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Abstract In this paper, we use the methods of differential subordination and the properties

of convolution to investigate the class Wp(H(ai, bj);ϕ) of multivalent analytic functions, which

is defined by the Dziok-Srivastava operator H(a1, . . . , aq; b1, . . . , bs). Some inclusion properties

for this class are obtained.
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1. Introduction

Let Ap denote the class of functions f of the form

f(z) = zp +

∞∑
k=1

ak+pz
k+p, p ∈ N = {1, 2, . . .}, (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}. Also, let A1 = A.

Let f, g ∈ Ap, where f is given by (1.1) and g is defined by

g(z) = zp +

∞∑
k=1

bk+pz
k+p.

Then the Hadmard product (or convolution) f ∗ g of the functions f and g is defined by

(f ∗ g)(z) = zp +
∞∑
k=1

ak+pbk+pz
k+p = (g ∗ f)(z).

For two functions f and g, analytic in U, we say that the function f is subordinate to g in

U, if there exists a Schwarz function ω, which is analytic in U with

ω(0) = 0 and |ω(z)| < 1, z ∈ U,
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such that

f(z) = g(ω(z)), z ∈ U.

We denote this subordination by f(z) ≺ g(z). Furthermore, if the function g is univalent in U,
then we have the following equivalence [3, 12, 19]:

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

Let M be the class of functions ϕ(z) which are analytic and univalent in U and for which

ϕ(U) is convex with ϕ(0) = 1 and Re[ϕ(z)] > 0 for z ∈ U.
By making use of the principle of subordination between analytic functions, Ma and Minda

[11] introduced the subclasses S∗
p (ϕ) and Kp(ϕ) of the class Ap for p ∈ N and ϕ ∈ M , which are

defined by

S∗
p (ϕ) =

{
f ∈ Ap :

zf ′(z)

pf(z)
≺ ϕ(z) in U

}
and

Kp(ϕ) =
{
f ∈ Ap :

1

p
+

zf ′′(z)

pf ′(z)
≺ ϕ(z) in U

}
.

In its special case when

p = 1 and ϕ(z) =
1 +Az

1 +Bz
, −1 ≤ B < A ≤ 1,

we obtain the classes

S∗(A,B) = S∗
1 [
1 +Az

1 +Bz
] =

{
f ∈ A :

zf ′(z)

f(z)
≺ 1 +Az

1 +Bz
(z ∈ U)

}
and

K(A,B) = K1[
1 +Az

1 +Bz
] =

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ 1 +Az

1 +Bz
(z ∈ U)

}
,

which were introduced by Janowski [10]. Further, for A = 1 and B = −1, the above classes

reduce to the well-known classes S∗ and K of starlike and convex functions in U, respectively.
For parameters ai ∈ C (i = 1, 2, . . . , q) and bj ∈ C\Z−

0 (Z−
0 = 0,−1,−2, . . . ; j = 1, 2, . . . , s),

the generalized hypergeometric function qFs(a1, . . . , aq; b1, . . . , bs; z) is defined by

qFs(a1, . . . , aq; b1, . . . , bs; z) =

∞∑
k=0

(a1)k · · · (aq)k
(b1)k · · · (bs)k

zk

k!
,

q ≤ s+ 1; q, s ∈ N0 = N ∪ {0}; z ∈ U,

where (λ)k denotes the Pochhammer symbol defined, in terms of Gamma function, by

(λ)k =
Γ(λ+ k)

Γ(λ)
=

{
1, k = 0; λ ∈ C \ {0},
λ(λ+ 1) · · · (λ+ k − 1), k ∈ N; λ ∈ C.

Dziok and Srivastava in [6] (see also [7, 8]) considered a linear operator

H(a1, . . . , aq; b1, . . . , bs) : Ap −→ Ap,

defined by the Hadamard product

H(a1, . . . , aq; b1, . . . , bs)f(z) = [zp · qFs(a1, . . . , aq; b1, . . . , bs; z)] ∗ f(z)
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= zp +

∞∑
k=1

(a1)k · · · (aq)k
(b1)k · · · (bs)k

ak+p

k!
zk+p, (1.2)

where f ∈ Ap is given by (1.1).

