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Abstract In this paper, new unique common fixed point theorems for four mappings satisfy-

ing Lipzchitz type conditions in the term of c-distance on normal cone metric spaces were given.

The obtained results generalize and improve many known common fixed point theorems.
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1. Introduction and preliminaries

Huang and Zhang [1] recently have introduced the concept of cone metric spaces, where the

set of real number is replaced by an ordered Banach space, and they have established some fixed

point theorems for a contractive type mapping in a normal cone metric space. Subsequently,

some other authors [2–13] have generalized the results of Huang and Zhang [1] and have studied

the existence of fixed point or common fixed points of mappings satisfying a contractive type

condition in the framework of normal or non-normal cone metric spaces.

Fixed point results in metric spaces with the so called w-distance were obtained for the first

by Kada et al. in [14] where non-convex minimization problems were treated. Further results

were given in [15–17]. The cone metric version of this notion (usually called a c-distance) was

used in [18,19].

The author in [20] obtained a fixed point theorem for a mapping in normal cone metric

space under some contractive condition expressed in the terms of c-distance, and the author

in [21] also obtained fixed point and common fixed point results for mappings in TVS-valued

non-normal cone metric spaces under contractive condition expressed in the terms of c-distance.

Those results generalize many known ones.

Recently, Wang and Guo [20] obtained a common fixed point theorem for a pare of non-

continuous mappings under contractive conditions in the term of c-distance on a normal cone

metric space, but they did not discuss the uniqueness of common fixed points of the given

mappings.

Here, we will discuss the same problems as that in [20] for four mappings under weaker

Lipschitz type conditions and further give the uniqueness of common fixed points.
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Let E be always a real Banach space and P0 a subset of E. Then P0 is called a cone

whenever

(i) P0 is closed, nonempty, and P0 ̸= {0};
(ii) ax+ by ∈ P0 for all x, y ∈ P0 and nonnegative real numbers a, b;

(iii) P0 ∩ (−P0) = {0}.
In this paper, we shall always assume that the cone P0 has a nonempty interior, i.e., intP0 ̸=

∅ (such cones are called solid).

For a given cone P0 ⊂ E, we define a partial ordering ≤ with respect to P0 by x ≤ y if and

only if y−x ∈ P0. x < y will stand for x ≤ y and x ̸= y, while x ≪ y will stand for y−x ∈ intP0.

A cone P0 is called normal if there exists a real number K > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y =⇒ ∥x∥ ≤ K∥y∥.

The least positive number K satisfying the above condition is called the normal constant of P0.

It is known that a metric space is a normal cone metric space with normal constant K = 1.

Definition 1.1 Let X be a nonempty set and E a real Banach space. Suppose that the mapping

d : X ×X → E satisfies

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, z, y ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Remark 1.2 If E is replaced by a topological vector space which is larger than a Banach

space, then Definition 1.1 becomes the concept of a TVS-valued cone metric space [21]. So the

cone metric space is a particular form of a TVS-valued cone metric space. Hence the conclusions

holding in TVS-valued cone metric space also hold in a cone metric space.

Definition 1.3 Let (X, d) be a cone metric space, x ∈ X and {xn}n∈N a sequence in X. Then

(i) {xn} is a Cauchy sequence whenever for every c ∈ E with 0 ≪ c there exists N ∈ N
such that d(xm, xn) ≪ c for all n,m > N .

(ii) {xn} converges to x whenever for every c ∈ E with 0 ≪ c, there exists N ∈ N such that

d(xn, x) ≪ c for all n > N . We denote this by xn → x or limn→∞ xn = x.

(iii) (X, d) is called complete if every Cauchy sequence in X is convergent.

