \varepsilon_{\beta}^{t}\left(1_{(2, \beta)}\right) \otimes 1_{(3, \gamma)}=\widetilde{1}_{(1,1)} 1_{(1, \alpha)} \otimes \widetilde{1}_{(2,1)} \otimes 1_{(2, \gamma)}, \tag{3.15}\\
& 1_{(1, \gamma)} \otimes \varepsilon_{\beta}^{s}\left(1_{(2, \beta)}\right) \otimes 1_{(3, \alpha)}=1_{(1, \gamma)} \otimes \widetilde{1}_{(1,1)} \otimes 1_{(2, \alpha)} \widetilde{1}_{(2,1)}, \tag{3.16}
\end{align*}
$$

for all $\alpha, \beta, \gamma \in \pi$. We also give a direct proof as follows

$$
\begin{aligned}
\varepsilon_{\alpha}^{t}(h) \varepsilon_{\beta}^{t}(g) & \stackrel{(3.12)}{=} \varepsilon_{\beta}\left(\varepsilon_{\alpha}^{t}(h)_{(1,1)} g\right) \varepsilon_{\alpha}^{t}(h)_{(2,1)} \\
& =\varepsilon_{\beta}\left(1_{(1,1)} \varepsilon_{\alpha}^{t}(h) g\right) 1_{(2,1)}=\varepsilon_{\beta}^{t}\left(\varepsilon_{\alpha}^{t}(h) g\right)
\end{aligned}
$$

A statement about H_{1}^{s} is proven similarly.
Lemma 3.6 Let H be a weak Hopf π-algebra. Then we have
(i) The kernel $\operatorname{Ker} \varepsilon_{\alpha}^{t}$ is a left ideal of H_{α} and $\operatorname{Ker} \varepsilon_{\alpha}^{s}$ is a right ideal of H_{α} for all $\alpha \in \pi$;
(ii) We have the following formulae

$$
\begin{equation*}
\varepsilon_{\beta}^{t}\left(\varepsilon_{\alpha}^{t}(x) y\right)=\varepsilon_{\alpha}^{t}(x) \varepsilon_{\beta}^{t}(y), \quad \varepsilon_{\alpha}^{s}\left(x \varepsilon_{\beta}^{s}(y)\right)=\varepsilon_{\alpha}^{s}(x) \varepsilon_{\beta}^{s}(y) ; \tag{3.17}
\end{equation*}
$$

(iii) Furthermore, if H is crossed with the crossing $\xi=\left\{\xi_{\alpha}\right\}_{\alpha \in \pi}$, then we have

$$
\xi_{\beta} \circ \varepsilon_{\alpha}^{s}=\varepsilon_{\beta \alpha \beta^{-1}}^{s} \circ \xi_{\beta}, \quad \xi_{\beta} \circ \varepsilon_{\alpha}^{t}=\varepsilon_{\beta \alpha \beta^{-1}}^{t} \circ \xi_{\beta}
$$

for any $\alpha, \beta \in \pi$.
Proof (i) Easy. (ii) One has

$$
\begin{aligned}
\varepsilon_{\beta}^{t}\left(\varepsilon_{\alpha}^{t}(x) y\right) & =\varepsilon_{\beta}\left(1_{(1,1)} \varepsilon_{\alpha}^{t}(x) y\right) 1_{(2,1)} \stackrel{(3.9)}{=} \varepsilon_{1}\left(1_{(1,1)} \varepsilon_{\alpha}^{t}(x) \varepsilon_{\beta}^{t}(y)\right) 1_{(2,1)} \\
& \stackrel{(3.10)}{=} \varepsilon_{\alpha}^{t}(z)=\varepsilon_{\alpha}^{t}(x) \varepsilon_{\beta}^{t}(y) .
\end{aligned}
$$

(iii) We just check that the first formula holds. The second one can be proved similarly. For any $h \in H_{\alpha}$ and $\alpha, \beta \in \pi$, one has

$$
\begin{aligned}
\varepsilon_{\beta \alpha \beta^{-1}}^{s} \xi_{\beta}(h) & =1_{(1,1)} \varepsilon_{\beta \alpha \beta^{-1}}\left(\xi_{\beta}(h) 1_{(2,1)}\right)=1_{(1,1)} \varepsilon_{\alpha}\left(h \xi_{\beta^{-1}}\left(1_{(2,1)}\right)\right) \\
& =\xi_{\beta}\left(1_{(1,1)}\right) \varepsilon_{\alpha}\left(h 1_{(2,1)}\right)=\xi_{\beta} \varepsilon_{\alpha}^{s}(h) .
\end{aligned}
$$

This finishes the proof.
By Eqs. (3.5)-(3.7), we have $S_{\alpha}(x)=S_{\alpha}\left(x_{(1, \alpha)}\right) \varepsilon_{\alpha}^{t}\left(x_{(2, \alpha)}\right)=\varepsilon_{\alpha}^{s}\left(x_{(1, \alpha)}\right) S_{\alpha}\left(x_{(2, \alpha)}\right)$.
Theorem 3.7 Let H be a weak Hopf π-algebra. Then
(i) $S_{\alpha \beta}(x y)=S_{\beta}(y) S_{\alpha}(x)$ for any $\alpha \in \pi$ and $x \in H_{\alpha}, y \in H_{\beta}$;
(ii) $S_{\alpha}\left(1_{\alpha}\right)=1_{\alpha^{-1}}$ for any $\alpha \in \pi$.

Furthermore if H is of finite type then $S: H \longrightarrow H$ is bijective, i.e., $S_{\alpha}: H_{\alpha} \longrightarrow H_{\alpha^{-1}}$ is bijective for any $\alpha \in \pi$.

Proof Similar to [1].
Proposition 3.8 (i) We have the following formulae:

$$
\begin{gathered}
\varepsilon_{\alpha}^{t}(x)=\varepsilon_{\alpha^{-1}}\left(S_{\alpha}(x) 1_{(1,1)}\right) 1_{(2,1)}, \quad \varepsilon_{\alpha}^{s}(x)=1_{(1,1)} \varepsilon_{\alpha^{-1}}\left(1_{(2,1)} S_{\alpha}(x)\right), \\
\varepsilon_{\alpha}^{t}(x)=S_{1}\left(1_{(1,1)}\right) \varepsilon_{\alpha}\left(1_{(2,1)} x\right), \quad \varepsilon_{\alpha}^{s}(x)=\varepsilon_{\alpha}\left(x 1_{(1,1)}\right) S_{1}\left(1_{(2,1)}\right)
\end{gathered}
$$

for any $x \in H_{\alpha}$.
(ii) the following identities hold

$$
\varepsilon_{\alpha}^{t} \circ S_{\alpha^{-1}}=\varepsilon_{1}^{t} \circ \varepsilon_{\alpha^{-1}}^{s}=S_{1} \circ \varepsilon_{\alpha^{-1}}^{s}, \quad \varepsilon_{\alpha}^{s} \circ S_{\alpha^{-1}}=\varepsilon_{1}^{s} \circ \varepsilon_{\alpha^{-1}}^{t}=S_{1} \circ \varepsilon_{\alpha^{-1}}^{t}
$$

Proof Similar to [1].

4. The category of crossed left $\pi-H$ comodules

Definition 4.1 Let H be a crossed weak Hopf π-algebra. A left π - H-comodule M is called crossed if it is endowed with a family $\xi_{M}=\left\{\xi_{M, \beta}: M_{\alpha} \rightarrow M_{\beta \alpha \beta^{-1}}\right\}_{\alpha, \beta \in \pi}$ of k-linear maps such that the following conditions are satisfied
(i) Each $\xi_{M, \beta}: M_{\alpha} \rightarrow M_{\beta \alpha \beta^{-1}}$ is a vector space isomorphism;
(ii) Each $\xi_{M, \beta}$ preserves the coaction, i.e., for all $\alpha, \beta \in \pi, \rho_{\beta \alpha \beta^{-1}} \circ \xi_{M, \beta}=\left(\xi_{\beta} \otimes \xi_{M, \beta}\right) \circ \rho_{\alpha}$;
(iii) Each ξ_{M} is multiplicative in the sense that $\xi_{M, \beta} \xi_{M, \gamma}=\xi_{M, \beta \gamma}$ for all $\beta, \gamma \in \pi$.