The Dziok-Srivastava operator H(a1, . . . , aq; b1, . . . , bs) includes various linear operators,

which were considered in earlier works, such as (for example) the linear operators introduced by

Hohlov [9], Carlson and Shaffer [2], Bernardi [1], Ruschewyh [13] and Srivastava and Owa [18].

For the sake of simplicity, we denote

H(ai, bj)f(z) = H(a1, . . . , ai, . . . , aq; b1, . . . , bj , . . . , bs)f(z),

H(a′i)f(z) = H(a′i, bj)f(z) = H(a1, . . . , a
′
i, . . . , aq; b1, . . . , bj , . . . , bs)f(z), (1.3)

and

H(b′j)f(z) = H(ai, b
′
j)f(z) = H(a1, . . . , ai, . . . , aq; b1, . . . , b

′
j , . . . , bs)f(z). (1.4)

Definition 1.1 Let z ∈ U, p ∈ N and ϕ ∈ M . We denote by Wp(H(ai, bj);ϕ) the subclass of

functions f ∈ Ap of the form (1.1) which satisfy the following condition

z[H(ai, bj)f(z)]
′

pH(ai, bj)f(z)
≺ ϕ(z).

In particular, when ϕ(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1), we write

Wp(H(ai, bj);A,B) = Wp

(
H(ai, bj);

1 +Az

1 +Bz

)
.

Remark 1.1 (i) For positive real numbers a1, . . . , aq; b1, . . . , bs and for 0 ≤ B ≤ 1 and −B ≤
A < B, the class Wp(H(ai, bj);A,B) = Vp(ai;A,B) was investigated by Sokol [16].

(ii) For complex numbers a1, . . . , aq; b1, . . . , bs and for −1 ≤ B ≤ 0 and |A| < 1 (A ∈ C),
the class Wp(H(ai, bj);A,B) = V p

1 (H(ai);A,B) was studied by Sokol [17]. Further, for p = 1,

the class V 1
1 (H(ai);A,B) = V (ai;A,B) was considered by Dziok and Srivastava [4].

In this paper, we aim to investigate some inclusion properties of the class Wp(H(ai, bj);ϕ).

Also, some results involving the special case Wp(H(ai, bj);A,B) (−1 ≤ B < A ≤ 1) of this class

are considered. The results obtained unify and extend some results of [5], [16] and [17].

2. Main results

The following lemmas will be required in our investigation.

Lemma 2.1 Let H(a′i)(z),H(a′′i )(z),H(b′j)(z) and H(b′′j )(z) be defined by (1.2), (1.3) and (1.4).

Then, for p ∈ N, i ∈ {1, 2, . . . , q} and j ∈ {1, 2, . . . , s}

H(a′i)(z) = H(a′′i )(z) ∗ ϕp(a
′
i, a

′′
i )(z) (2.1)

and

H(b′j)(z) = H(b′′j )(z) ∗ ϕp(b
′′
j , b

′
j)(z), (2.2)

where

ϕp(α, β)(z) =
∞∑
k=0

(α)k
(β)k

zk+p.
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Proof From (1.2) and (1.3), we have

H(a′i)(z) =
∞∑
k=0

(a1)k · · · (a′i)k · · · (aq)k
(b1)k · · · (bs)k

zk+p

k!

=

∞∑
k=0

(a1)k · · · (a′′i )k · · · (aq)k
(b1)k · · · (bs)k

· (a
′
i)k

(a′′i )k
· z

k+p

k!