We shall make use of the following properties:

(p1) If u, v, w ∈ E, u ≤ v and v ≤ w, then u ≤ w;

(p2) If u ∈ E and θ ≤ u ≪ c for each c ∈ intP0, then u = 0;

(p3) If un, vn, u, v ∈ E, θ ≤ un ≤ vn for each n ∈ N, and un → u, vn → v, then θ ≤ u ≤ v;

(p4) If xn, x ∈ X, un ∈ E, d(xn, x) ≤ un and un → θ, then xn → x;

(p5) If u ≤ λu, where u ∈ P0 and 0 ≤ λ < 1, then u = θ;

(p6) If θ ≪ c and un ∈ E, un → θ, then there exists n0 ∈ N such that un ≪ c for all

n ≥ n0.
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Definition 1.4 Let (X, d) be a cone metric space. A function q : X × X → E is called a

c-distance in X if:

(q1) θ ≤ q(x, y) for all x, y ∈ X;

(q2) q(x, z) ≤ q(x, y) + q(y, z) for all x, y, z ∈ X;

(q3) If a sequence {yn} in X converges to a point y ∈ X, and for some x ∈ X and

u = ux ∈ P0, q(x, yn) ≤ u holds for each n ∈ N, then q(x, y) ≤ u;

(q4) For each c ∈ E with θ ≪ c, there exists e ∈ E with θ ≪ e, such that q(z, x) ≪ e and

q(z, y) ≪ e implies d(x, y) ≪ c.

The information of examples and notations of c-distance can be found in [20,21].

The following facts can be found in [21].

For c-distance q,

1) q(x, y) = q(y, x) does not necessarily hold for all x, y ∈ X;

2) q(x, y) = 0 is not necessarily equivalent to x = y.

Definition 1.5 A sequence {un} in P0 is said to be a c-sequence if for each c ≫ 0 there exists

n0 ∈ N such that un ≪ c for all n ≥ n0.

It is easy to show that if {un} and {vn} are c-sequences in E and α, β > 0, then {αun+βvn}
is a c-sequence.

The following conclusion is a cone metric version of Lemma 1 in [21].

Lemma 1.6 Let (X, d) be a cone metric space and q a c-distance on X. Let {xn} and {yn} be

sequences in X and x, y, z ∈ X. Suppose that {un} and {vn} are c-sequences in P0. Then the

following hold

(1) If q(xn, y) ≤ un and q(xn, z) ≤ vn for all n ∈ N, then y = z. In particular, if q(x, y) = 0

and q(x, z) = 0, then y = z.

(2) If q(xn, yn) ≤ un and q(xn, z) ≤ vn for all n ∈ N, then {yn} converges to z.

(3) If q(xn, xm) ≤ un for all m > n > n0, then {xn} is a Cauchy sequence in X.

(4) If q(y, xn) ≤ un for all n ∈ N, then {xn} is a Cauchy sequence in X.

2. Common fixed points under c-distance

The following is the main result in this paper.

Theorem 2.1 Let (X, d) be a cone metric space and P0 a normal cone with normal constant

K. Let ai, a
′
i ∈ [0,+∞), i = 1, 2, 3, 4, be real numbers satisfying a3 + a4 < 1, a′3 + a′4 < 1 and

a1+a2+a4

1−a3−a4

a′
1+a′

2+a′
4

1−a′
3−a′

4
< 1. Suppose that four mappings S, T, I, J : X → X satisfy that S(X) ⊂ I(X)

and T (X) ⊂ J(X) and for each x, y ∈ X,

q(Sx, Ty) ≤ a1q(Jx, Iy) + a2q(Jx, Sx) + a3q(Iy, Ty) + a4q(Jx, Ty), (2.1)

q(Tx, Sy) ≤ a′1q(Ix, Jy) + a′2q(Ix, Tx) + a′3q(Jy, Sy) + a′4q(Ix, Sy). (2.2)

If any one of S(X), T (X), I(X) and J(X) is complete, and for any u ∈ {y ∈ X : ∃F ∈
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{S, T, I, J}, Fy ̸= y}, one of the following conditions holds:

inf{∥q(Sx, u)∥+ ∥q(Jx, u)∥+ ∥q(Jx, Sx)∥ : x ∈ X} > 0;

inf{∥q(Tx, u)∥+ ∥q(Ix, u)∥+ ∥q(Ix, Tx)∥ : x ∈ X} > 0.

Then S, T, I, J have a unique common fixed point u ∈ X and q(u, u) = 0.

Proof Let x0 ∈ X be arbitrary. Since S(X) ⊂ I(X), there exists x1 ∈ X such that Sx0 = Ix1;

by T (X) ⊂ J(X), there exists x2 ∈ X such that Tx1 = Jx2. By induction, two sequences {xn}
and {yn} can be chosen such that

y2n = Sx2n = Ix2n+1, y2n+1 = Tx2n+1 = Jx2n+2, n = 0, 1, . . . .