Definition 4.2 Let $M=\left\{M_{\alpha}\right\}_{\alpha \in \pi}, N=\left\{N_{\alpha}\right\}_{\alpha \in \pi}$ be two crossed left π - H-comodules. A crossed left π - H-comodule morphism is a left π - H-comodule morphism $f=\left\{f_{\alpha}\right\}_{\alpha \in \pi}: M \rightarrow N$ such that $\xi_{N, \beta} \circ f_{\alpha}=f_{\beta \alpha \beta^{-1}} \circ \xi_{M, \beta}$.

Let $H=\left(\left\{H_{\alpha}\right\}, m, \eta\right)$ be a crossed weak Hopf π-algebra. We denote by ${ }^{H} \mathcal{M}_{\text {crossed }}$ the category of all left π - H-comodules, whose morphisms are crossed left π - H-comodule morphisms.

Suppose that $M=\left\{M_{\alpha}\right\}_{\alpha \in \pi}$ and $N=\left\{N_{\alpha}\right\}_{\alpha \in \pi}$ are crossed left π - H-comodules. Now define $M_{\beta} \boxtimes N_{\gamma}$, which is the submodule of $M_{\beta} \otimes N_{\gamma}$ generated by elements of the form $\varepsilon_{\beta \gamma}\left(m_{(-1, \beta)} n_{(-1, \gamma)}\right) m_{(0, \beta)} \otimes n_{(0, \gamma)}$ for any $\beta, \gamma \in \pi$ and $m \in M_{\beta}, n \in N_{\gamma}$. It is easy to show that $M_{\beta} \boxtimes N_{\gamma}$ is left π - H-subcomodule of $M_{\beta} \otimes N_{\gamma}$ given by $\rho^{M_{\beta} \boxtimes N_{\gamma}}(m \boxtimes n)=m_{(-1, \beta)} n_{(-1, \gamma)} \boxtimes$ $m_{(0, \beta)} \boxtimes n_{(0, \gamma)}$ for any $m \in M_{\beta}, n \in N_{\gamma} . \quad$ So $(M \boxtimes N)_{\alpha}:=\bigoplus_{\beta \gamma=\alpha} M_{\beta} \boxtimes N_{\gamma}$ is a left $H_{\alpha^{-}}$ comodule. Thus $M \boxtimes N=\left\{(M \boxtimes N)_{\alpha}\right\}_{\alpha \in \pi}$ is a left π - H-comodule, where the structure maps $\rho^{M \boxtimes N}=\left\{\rho^{(M \boxtimes N)_{\alpha}}\right\}_{\alpha \in \pi}$ are given by

$$
\rho^{(M \boxtimes N)_{\alpha}}=\bigoplus_{\beta \gamma=\alpha}\left(m_{\beta, \gamma} \otimes \operatorname{id}_{M_{\beta}} \otimes \operatorname{id}_{N_{\gamma}}\right)\left(\operatorname{id}_{H_{\beta}} \otimes \tau_{M_{\beta}, H_{\gamma}} \otimes \operatorname{id}_{N_{\gamma}}\right)\left(\rho^{M_{\beta}} \otimes \rho^{N_{\gamma}}\right) .
$$

Now let $g=\left\{g_{\alpha}\right\}_{\alpha \in \pi}: M \rightarrow M^{\prime}$ and $f=\left\{f_{\beta}\right\}_{\beta \in \pi}: N \rightarrow N^{\prime}$ be left π - H-comodule morphisms. Now we define the monoidal product of g and f given by $g \otimes f=\left\{g_{\alpha} \otimes f_{\beta}\right\}_{\alpha, \beta \in \pi}$:
$M \otimes N \rightarrow M^{\prime} \otimes N^{\prime}$.
Suppose $P=\left\{P_{\alpha}\right\}_{\alpha \in \pi}$ is also a crossed left π - H-comodule. Then we have two left π - H comodules $(M \boxtimes N) \boxtimes P$ and $M \boxtimes(N \boxtimes P)$. By definition, for any $\alpha \in \pi$, we have

$$
\begin{aligned}
((M \boxtimes N) \boxtimes P)_{\alpha} & =\bigoplus_{\beta \gamma=\alpha}(M \boxtimes N)_{\beta} \boxtimes P_{\gamma}=\bigoplus_{\beta \gamma=\alpha}\left(\bigoplus_{\theta z=\beta}\left(M_{\theta} \boxtimes N_{z}\right) \boxtimes P_{\gamma}\right) \\
& =\bigoplus_{\theta z \gamma=\alpha}\left(M_{\theta} \boxtimes N_{z}\right) \boxtimes P_{\gamma}
\end{aligned}
$$

and

$$
\begin{aligned}
(M \boxtimes(N \boxtimes P))_{\alpha} & =\bigoplus_{\theta \beta=\alpha} M_{\theta} \boxtimes(N \boxtimes P)_{\beta}=\bigoplus_{\theta \beta=\alpha} M_{\theta} \boxtimes\left(\bigoplus_{z \gamma=\beta}\left(N_{z} \boxtimes P_{\gamma}\right)\right) \\
& =\bigoplus_{\theta z \gamma=\alpha}\left(M_{\theta} \boxtimes N_{z}\right) \boxtimes P_{\gamma} .
\end{aligned}
$$

Let $\theta, z, \gamma \in \pi$. One knows that $a_{\theta, z, \gamma}:\left(M_{\theta} \boxtimes N_{z}\right) \boxtimes P_{\gamma} \rightarrow M_{\theta} \boxtimes\left(N_{z} \boxtimes P_{\gamma}\right),(m \otimes n) \otimes p \mapsto$ $m \otimes(n \otimes p)$, where $m \in M_{\theta}, n \in N_{z}, p \in P_{\gamma}$, is an isomorphism of $H_{\theta z \gamma}$ comodule. Hence, for any $\alpha \in \pi, a_{\alpha}=\bigoplus_{\theta z \gamma=\alpha} a_{\theta, z, \gamma}$ is an isomorphism of H_{α} comodule from $((M \boxtimes N) \boxtimes P)_{\alpha}$ to $(M \boxtimes(N \boxtimes P))_{\alpha}$, and $a=\left\{a_{\alpha}\right\}_{\alpha \in \pi}:(M \boxtimes N) \boxtimes P \rightarrow M \boxtimes(N \boxtimes P)$ is a left π - H-comodule isomorphism, it is a family of natural isomorphisms.

Let M, N be any crossed left π - H-comodules. We have proved that $M \boxtimes N$ is also a crossed left $\pi-H$-comodule.

Definition 4.3 With the above notations. A left π - H-comodule $M \boxtimes N$ is called crossed if is endowed with a family $\xi_{M \boxtimes N}=\left\{\xi_{M \boxtimes N, z}:(M \boxtimes N)_{\alpha} \rightarrow(M \boxtimes N)_{z \alpha z^{-1}}\right\}_{\alpha, z \in \pi}$ of k-linear maps such that the following conditions are satisfied:
(i) Each $\xi_{M \boxtimes N, \beta}:(M \boxtimes N)_{\alpha} \rightarrow(M \boxtimes N)_{z \alpha z^{-1}}$ is a vector space isomorphism;
(ii) Each $\xi_{M \boxtimes N, z \mid M_{\beta} \boxtimes N_{\gamma}}:=\xi_{M, z \mid M_{\beta}} \boxtimes \xi_{N, z \mid N_{\gamma}}$, where for any $\alpha, \beta, \gamma, z \in \pi$.