= H(a′′i )(z) ∗ ϕp(a
′
i, a

′′
i )(z)

and the assertion (2.1) holds. Similarly, we can prove (2.2) by using (1.2) and (1.4). �

Lemma 2.2 ([15]) Let f ∈ K and g ∈ S∗. Then, for every analytic function h in U,
(f ∗ hg)(U)
(f ∗ g)(U)

⊂ co[h(U)],

where co[h(U)] denotes the closed convex hull of h(U).

Lemma 2.3 ([14]) If either 0 < α ≤ β and β ≥ 2 when α, β are real, or Re[α + β] ≥ 3,

Re[α] ≤ Re[β] and Im[α] = Im[β] when α, β are complex, then the function

ϕ1(α, β)(z) =

∞∑
k=0

(α)k
(β)k

zk+1, z ∈ U

belongs to the class K of convex functions.

We begin by proving our first inclusion relationship given by Theorem 2.1 below.

Theorem 2.1 Let p ∈ N and ϕ ∈ M with

Re[ϕ(z)] > 1− 1

p
, z ∈ U. (2.3)

If a′i, a′′i satisfy either

a′i, a′′i are real such that 0 < a′i ≤ a′′i and a′′i ≥ 2, (2.4)

or

a′i, a′′i are complex such that Re[a′i + a′′i ] ≥ 3, Re[a′i] ≤ Re[a′′i ] and Im[a′i] = Im[a′′i ], (2.5)

then

Wp(H(a′′i );ϕ) ⊂ Wp(H(a′i);ϕ).

Proof Let f ∈ Wp(H(a′′i );ϕ). Then, by the definition of the class Wp(H(a′′i );ϕ), we have

z[H(a′′i )f(z)]
′

pH(a′′i )f(z)
= ϕ(ω(z)), (2.6)

where ϕ is convex univalent with Re[ϕ(z)] > 0 and |ω(z)| < 1 in U with ω(0) = 0 = ϕ(0) − 1.

Therefore,
z[z1−pH(a′′i )f(z)]

′

z1−pH(a′′i )f(z)
= p[ϕ(ω(z))− 1] + 1 ≺ 1 + z

1− z
. (2.7)

Applying (1.2), (2.1) and the properties of convolution, we obtain

z[H(a′i)f(z)]
′

pH(a′i)f(z)
=

z[(H(a′i) ∗ f)(z)]′

p(H(a′i) ∗ f)(z)
=

z[(H(a′′i ) ∗ ϕp(a
′
i, a

′′
i ) ∗ f)(z)]′

p(H(a′′i ) ∗ ϕp(a′i, a
′′
i ) ∗ f)(z)
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=
ϕp(a

′
i, a

′′
i )(z) ∗ z[(H(a′′i ) ∗ f)(z)]′

pϕp(a′i, a
′′
i )(z) ∗ (H(a′′i ) ∗ f)(z)

=
ϕp(a

′
i, a

′′
i )(z) ∗ z[H(a′′i )f(z)]

′

pϕp(a′i, a
′′
i )(z) ∗ H(a′′i )f(z)

. (2.8)

It follows from (2.3) and (2.7) that z1−pH(a′′i )f(z) ∈ S∗. Also, by Lemma 2.3, we see that

z1−pϕp(a
′
i, a

′′
i )(z) ∈ K. Thus, in view of (2.8) and Lemma 2.2, we have{

[z1−pϕp(a
′
i, a

′′
i )] ∗ ϕ(ω)z1−pH(a′′i )f

}
(U)

{[z1−pϕp(a′i, a
′′
i )] ∗ z1−pH(a′′i )f} (U)

⊂ coϕ[ω(U)] ⊂ ϕ(U)

because ϕ is convex univalent function. By the definition of subordination, we know that (2.8)

is subordinate to ϕ in U, and so f ∈ Wp(H(a′i);ϕ). �

Theorem 2.2 Let p ∈ N and ϕ ∈ M with (2.3) holding. If b′j , b′′j satisfy either

b′j , b′′j are real such that 0 < b′′j ≤ b′j and b′j ≥ 2, (2.9)

or

b′j , b′′j are complex such that Re[b′j + b′′j ] ≥ 3, Re[b′′j ] ≤ Re[b′j ] and Im[b′j ] = Im[b′′j ], (2.10)

then

Wp(H(b′′j );ϕ) ⊂ Wp(H(b′j);ϕ).