For any n ∈ N, by (2.1) and (q2),

q(y2n, y2n+1) = q(Sx2n, Tx2n+1)

≤ a1q(Jx2n, Ix2n+1) + a2q(Jx2n, Sx2n) + a3q(Ix2n+1, Tx2n+1) + a4q(Jx2n, Tx2n+1)

= a1q(y2n−1, y2n) + a2q(y2n−1, y2n) + a3q(y2n, y2n+1) + a4q(y2n−1, y2n+1)

≤ a1q(y2n−1, y2n) + a2q(y2n−1, y2n) + a3q(y2n, y2n+1) + a4[q(y2n−1, y2n) + q(y2n, y2n+1)].

Hence

q(y2n, y2n+1) ≤ L1 q(y2n−1, y2n), (2.3)

where L1 = a1+a2+a4

1−a3−a4
. Similarly, by (2.2) and (q2),

q(y2n+1, y2n+2) = q(Tx2n+1, Sx2n+2)

≤ a′1q(Ix2n+1, Jx2n+2) + a′2q(Ix2n+1, Tx2n+1) + a′3q(Jx2n+2, Sx2n+2) + a′4q(Ix2n+1, Sx2n+2)

= a′1q(y2n, y2n+1) + a′2q(y2n, y2n+1) + a′3q(y2n+1, y2n+2) + a′4q(y2n, y2n+2))

a′1q(y2n, y2n+1) + a′2q(y2n, y2n+1) + a′3q(y2n+1, y2n+2) + a′4[q(y2n, y2n+1) + q(y2n+1, y2n+2)].

Hence

q(y2n+1, y2n+2) ≤ L2 q(y2n, y2n+1), (2.4)

where L2 =
a′
1+a′

2+a′
4

1−a′
3−a′

4
.

Now, using (2.3) and (2.4), we obtain

q(y2n+1, y2n+2) ≤ L2q(y2n, y2n+1) ≤ L1L2q(y2n−1, y2n) ≤ · · ·

≤ (L1L2)
nq(y1, y2) ≤ LnL2q(y0, y1),

where L = L1L2 < 1, and

q(y2n, y2n+1) ≤ L1q(y2n−1, y2n) ≤ L1L
n−1L2q(y0, y1) ≤ Lnq(y0, y1).

Hence for n,m ∈ N with m > n,

q(y2n+1, y2m+1) ≤q(y2n+1, y2n+2) + q(y2n+2, y2n+3) + · · ·+ q(y2m−1, y2m) + q(y2m, y2m+1)

≤L2L
nq(y0, y1) + Ln+1q(y0, y1) + · · ·+ L2L

m−1q(y0, y1) + Lmq(y0, y1)
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≤
(L2L

n

1− L
+

Ln+1

1− L

)
q(y0, y1) ≤

Ln

1− L
(L2 + 1)q(y0, y1)

≤MLnq(y0, y1),

where M = 2
1−L max{1, L2}. Similarly,

q(y2n, y2m+1) ≤
( Ln

1− L
+

LnL2

1− L

)
q(y0, y1) ≤ MLnq(y0, y1);

q(y2n, y2m) ≤
( Ln

1− L
+

LnL2

1− L

)
q(y0, y1) ≤ MLnq(y0, y1);

q(y2n+1, y2m) ≤
(L2L

n

1− L
+

Lp+1

1− L

)
q(y0, y1) ≤ MLnq(y0, y1).

So for any m > n > 0, there exists c(n) ∈ N such that n−1
2 ≤ c(n) ≤ n

2 and

q(yn, ym) ≤ MLc(n)q(y0, y1).

Let cn = MLc(n)q(y0, y1). Then

q(yn, ym) ≤ cn, ∀m,n ∈ N,m > n. (2.5)

Since L < 1, cn is a c-sequence and ∥cn∥ → 0 as n → +∞. Hence {yn} is a Cauchy sequence

by Lemma 1.6(3).

Suppose that I(X) is complete. Then since {y2n} is also Cauchy sequence and y2n ∈ I(X),

there exists u ∈ I(X) such that y2n = Sx2n = Ix2n+1 → u. (If S(X) is complete, then there

exists u ∈ S(X) ⊂ I(X) such that y2n = Sx2n = Ix2n+1 → u, so the conclusion remains the

same.)