Since $(M \boxtimes N)_{\alpha}=\bigoplus_{\beta \gamma=\alpha} M_{\beta} \boxtimes N_{\gamma}$ and

$$
(M \boxtimes N)_{z \alpha z^{-1}}=\bigoplus_{z \beta \gamma z^{-1}=z \alpha z^{-1}} M_{z \beta z^{-1}} \boxtimes N_{z \gamma z^{-1}}=\bigoplus_{\beta \gamma=\alpha} M_{z \beta z^{-1}} \boxtimes N_{z \gamma z^{-1}}
$$

$\xi_{M \otimes N, z}$ is well defined k-linear isomorphism from $(M \boxtimes N)_{\alpha}$ to $(M \boxtimes N)_{z \alpha z^{-1}}$ for any $\alpha, z \in \pi$. Moreover, for any $m \in M_{\beta}$ and $n \in N_{\gamma}$, we have

$$
\begin{aligned}
& \rho^{(M \boxtimes N)_{z \alpha z}-1} \circ\left(\xi_{M \boxtimes N, z}\right)(m \otimes n) \\
& \quad=\rho^{(M \boxtimes N)_{z \alpha z}-1} \circ\left(\xi_{M, z} \otimes \xi_{N, z}\right)(m \otimes n) \\
& \quad=\rho^{(M \boxtimes N)_{z \alpha z}-1}\left(\xi_{M, \gamma}(m) \otimes \xi_{N, \gamma}(n)\right) \\
& \quad=\xi_{z}\left(m_{(-1, \beta)}\right) \xi_{z}\left(n_{(-1, \gamma)}\right) \otimes \xi_{M, z}\left(m_{(0, \beta)}\right) \otimes \xi_{N, z}\left(n_{(0, \gamma)}\right) \\
& \quad=\left(\xi_{z} \otimes \xi_{M \otimes N, z}\right) \rho^{(M \otimes N)_{\alpha}}(m \otimes n) .
\end{aligned}
$$

Now let M, N and P be crossed left $\pi-H$-comodules. Then one can easily check that $\xi_{M \boxtimes(N \boxtimes P), z} a_{\alpha}=a_{z \alpha z^{-1}} \xi_{(M \boxtimes N) \boxtimes P, z}$ for any $\alpha, z \in \pi$, and hence $a=\left\{a_{\alpha}\right\}_{\alpha \in \pi}:(M \boxtimes N) \boxtimes P \rightarrow$ $M \boxtimes(N \boxtimes P)$ is a crossed left π - H-comodule morphism.

Since $H_{1}^{t}=\varepsilon_{\alpha}^{t}\left(H_{\alpha}\right)$ for every $\alpha \in \pi$, let $\rho^{H_{1}^{t}}: H_{1}^{t} \rightarrow H_{1}^{t} \otimes H_{1}^{t}, \lambda \mapsto \Delta_{1,1}(\lambda)$. Hence, H_{1}^{t} is a left π - H-comodule. For any left π - H-comodule M, we have $\left(H^{t} \boxtimes M\right)_{\alpha}=H_{1}^{t} \boxtimes M_{\alpha}$ and $\left(M \boxtimes H^{t}\right)_{\alpha}=M_{\alpha} \boxtimes H_{1}^{t}, \alpha \in \pi$. Define isomorphisms $l_{M}: H^{t} \boxtimes M \rightarrow M$ and $r_{M}: M \boxtimes H^{t} \rightarrow M$ by

$$
\begin{aligned}
& \left(l_{M}\right)_{\alpha}: H_{1}^{t} \boxtimes M_{\alpha} \rightarrow M_{\alpha}, \lambda \otimes m \mapsto \varepsilon(\lambda) m \\
& \left(r_{M}\right)_{\alpha}: M_{\alpha} \boxtimes H_{1}^{t} \rightarrow M_{\alpha}, m \otimes \lambda \mapsto m \varepsilon(\lambda),
\end{aligned}
$$

and

$$
\begin{gathered}
\left(l_{M}\right)_{\alpha}^{-1}: M_{\alpha} \rightarrow H_{1}^{t} \boxtimes M_{\alpha}, m \mapsto \varepsilon_{\alpha}^{t}\left(m_{(1, \alpha)}\right) \otimes m_{(0, \alpha)}, \\
\left(r_{M}\right)_{\alpha}^{-1}: M_{\alpha} \rightarrow M_{\alpha} \boxtimes H_{1}^{t}, m \mapsto m_{(0, \alpha)} \otimes S^{-1} \varepsilon_{\alpha}^{s}\left(m_{(1, \alpha)}\right) .
\end{gathered}
$$

Then $l=\left\{l_{M}\right\}$ and $r=\left\{r_{M}\right\}$ are two families of natural isomorphisms of left π - H-comodules.
We summarize the above discussion as follows.
Theorem $4.4\left({ }^{H} \mathcal{M}_{\text {crossed }}, \boxtimes, H_{1}^{t}, a, l, r\right)$ is a monoidal category, where H_{1}^{t} is the unit object.

5. The Braided monoidal category

Throughout this section, assume that $H=\left(\left\{H_{\alpha}\right\}, m, \eta\right)$ is a crossed weak Hopf π-algebra with a crossing ξ.

Definition 5.1 A coquasitriangular weak Hopf π-algebra is a crossed weak Hopf π-algebra (with crossing ξ) endowed with a family $\sigma=\left\{\sigma_{\beta, \gamma}: H_{\beta} \otimes H_{\gamma} \rightarrow k\right\}_{\beta, \gamma \in \pi}$ of k-linear maps such that $\sigma_{\beta, \gamma}$ is weak convolution invertible for any $\beta, \gamma \in \pi$ and the following conditions are satisfied:
(i) For any $\beta, \gamma, \theta \in \pi$ and $x \in H_{\beta}, y \in H_{\gamma}, p \in H_{\theta}$,

$$
\begin{equation*}
\sigma_{\beta, \gamma \theta}(x, y p)=\sigma_{\beta, \gamma}\left(x_{(1, \beta)}, y\right) \sigma_{\gamma^{-1} \beta \gamma, \theta}\left(\xi_{\gamma^{-1}}\left(x_{(2, \beta)}\right), p\right) \tag{5.1}
\end{equation*}
$$

(ii) For any $\beta, \gamma, z \in \pi$ and $x \in H_{\beta}, y \in H_{\gamma}, p \in H_{z}$

$$
\begin{equation*}
\sigma_{\beta \gamma, z}(x y, p)=\sigma_{\beta, z}\left(x, p_{(2, z)}\right) \sigma_{\gamma, z}\left(y, p_{(1, z)}\right) \tag{5.2}
\end{equation*}
$$

(iii) For any $\beta, \gamma \in \pi$ and $x \in H_{\beta}, y \in H_{\gamma}$,

$$
\begin{equation*}
\sigma_{\beta, \gamma}\left(x_{(1, \beta)}, y_{(1, \gamma)}\right) y_{(2, \gamma)} \xi_{\gamma^{-1}}\left(x_{(2, \beta)}\right)=x_{(1, \beta)} y_{(1, \gamma)} \sigma_{\beta, \gamma}\left(x_{(2, \beta)}, y_{(2, \gamma)}\right) \tag{5.3}
\end{equation*}
$$

(iv) For any $\beta, \gamma, z \in \pi$ and $x \in H_{\beta}, y \in H_{\gamma}$,

$$
\begin{equation*}
\sigma_{\beta, \gamma}(x, y)=\sigma_{z \beta z^{-1}, z \gamma z^{-1}}\left(\xi_{z}(x), \xi_{z}(y)\right) \tag{5.4}
\end{equation*}
$$

(v) For any $\beta, \gamma \in \pi$ and $x \in H_{\beta}, y \in H_{\gamma}$,

$$
\begin{equation*}
\sigma_{\gamma, \beta}(y, x)=\varepsilon_{\beta \gamma}\left(x_{(1, \beta)} y_{(1, \gamma)}\right) \sigma_{\gamma, \beta}\left(y_{(2, \gamma)}, x_{(2, \beta)}\right) \varepsilon_{\gamma \beta}\left(y_{(3, \gamma)} x_{(3, \beta)}\right) \tag{5.5}
\end{equation*}
$$