Proof Applying the same techniques as in the proof of Theorem 2.1, and using (1.2) and (2.2),

we obtain the result asserted by Theorem 2.2. �
Taking

ϕ(z) =
1 +Az

1 +Bz
, −1 ≤ B < A ≤ 1; z ∈ U

in Theorems 2.1 and 2.2, respectively, we have the following results.

Corollary 2.1 Let p ∈ N, i ∈ {1, 2, . . . , q} and

Re
(1 +Az

1 +Bz

)
> 1− 1

p
, −1 ≤ B < A ≤ 1; z ∈ U. (2.11)

If a′i and a′′i satisfy either (2.4) or (2.5), then

Wp(H(a′′i );A,B) ⊂ Wp(H(a′i);A,B).

Corollary 2.2 Let p ∈ N, j ∈ {1, 2, . . . , s} and (2.11) hold. If b′j and b′′j satisfy either (2.9) or

(2.10), then

Wp(H(b′′j );A,B) ⊂ Wp(H(b′j);A,B).

Remark 2.1 We note that, in [4, 17] there are no results concerning inclusion relationships

between the function classes with respect to the parameters bj ∈ C\Z−
0 (Z−

0 = 0,−1,−2, . . . ; j =

1, 2, . . . , s). However, in this paper, we obtain some inclusion relationships with respect to the

parameters bj , see, for details, the above Theorem 2.2 and Corollary 2.2.

Next, we will show that the classWp(H(ai, bj);ϕ) is preserved under convolution with convex

functions.

Theorem 2.3 Let p ∈ N, g ∈ K and ϕ ∈ M with (2.3) holding. Then

f ∈ Wp(H(ai, bj);ϕ) ⇒ (zp−1g) ∗ f ∈ Wp(H(ai, bj);ϕ).
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Proof Let f ∈ Wp(H(ai, bj);ϕ) and g ∈ K. Based on the same concept as the proof of Theorem

2.1, we have

z[H(ai, bj)
(
(zp−1g) ∗ f

)
(z)]′

p[H(ai, bj) ((zp−1g) ∗ f) (z)]
=

(zp−1g(z)) ∗ z[H(ai, bj)f(z)]
′

p(zp−1g(z)) ∗ H(ai, bj)f(z)

=
(zp−1g(z)) ∗ ϕ(ω)H(ai, bj)f(z)

(zp−1g(z)) ∗ H(ai, bj)f(z)

=
g(z) ∗ ϕ(ω)zp−1H(ai, bj)f(z)

g(z) ∗ zp−1H(ai, bj)f(z)

≺ ϕ(z), z ∈ U,

and so that (zp−1g) ∗ f ∈ Wp(H(ai, bj);ϕ). �

Corollary 2.3 Let p ∈ N and ϕ ∈ M with (2.3) holding. Suppose also that

h1(z) =
∞∑
k=1

(1 + ξ

k + ξ

)
zk, ξ > −1; z ∈ U,

h2(z) =
1

1− ε
log

[1− εz

1− z

]
, log 1 = 0; |ε| ≤ 1 (ε ̸= 1); z ∈ U,

and

h3(z) =

∞∑
k=1

zk

k
= − log(1− z).

Then, for ρ = 1, 2, 3, we have

f ∈ Wp(H(ai, bj);ϕ) ⇒ (zp−1hρ) ∗ f ∈ Wp(H(ai, bj);ϕ).

Proof The function h1 was shown to be convex by Ruschewyh [13], while h2 and h3 are well

known to be convex in U. Thus, the assertion follows from Theorem 2.3. �
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