Here weak convolution invertible means that there exist a family of k-linear maps $\sigma^{-1}=\left\{\sigma_{\beta, \gamma}^{-1}\right.$: $\left.H_{\beta} \boxtimes H_{\gamma} \rightarrow k\right\}_{\beta, \gamma \in \pi}$ such that:
(vi) For any $\beta, \gamma \in \pi$ and $x \in H_{\beta}, y \in H_{\gamma}$,

$$
\begin{equation*}
\sigma_{\beta, \gamma}\left(x_{(1, \beta)}, y_{(1, \gamma)}\right) \sigma_{\beta, \gamma}^{-1}\left(x_{(2, \beta)}, y_{(2, \gamma)}\right)=\varepsilon_{\beta \gamma}(x y) \tag{5.6}
\end{equation*}
$$

(vii) For any $\beta, \gamma \in \pi$ and $x \in H_{\beta}, y \in H_{\gamma}$,

$$
\begin{equation*}
\sigma_{\beta, \gamma}^{-1}\left(x_{(1, \beta)}, y_{(1, \gamma)}\right) \sigma_{\beta, \gamma}\left(x_{(2, \beta)}, y_{(2, \gamma)}\right)=\varepsilon_{\gamma \beta}(y x) ; \tag{5.7}
\end{equation*}
$$

(viii) For any $\beta, \gamma \in \pi$ and $x \in H_{\beta}, y \in H_{\gamma}$,

$$
\begin{equation*}
\sigma_{\gamma, \beta}^{-1}(y, x)=\varepsilon_{\beta \gamma}\left(x_{(1, \beta)} y_{(1, \gamma)}\right) \sigma_{\gamma, \beta}\left(y_{(2, \gamma)}, x_{(2, \beta)}\right) \varepsilon_{\gamma \beta}\left(y_{(3, \gamma)} x_{(3, \beta)}\right) \tag{5.8}
\end{equation*}
$$

where $\sigma^{-1}=\left\{\sigma_{\beta, \gamma}^{-1}\right\}_{\beta, \gamma \in \pi}$ is called a weak convolution inverse of $\sigma=\left\{\sigma_{\beta, \gamma}\right\}_{\beta, \gamma \in \pi}$.
Let $\sigma=\left\{\sigma_{\beta, \gamma}: H_{\beta} \otimes H_{\gamma} \rightarrow k\right\}_{\beta, \gamma \in \pi}$ be a family of linear maps such that $\sigma_{\beta, \gamma}$ is weak convolution invertible for any $\beta, \gamma \in \pi$. Let M and N be any crossed left π - H-comodules. For any $\beta, \gamma \in \pi$, define $c_{M_{\beta}, N_{\gamma}}: M_{\beta} \boxtimes N_{\gamma} \rightarrow N_{\gamma} \boxtimes M_{\gamma^{-1} \beta \gamma}$ by

$$
c_{M_{\beta}, N_{\gamma}}(m \otimes n)=\sigma_{\beta, \gamma}\left(m_{(-1, \beta)}, n_{(-1, \gamma)}\right)\left(n_{(0, \gamma)} \otimes \xi_{M, \gamma^{-1}}\left(m_{(0, \beta)}\right)\right),
$$

where $m \in M_{\beta}$ and $n \in N_{\gamma}$. For any $\alpha \in \pi$, define

$$
\left(c_{M, N}\right)_{\alpha}:(M \boxtimes N)_{\alpha}=\bigoplus_{\beta \gamma=\alpha} M_{\beta} \boxtimes N_{\gamma} \rightarrow(N \boxtimes M)_{\alpha}=\bigoplus_{\beta \gamma=\alpha} N_{\gamma} \boxtimes M_{\gamma^{-1} \beta \gamma}
$$

by $\left(c_{M, N}\right)_{\alpha}=\bigoplus_{\beta \gamma=\alpha} c_{M_{\beta}, N_{\gamma}}$. Then it is obvious that $\left(c_{M, N}\right)_{\alpha}$ is a k-linear isomorphism for any $\alpha \in \pi$ if and only if so is $c_{M_{\beta}, N_{\gamma}}$ for any $\beta, \gamma \in \pi$.

Lemma 5.2 With the above notations, we have
(i) $\left(c_{M, N}\right)_{\alpha}$ is a k-linear isomorphism for any crossed left π - H-comodules M and N, and $\alpha \in \pi$ if and only if σ is a family of weak convolution invertible k-linear maps.
(ii) $c_{M, N}: M \boxtimes N \rightarrow N \boxtimes M$ is a left π - H-comodule morphism for any crossed left π - H comodules M and N if and only if

$$
\sigma_{\beta, \gamma}\left(x_{(1, \beta)}, y_{(1, \gamma)}\right) y_{(2, \gamma)} \xi_{\gamma^{-1}}\left(x_{(2, \beta)}\right)=x_{(1, \beta)} y_{(1, \gamma)} \sigma_{\beta, \gamma}\left(x_{(2, \beta)}, y_{(2, \gamma)}\right)
$$

for all $\beta, \gamma \in \pi$ and $x \in H_{\beta}, y \in H_{\gamma}$.
Proof (i) Assume that $\sigma=\left\{\sigma_{\beta, \gamma}: H_{\beta} \otimes H_{\gamma} \rightarrow k\right\}_{\beta, \gamma \in \pi}$ is a family of weak convolution invertible k-linear maps. Then define $c_{N_{\gamma}, M_{\gamma^{-1} \beta \gamma}}^{-1}: N_{\gamma} \boxtimes M_{\gamma^{-1} \beta \gamma} \rightarrow M_{\beta} \boxtimes N_{\gamma}$ by

$$
c_{N_{\gamma}, M_{\gamma} \boldsymbol{1}_{\beta \gamma}}^{-1}(n \otimes p)=\sigma_{\beta, \gamma}^{-1}\left(\xi_{\gamma}\left(p_{\left(-1, \gamma^{-1} \beta \gamma\right)}\right), n_{(-1, \gamma)}\right) \xi_{M, \gamma}\left(p_{\left(0, \gamma^{-1} \beta \gamma\right)}\right) \otimes n_{(0, \gamma)}
$$

where $p \in M_{\gamma^{-1} \beta \gamma}$ and $n \in N_{\gamma}$. Then $c_{M_{\beta}, N_{\gamma}}$ is a k-linear isomorphism as follows:

$$
\left.\left.\begin{array}{l}
c_{N_{\gamma}, M_{\gamma} 1_{\beta \gamma}}^{-1} c_{M_{\beta}, N_{\gamma}}(m \otimes n) \\
=c_{N_{\gamma}, M_{\gamma} \boldsymbol{1}_{\beta \gamma}}^{-1}\left(\sigma_{\beta, \gamma}\left(m_{(-1, \beta)}, n_{(-1, \gamma)}\right)\left(n_{(0, \gamma)} \otimes \xi_{M, \gamma^{-1}}\left(m_{(0, \beta)}\right)\right)\right) \\
=\sigma_{\beta, \gamma}\left(m_{(-1, \beta)}, n_{(-1, \gamma)}\right) \sigma_{\beta, \gamma}^{-1}\left(\xi_{\gamma}\left(\xi_{M, \gamma^{-1}}\left(m_{(0, \beta)}\right)_{\left(-1, \gamma^{-1} \beta \gamma\right)}\right), n_{(-1, \gamma)}\right) \\
\quad \xi_{M, \gamma}\left(\xi_{M, \gamma^{-1}}\left(m_{(0, \beta)}\right)\left(0, \gamma^{-1} \beta \gamma\right)\right.
\end{array}\right) \otimes n_{(0, \gamma)}\right)
$$

Conversely, let $M=N=H$. Then $c_{H_{\beta}, H_{\gamma}}: H_{\beta} \boxtimes H_{\gamma} \rightarrow H_{\gamma} \boxtimes H_{\gamma^{-1} \beta \gamma}$ is a left π - H-comodule isomorphism. Then $\sigma=\left\{\sigma_{\beta, \gamma}: H_{\beta} \otimes H_{\gamma} \rightarrow k\right\}_{\beta, \gamma \in \pi}$ by $\sigma_{\beta, \gamma}(x, y)=\left(\varepsilon_{\beta} \otimes \varepsilon_{\beta^{-1} \gamma \beta}\right) c_{H_{\gamma}, H_{\beta}}(y \otimes$
$x), x \in H_{\beta}, y \in H_{\gamma}$. Define a family of k-linear maps $\tau=\left\{\tau_{\beta, \gamma}: H_{\beta} \otimes H_{\gamma} \rightarrow k\right\}_{\beta, \gamma \in \pi}$ by

$$
\tau_{\beta, \gamma}(x \otimes y)=\left(\varepsilon_{\beta \gamma \beta^{-1}} \otimes \varepsilon_{\beta}\right) c_{H_{\beta}, H_{\gamma}}^{-1}(x \otimes y), x \in H_{\beta}, y \in H_{\gamma} .
$$

Then

$$
c_{H_{\beta}, H_{\gamma}}^{-1}(x \otimes y)=\left(\xi_{\beta}\left(y_{(2, \gamma)}\right) \otimes x_{(2, \beta)}\right) \tau_{\beta \gamma \beta^{-1}, \beta}\left(\xi_{\beta}\left(y_{(2, \gamma)}\right), x_{(1, \beta)}\right), x \in H_{\beta}, y \in H_{\gamma} .
$$

Thus for any $x \in H_{\beta}, y \in H_{\gamma}$, we have

$$
\begin{aligned}
& x \otimes y=c_{H_{\beta \gamma \beta}-1}, H_{\beta} \\
& c_{H_{\beta}, H_{\gamma}}^{-1}(x \otimes y) \\
&=c_{H_{\beta \gamma \beta}-1}, H_{\beta}\left(\left(\xi_{\beta}\left(y_{(2, \gamma)}\right) \otimes x_{(2, \beta)}\right) \tau_{\gamma, \beta}\left(y_{(1, \gamma)}, x_{(1, \beta)}\right)\right) \\
&=x_{(3, \beta)} \otimes y_{(3, \gamma)} \sigma_{\beta \gamma \beta^{-1}, \beta}\left(\xi_{\beta}\left(y_{(2, \gamma)}\right), x_{(2, \beta)}\right) \tau_{\beta \gamma \beta^{-1}, \beta}\left(\xi_{\beta}\left(y_{(1, \gamma)}\right), x_{(1, \beta)}\right)
\end{aligned}
$$

and

$$
x \otimes y=\varepsilon_{\beta \gamma}\left(x_{(1, \beta)} y_{(1, \gamma)}\right) x_{(2, \beta)} \otimes_{k} y_{(2, \gamma)}
$$

Applying $\varepsilon_{\beta} \otimes_{k} \varepsilon_{\gamma}$ to the above two equations, one gets

$$
\sigma_{\gamma, \beta}\left(y_{(2, \gamma)}, x_{(2, \beta)}\right) \tau_{\gamma, \beta}\left(y_{(1, \gamma)}, x_{(1, \beta)}\right)=\varepsilon_{\beta \gamma}(x y) .
$$

Then an argument similar to the above shows that

$$
\left.\sigma_{\beta, \gamma}\left(x_{(1, \beta)}, y_{(1, \gamma)}\right) \tau_{\beta, \gamma}\left(x_{(2, \beta)}, y_{(2, \gamma)}\right)\right)=\varepsilon_{\beta \gamma}(x y) .
$$

And we have

$$
\begin{aligned}
& \sigma_{\beta, \gamma}(x, y)=\left(\varepsilon_{\beta} \otimes \varepsilon_{\beta^{-1} \gamma \beta}\right)\left(\sigma_{\gamma, \beta}\left(y_{(1, \gamma)}, x_{(1, \beta)}\right)\left(x_{(2, \beta)} \otimes \xi_{\beta^{-1}}\left(y_{(2, \gamma)}\right)\right)\right) \\
&=\left(\varepsilon_{\beta} \otimes \varepsilon_{\beta^{-1} \gamma \beta}\right)\left(\varepsilon_{\gamma \beta}\left(y_{(1, \gamma)} x_{(1, \beta)}\right) \sigma_{\gamma, \beta}\left(y_{(2, \gamma)}, x_{(2, \beta)}\right)\left(x_{(3, \beta)} \otimes \xi_{\beta^{-1}}\left(y_{(3, \gamma)}\right)\right)\right) \\
&= \varepsilon_{\gamma \beta}\left(y_{(1, \gamma)} x_{(1, \beta)}\right)\left(\varepsilon_{\beta} \otimes \varepsilon_{\beta^{-1} \gamma \beta}\right)\left(\sigma_{\gamma, \beta}\left(y_{(2, \gamma)}, x_{(2, \beta)}\right)\left(x_{(3, \beta)} \otimes \xi_{\beta^{-1}}\left(y_{(3, \gamma)}\right)\right)\right) \\
&= \varepsilon_{\gamma \beta}\left(y_{(1, \gamma)} x_{(1, \beta)}\right)\left(\varepsilon_{\beta} \otimes \varepsilon_{\beta^{-1} \gamma \beta}\right)\left(c_{H_{\gamma}, H_{\beta}}\left(y_{(2, \gamma)} \otimes x_{(2, \beta)}\right)\right) \\
&= \varepsilon_{\gamma \beta}\left(y_{(1, \gamma)} x_{(1, \beta)}\right)\left(\varepsilon_{\beta} \otimes \varepsilon_{\beta^{-1} \gamma \beta}\right)\left(S_{\beta} \otimes S_{\beta^{-1} \gamma \beta}\right)\left(c_{H_{\gamma}, H_{\beta}}\left(y_{(2, \gamma)} \otimes x_{(2, \beta)}\right)\right) \\
&= \varepsilon_{\gamma \beta}\left(y_{(1, \gamma)} x_{(1, \beta)}\right)\left(\varepsilon_{\beta} \otimes \varepsilon_{\beta^{-1} \gamma \beta}\right) c_{H_{\gamma-1}, H_{\beta^{-1}}}\left(S_{\gamma} \otimes S_{\beta}\right)\left(y_{(2, \gamma)} \otimes x_{(2, \beta)}\right) \\
&= \varepsilon_{\gamma \beta}\left(y_{(1, \gamma)} x_{(1, \beta)}\right)\left(\varepsilon_{\beta} \otimes \varepsilon_{\beta^{-1} \gamma \beta}\right) c_{H_{\gamma}-1, H_{\beta}-1}\left(S_{\gamma}\left(y_{(2, \gamma)}\right) \otimes S_{\beta}\left(x_{(2, \beta)}\right)\right) \\
&= \varepsilon_{\gamma \beta}\left(y_{(1, \gamma)} x_{(1, \beta)}\right)\left(\varepsilon_{\beta} \otimes \varepsilon_{\beta^{-1} \gamma \beta}\right) c_{H_{\gamma}-1, H_{\beta}-1}\left(S_{\gamma}\left(y_{(2, \gamma)}\right) \otimes S_{\beta}\left(x_{(2, \beta)}\right)\right) \\
& \quad \varepsilon_{\gamma^{-1} \beta^{-1}}\left(S_{\gamma}\left(y_{(3, \gamma)}\right) S_{\beta}\left(x_{(3, \beta)}\right)\right) \\
&= \varepsilon_{\gamma \beta}\left(y_{(1, \gamma)} x_{(1, \beta)}\right)\left(\varepsilon_{\beta} \otimes \varepsilon_{\beta^{-1} \gamma \beta}\right) c_{H_{\gamma}, H_{\beta}}\left(y_{(2, \gamma)} \otimes x_{(2, \beta)}\right) \varepsilon_{\beta \gamma}\left(x_{(3, \beta)} y_{(3, \gamma)}\right) \\
&= \varepsilon_{\gamma \beta}\left(y_{(1, \gamma)} x_{(1, \beta)}\right) \sigma_{\beta, \gamma}\left(x_{(2, \beta)}, y_{(2, \gamma)}\right) \varepsilon_{\beta \gamma}\left(x_{(3, \beta)} y_{(3, \gamma)}\right) .
\end{aligned}
$$

Similarly, we have

$$
\tau_{\beta, \gamma}(x, y)=\varepsilon_{\beta \gamma}\left(x_{(1, \beta)} y_{(1, \gamma)}\right) \tau_{\beta \gamma}\left(x_{(2, \beta)}, y_{(2, \gamma)}\right) \varepsilon_{\gamma \beta}\left(y_{(3, \gamma)} x_{(3, \beta)}\right) .
$$

This shows that $\sigma=\left\{\sigma_{\beta, \gamma}\right\}$ is a family of weak convolution invertible k-linear maps with inverse $\tau=\left\{\tau_{\beta, \gamma}\right\}$.
(ii) Now we claim that $c_{M, N}=\left\{\left(c_{M, N}\right)_{\alpha}\right\}_{\alpha \in \pi}: M \boxtimes N \rightarrow N \boxtimes M$ is a morphism of left
π - H-comodules. In fact, for $\beta, \gamma \in \pi, m \in M_{\beta}$ and $n \in N_{\gamma}$, we have

$$
\begin{aligned}
& \rho^{(N \boxtimes M)_{\beta \gamma} c_{M_{\beta}, N_{\gamma}}(m \otimes n)} \\
& \quad=\rho^{(N \otimes M)_{\beta \gamma}}\left(n_{(0, \gamma)} \otimes \xi_{M, \gamma^{-1}}\left(m_{(0, \beta)}\right)\right) \sigma_{\beta, \gamma}\left(m_{(-1, \beta)}, n_{(-1, \gamma)}\right) \\
& \quad=n_{(-1, \gamma)} \xi_{\gamma^{-1}}\left(m_{(-1, \beta)}\right) \otimes n_{(0, \gamma)} \otimes \xi_{M, \gamma^{-1}}\left(m_{(0, \beta)}\right) \sigma_{\beta, \gamma}\left(m_{(-2, \beta)}, n_{(-2, \gamma)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \quad\left(\mathrm{id}_{H_{\beta \gamma}} \boxtimes c_{M_{\beta}, N_{\gamma}}\right) \rho^{(N \boxtimes M)_{\beta \gamma}}(m \otimes n) \\
& \quad=m_{(-2, \beta)} n_{(-2, \gamma)} \otimes n_{(0, \gamma)} \otimes \xi_{M, \gamma^{-1}}\left(m_{(0, \beta)}\right) \sigma_{\beta, \gamma}\left(m_{(-1, \beta)}, n_{(-1, \gamma)}\right)
\end{aligned}
$$

Because $\xi_{M, \gamma^{-1}}$ is an isomorphism, if

$$
\sigma_{\beta, \gamma}\left(x_{(1, \beta)}, y_{(1, \gamma)}\right) y_{(2, \gamma)} \xi_{\gamma^{-1}}\left(x_{(2, \beta)}\right)=x_{(1, \beta)} y_{(1, \gamma)} \sigma_{\beta, \gamma}\left(x_{(2, \beta)}, y_{(2, \gamma)}\right)
$$

we have $c_{M_{\beta}, N_{\gamma}}$ is an isomorphism of left $H_{\beta \gamma}$-comodules. Conversely, let $M=N=H$. Since $c_{H, H}$ is a left π-H-comodule map, $\rho^{(H \boxtimes H)_{\beta \gamma}}\left(c_{H_{\beta}, H_{\gamma}}\right)=\left(\operatorname{id}_{H_{\beta \gamma}} \boxtimes c_{H_{\beta}, H_{\gamma}}\right) \rho^{(H \boxtimes H)_{\beta \gamma}}$ for all $\beta, \gamma \in \pi$. Now let $\beta \in \pi$ and $x \in H_{\beta}, y \in H_{\gamma}$. We have

$$
\begin{aligned}
& \rho^{(H \boxtimes H)_{\beta \gamma}} c_{H_{\beta}, H_{\gamma}}(x \otimes y)=\rho^{(H \boxtimes H)_{\beta \gamma}\left(y_{(2, \gamma)} \otimes \xi_{\gamma^{-1}}\left(x_{(2, \beta)}\right)\right) \sigma_{\beta, \gamma}\left(x_{(1, \beta)}, y_{(1, \beta)}\right)} \\
& \quad=\sigma_{\beta, \gamma}\left(x_{(1, \beta)}, y_{(1, \gamma)}\right) y_{(2, \gamma)} \xi_{\gamma^{-1}}\left(x_{(2, \beta)}\right) \otimes y_{(3, \gamma)} \otimes \xi_{\gamma^{-1}}\left(x_{(3, \beta)}\right) .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& \left(\mathrm{id}_{H_{\beta \gamma}} \boxtimes c_{H_{\beta}, H_{\gamma}}\right) \rho^{(H \boxtimes H)_{\beta \gamma}}(x \otimes y)=\left(\operatorname{id}_{H_{\beta \gamma}} \boxtimes c_{H_{\beta}, H_{\gamma}}\right)\left(x_{(1, \beta)} y_{(1, \gamma)} \otimes x_{(2, \beta)} \otimes y_{(2, \gamma)}\right) \\
& \quad=\sigma_{\beta, \gamma}\left(x_{(2, \beta)}, y_{(2, \gamma)}\right) x_{(1, \beta)} y_{(1, \gamma)} \otimes y_{(3, \gamma)} \otimes \xi_{\gamma^{-1}}\left(x_{(3, \beta)}\right) .
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
& \sigma_{\beta, \gamma}\left(x_{(1, \beta)}, y_{(1, \gamma)}\right) y_{(2, \gamma)} \xi_{\gamma^{-1}}\left(x_{(2, \beta)}\right) \otimes y_{(3, \gamma)} \otimes \xi_{\gamma^{-1}}\left(x_{(3, \beta)}\right) \\
& \quad=\sigma_{\beta, \gamma}\left(x_{(2, \beta)}, y_{(2, \gamma)}\right) x_{(1, \beta)} y_{(1, \gamma)} \otimes y_{(3, \gamma)} \otimes \xi_{\gamma^{-1}}\left(x_{(3, \beta)}\right)
\end{aligned}
$$

Applying $\operatorname{id}_{H_{\beta \gamma}} \otimes \varepsilon_{\gamma} \otimes \varepsilon_{\gamma^{-1} \beta \gamma}$ to the both sides of the above equation, one gets

$$
\sigma_{\beta, \gamma}\left(x_{(1, \beta)}, y_{(1, \gamma)}\right) y_{(2, \gamma)} \xi_{\gamma^{-1}}\left(x_{(2, \beta)}\right)=x_{(1, \beta)} y_{(1, \gamma)} \sigma_{\beta, \gamma}\left(x_{(2, \beta)}, y_{(2, \gamma)}\right)
$$

Lemma 5.3 The following two statements are equivalent:
(i) $\xi_{N \boxtimes M, z}\left(c_{M, N}\right)_{\alpha}=\left(c_{M, N}\right)_{z \alpha z^{-1}} \xi_{M \boxtimes N, z}$ for any crossed left π - H-comodules M and N, and $\alpha, z \in \pi$.
(ii) $\sigma_{\beta, \gamma}(x, y)=\sigma_{z \beta z^{-1}, z \gamma z^{-1}}\left(\xi_{z}(x), \xi_{z}(y)\right)$ for any $\beta, \gamma, z \in \pi$ and $x \in H_{\beta}, y \in H_{\gamma}$.

Proof Let M and N be crossed left π - H-comodules. For any $\alpha, \beta, z \in \pi, m \in M_{\beta}$ and $n \in N_{\gamma}$, we have

$$
\begin{aligned}
& \xi_{N \boxtimes M, z}\left(c_{M, N}\right)_{\beta \gamma}(m \otimes n)=\left(\xi_{N, z} \otimes \xi_{M, z}\right)\left(c_{M_{\beta}, N_{\gamma}}\right) \\
& \quad=\left(\xi_{N, z} \otimes \xi_{M, z}\right) \sigma_{\beta, \gamma}\left(m_{(-1, \beta)}, n_{(-1, \gamma)}\right)\left(n_{(0, \gamma)} \otimes \xi_{M, \gamma^{-1}}\left(m_{(0, \beta)}\right)\right) \\
& \quad=\sigma_{\beta, \gamma}\left(m_{(-1, \beta)}, n_{(-1, \gamma)}\right)\left(\xi_{N, z}\left(n_{(0, \gamma)}\right) \otimes \xi_{M, z} \xi_{M, \gamma^{-1}}\left(m_{(0, \beta)}\right)\right) \\
& \quad=\sigma_{\beta, \gamma}\left(m_{(-1, \beta)}, n_{(-1, \gamma)}\right)\left(\xi_{N, z}\left(n_{(0, \gamma)}\right) \otimes \xi_{M, z \gamma^{-1}}\left(m_{(0, \beta)}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(c_{M, N}\right)_{z \beta \gamma z^{-1}} \xi_{M \boxtimes N, z}(m \otimes n)=c_{M_{z \beta z-1}, N_{z \gamma z^{-1}}} \xi_{M \boxtimes N, z}(m \otimes n) \\
& \quad=c_{M_{z \beta z-1}, N_{z \gamma z^{-1}}}\left(\xi_{z}(m) \otimes \xi_{z}(n)\right) \\
& \quad=\sigma_{z \beta z^{-1}, z \gamma z^{-1}}\left(\xi_{z}\left(m_{(-1, \beta)}\right), \xi_{z}\left(n_{(-1, \gamma)}\right)\right)\left(\xi_{N, z}\left(n_{(0, \gamma)}\right) \otimes \xi_{M, z \gamma^{-1} z^{-1}} \xi_{M, z}\left(m_{(0, \beta)}\right)\right)
\end{aligned}
$$

Then $\xi_{N \boxtimes M, z}\left(c_{M, N}\right)_{\beta \gamma}=\left(c_{M, N}\right)_{z \beta \gamma z^{-1}} \xi_{M \boxtimes N, z}$ if and only if $\sigma_{\beta, \gamma}(x, y)=\sigma_{z \beta z^{-1}, z \gamma z^{-1}}\left(\xi_{z}(x), \xi_{z}(y)\right)$.

Lemma 5.4 The following two statements are equivalent:
(i) $c_{M, N \boxtimes P}=\left(\mathrm{id}_{N} \boxtimes c_{M, P}\right)\left(c_{M, N} \boxtimes \mathrm{id}_{P}\right)$ for any crossed left π - H-comodules M, N and P, if and only if for any $\alpha, \beta, \gamma \in \pi$ and $x \in H_{\alpha}, y \in H_{\beta}, p \in H_{\gamma}$,

$$
\sigma_{\alpha, \beta \gamma}(x, y p)=\sigma_{\alpha, \beta}\left(x_{(1, \alpha)}, y\right) \sigma_{\beta^{-1} \beta \alpha, \gamma}\left(\xi_{\beta^{-1}}\left(x_{(2, \alpha)}\right), p\right) ;
$$

(ii) $c_{M \boxtimes N, P}=\left(c_{M, P} \boxtimes \mathrm{id}_{N}\right)\left(\mathrm{id}_{M} \boxtimes c_{N, P}\right)$ for any crossed left π - H-comodules M, N and P, if and only if for any $\alpha, \beta, \gamma \in \pi$ and $x \in H_{\alpha}, y \in H_{\beta}, p \in H_{\gamma}$

$$
\sigma_{\alpha \beta, \gamma}(x y, p)=\sigma_{\alpha, \gamma}\left(x, p_{(2, \gamma)}\right) \sigma_{\beta, \gamma}\left(y, p_{(1, \gamma)}\right) .
$$

Proof We only prove Part (2). The proof of Part (1) is similar. Let M, N, P be any crossed left π - H-comodules for $\alpha, \beta, \gamma \in \pi$. Then for any $m \in M_{\alpha}, n \in N_{\beta}$ and $p \in P_{\gamma}$, we have

$$
\begin{aligned}
& \left(c_{M \boxtimes N, P}\right)_{\alpha \beta \gamma}(m \otimes n \otimes p)=c_{M_{\alpha} \boxtimes N_{\beta}, P_{\gamma}}(m \otimes n \otimes p) \\
& \quad=p_{(0, \gamma)} \otimes \xi_{M, \gamma^{-1}}\left(m_{(0, \alpha)}\right) \otimes \xi_{N, \gamma^{-1}}\left(n_{(0, \beta)}\right) \sigma_{\alpha \beta, \gamma}\left(m_{(-1, \alpha)} n_{(-1, \beta)}, p_{(-1, \gamma)}\right) \\
& =p_{(0, \gamma)} \otimes \xi_{M, \gamma^{-1}}\left(m_{(0, \alpha)}\right) \otimes \xi_{N, \gamma^{-1}}\left(n_{(0, \beta)}\right) \sigma_{\alpha, \gamma}\left(m_{(-1, \alpha)}, p_{(-1, \gamma)(2, \gamma)}\right) \\
& \quad \sigma_{\beta, \gamma}\left(n_{(-1, \beta)}, p_{(-1, \gamma)(1, \gamma)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\left(c_{M, P} \boxtimes \operatorname{id}_{N}\right)\left(\operatorname{id}_{M} \boxtimes c_{N, P}\right)\right)_{\alpha \beta \gamma}(m \otimes n \otimes p) \\
& \quad=\left(c_{M_{\alpha}, P_{\gamma}} \boxtimes \operatorname{id}_{N_{\gamma-1} \beta_{\gamma}}\right)\left(\operatorname{id}_{M_{\alpha}} \boxtimes c_{N_{\beta}, P_{\gamma}}\right)(m \otimes n \otimes p) \\
& \quad=\left(c_{M_{\alpha}, P_{\gamma}} \boxtimes \operatorname{id}_{N_{\gamma}{ }^{-1} \beta_{\gamma}}\right)\left(m \otimes p_{(0, \gamma)} \otimes \xi_{N, \gamma^{-1}}\left(n_{(0, \beta)}\right)\right) \sigma_{\beta, \gamma}\left(n_{(-1, \beta)}, p_{(-1, \gamma)}\right) .
\end{aligned}
$$

Thus, if $\sigma_{\alpha \beta, \gamma}(x y, p)=\sigma_{\alpha, \gamma}\left(x, p_{(2, \gamma)}\right) \sigma_{\beta, \gamma}\left(y, p_{(1, \gamma)}\right)$ for any $\alpha, \beta, \gamma \in \pi$ and $x \in H_{\alpha}, y \in H_{\beta}, p \in$ H_{γ}, then $c_{M \boxtimes N, P}=\left(c_{M, P} \boxtimes \operatorname{id}_{N}\right)\left(\mathrm{id}_{M} \boxtimes c_{N, P}\right)$ for any crossed left π - H-comodules M, N and P. Conversely, let $M=N=P=H$. Since c is a braiding, we have $c_{H_{\alpha} \boxtimes H_{\beta}, H_{\gamma}}=\left(c_{H_{\alpha}, H_{\gamma}} \boxtimes\right.$ $\left.\operatorname{id}_{H_{\beta}}\right)\left(\operatorname{id}_{H_{\alpha}} \boxtimes c_{H_{\beta}, H_{\gamma}}\right)$. Thus, for any $x \in H_{\alpha}, y \in H_{\beta}, z \in H_{\gamma}$, we have

$$
c_{H_{\alpha} \boxtimes H_{\beta}, H_{\gamma}}(x \otimes y \otimes z)=z_{(2, \gamma)} \otimes \xi_{\gamma^{-1}}\left(x_{(2, \alpha)}\right) \otimes \xi_{\gamma^{-1}}\left(y_{(2, \beta)}\right) \sigma_{\alpha \beta, \gamma}\left(x_{(1, \alpha)} y_{(1, \beta)}, z_{(1, \gamma)}\right)
$$

and

$$
\begin{aligned}
& \left(c_{H_{\alpha}, H_{\gamma}} \boxtimes \operatorname{id}_{H_{\beta}}\right)\left(\operatorname{id}_{H_{\alpha}} \boxtimes c_{H_{\beta}, H_{\gamma}}\right)(x \otimes y \otimes z) \\
& \quad=\left(c_{H_{\alpha}, H_{\gamma}} \boxtimes \operatorname{id}_{H_{\beta}}\right)\left(x \otimes z_{(2, \gamma)} \otimes \xi_{\gamma^{-1}}\left(y_{(2, \beta)}\right)\right) \sigma_{\beta, \gamma}\left(y_{(1, \beta)}, z_{(1, \gamma)}\right) \\
& \quad=z_{(2, \gamma)(2, \gamma)} \otimes \xi_{\gamma^{-1}}\left(x_{(2, \alpha)}\right) \otimes \xi_{\gamma^{-1}}\left(y_{(2, \beta)}\right) \sigma_{\alpha, \gamma}\left(x_{(1, \alpha)} \otimes z_{(2, \gamma)(1, \gamma)}\right) \sigma_{\beta, \gamma}\left(y_{(1, \beta)}, z_{(1, \gamma)}\right) .
\end{aligned}
$$

Applying $\varepsilon_{\gamma} \otimes \varepsilon_{\gamma^{-1} \alpha \gamma} \otimes \varepsilon_{\gamma^{-1} \beta \gamma}$ to the above two equations, one gets

$$
\sigma_{\alpha, \beta \gamma}(x, y z)=\sigma_{\alpha, \beta}\left(x_{(1, \alpha)}, y\right) \sigma_{\beta^{-1} \alpha \beta, \gamma}\left(\xi_{\beta^{-1}}\left(x_{(2, a)}\right), z\right)
$$

Theorem 5.5 Let $H=\left(\left\{H_{\alpha}\right\}, m, \eta\right)$ be a crossed weak Hopf π-algebra and let $\sigma=\left\{\sigma_{\beta, \gamma}: H_{\beta} \otimes\right.$ $\left.H_{\gamma} \rightarrow k\right\}_{\beta, \gamma \in \pi}$ be a family of k-linear maps. Then the monoidal category ($\left.{ }^{H} \mathcal{M}_{\text {crossed }}, \boxtimes, H_{1}^{t}, a, l, r\right)$ of crossed left π - H-comodules is a braided monoidal category with the braiding c if and only if $H=\left(\left\{H_{\alpha}\right\}, m, \eta\right)$ is a coquasitriangular weak Hopf π-algebra where c is defined by σ as above.

Proof If c is a braiding of the monoidal category ($\left.{ }^{H} \mathcal{M}_{\text {crossed }}, \boxtimes, H_{1}^{t}, a, l, r\right)$, then it follows from Lemmas 5.2, 5.3 and 5.4 that σ is a weak coquasitriangular structure. Conversely, assume that σ is a weak coquasitriangular structure. Then by Lemmas 5.2, 5.3 and 5.4, it suffices to show that $c=\left\{c_{M, N}\right\}$ is natural. Now let $g=\left\{g_{\alpha}\right\}_{\alpha \in \pi}: M \rightarrow M^{\prime}$ and $f=\left\{f_{\beta}\right\}_{\beta \in \pi}: N \rightarrow N^{\prime}$ be left π - H-comodule morphisms. Then for any $\alpha, \beta \in \pi, m \in M_{\alpha}$ and $n \in N_{\beta}$, we have

$$
\begin{aligned}
\left((f \otimes g) c_{M, N}\right)_{\alpha \beta}(m \otimes n) & =\left(f_{\beta} \otimes g_{\beta^{-1} \alpha \beta}\right) c_{M_{\alpha}, N_{\beta}}(m \otimes n) \\
& =\left(f_{\beta} \otimes g_{\beta^{-1} \alpha \beta}\right)\left(n_{(0, \beta)} \otimes \xi_{\beta^{-1}}\left(m_{(0, \alpha)}\right) \sigma_{\alpha, \beta}\left(m_{(-1, \alpha)}, n_{(-1, \beta)}\right)\right) \\
& =f_{\beta}\left(n_{(0, \beta)}\right) \otimes g_{\beta^{-1} \alpha \beta}\left(\xi_{\beta^{-1}}\left(m_{(0, \alpha)}\right)\right) \sigma_{\alpha, \beta}\left(m_{(-1, \alpha)}, n_{(-1, \beta)}\right) \\
& =f_{\beta}(n)_{(0, \beta)} \otimes \xi_{\beta^{-1}}\left(g_{\alpha}(m)_{(0, \alpha)}\right) \sigma_{\alpha, \beta}\left(g_{\alpha}(m)_{(-1, \alpha)}, f_{\beta}(n)_{(-1, \beta)}\right) \\
& =c_{M_{\alpha}^{\prime}, N_{\beta}^{\prime}}\left(g_{\alpha}(m) \otimes f_{\beta}(n)\right) \\
& =c_{M_{\alpha}^{\prime}, N_{\beta}^{\prime}}\left(g_{\alpha} \otimes f_{\beta}\right)(m \otimes n) \\
& =\left(c_{M^{\prime}, N^{\prime}}(g \otimes f)\right)_{\alpha \beta}(m \otimes n) .
\end{aligned}
$$

Hence $(f \otimes g) c_{M, N}=c_{M^{\prime}, N^{\prime}}(g \otimes f)$. The proof is completed.
Acknowledgements The author is grateful to the referee for carefully reading the manuscript and for many valuable comments which largely improved the article.

References

[1] G. BÖHM, F. NILL, K. SZLÁCHANYI. Weak Hopf algebras I: Integral theory and C^{*}-structure. J. Algebra, 1999, 221(2): 385-438.
[2] V. G. DRINFEL'D. Quantum Groups. Amer. Math. Soc., Providence, RI, 1987.
[3] C. KASSEL. Quantum Groups. Springer-Verlag, New York, 1995.
[4] S. MONTGOMERY. Hopf Algebras and Their Actions on Rings. CBMS series in Math. Vol. 82, Amer. Math. Soc, Providence, RI, 1993.
[5] D. E. RADFORD. On the antipode of a quasitriangular Hopf algebra. J. Algebra, 1992, 151(1): 1-11.
[6] M. E. SWEEDLER. Hopf Algebras. Benjamin, New York, 1969.
[7] V. TURAEV. Homotopy Quantum Field Theory. European Mathematical Society, 2000.
[8] A. VAN DAELE, Shuanhong WANG. New braided crossed categories and Drinfel'd quantum double for weak Hopf group coalgebras. Comm. Algebra, 2008, 36(6): 2341-2386.
[9] Shuanhong WANG. Coquasitriangular Hopf group algebras and Drinfel'd co-doubles. Comm. Algebra, 2007, 35(1): 77-101.

[^0]: Received June 5, 2013; Accepted September 2, 2014
 Supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK2012736) and the Fund of Science and Technology Department of Guizhou Province (Grant No. 2014GZ81365).
 E-mail address: shuangjguo@gmail.com