By (2.5), q(y2n, y2m) ≤ c2n, ∀m > n > 0. Fix n and let m → ∞, then by (q3),

q(y2n, u) ≤ c2n, ∀n > 0. (2.6)

By (q2), (2.5) and (2.6),

q(y2n+1, u) ≤ q(y2n+1, y2n+2) + q(y2n+2, u) ≤ c2n+1 + c2n+2, ∀n > 0. (2.7)

Since P0 is a normal cone with normal constant K, by (2.5), (2.6) and (2.7), for m > n > 0,

∥q(yn, ym)∥ ≤ K∥cn∥; ∥q(y2n, u)∥ ≤ K∥c2n∥, ∥q(y2n+1, u)∥ ≤ K[∥c2n+1∥+ ∥c2n+2∥].

If u is not a common fixed point of S,T ,I and J , then

0 < inf{∥q(Sx, u)∥+ ∥q(Jx, u)∥+ ∥q(Jx, Sx)∥ : x ∈ X}

≤ inf{∥q(Sx2n+2, u)∥+ ∥q(Jx2n+2, u)∥+ ∥q(Jx2n+2, Sx2n+2)∥ : n ∈ N}

= inf{∥q(y2n+2, u)∥+ ∥q(y2n+1, u)∥+ ∥q(y2n+1, y2n+2)∥ : n ∈ N}

≤ inf{2K[∥c2n+1∥+ ∥c2n+2∥] : n ∈ N} = 0

or

0 < inf{∥q(Tx, u)∥+ ∥q(Ix, u)∥+ ∥q(Ix, Tx)∥ : x ∈ X}

≤ inf{∥q(Tx2n+1, u)∥+ ∥q(Ix2n+1, u)∥+ ∥q(Ix2n+1, Tx2n+1)∥ : n ∈ N}
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= inf{∥q(y2n+1, u)∥+ ∥q(y2n, u)∥+ ∥q(y2n, y2n+1)∥ : n ∈ N}

≤ inf{K[2∥c2n∥+ ∥c2n+1∥+ ∥c2n+2∥ : n ∈ N} = 0.

These are all contradiction, hence u is a common fixed point of S, T, I and J.

Suppose that J(X) is complete. Then since {y2n+1} is also Cauchy sequence and y2n+1 ∈
J(X), there exists u ∈ J(X) such that y2n+1 = Tx2n+1 = Jx2n+2 → u. (If T (X) is complete,

then there exists u ∈ T (X) ⊂ J(X) such that y2n+1 = Tx2n+1 = Jx2n+2 → u, so the conclusion

remains the same.)

From (2.5), we have that q(y2n+1, y2m+1) ≤ c2n+1, ∀m > n > 0. Fix n and let m → ∞,

then by (q3),

q(y2n+1, u) ≤ c2n+1, ∀n > 0. (2.8)

By (q2), (2.5) and (2.8),

q(y2n+2, u) ≤ q(y2n+2, y2n+3) + q(y2n+3, u) ≤ c2n+2 + c2n+3, ∀n > 0. (2.9)

Since P0 is a normal cone with normal constant K, by (2.5), (2.8) and (2.9), for m > n > 0,

∥q(yn, ym)∥ ≤ K∥cn∥; ∥q(y2n+1, u)∥ ≤ K∥c2n+1∥, ∥q(y2n+2, u)∥ ≤ K[∥c2n+2∥+ ∥c2n+3∥].

If u is not a common fixed point of S, T , I and J , then

0 < inf{∥q(Sx, u)∥+ ∥q(Jx, u)∥+ ∥q(Jx, Sx)∥ : x ∈ X}

≤ inf{∥q(Sx2n+2, u)∥+ ∥q(Jx2n+2, u)∥+ ∥q(Jx2n+2, Sx2n+2)∥ : n ∈ N}

= inf{∥q(y2n+2, u)∥+ ∥q(y2n+1, u)∥+ ∥q(y2n+1, y2n+2)∥ : n ∈ N}

≤ inf{K[2∥c2n+1∥+ ∥c2n+2∥+ ∥c2n+3∥] : n ∈ N} = 0,

or

0 < inf{∥q(Tx, u)∥+ ∥q(Ix, u)∥|+ ∥q(Ix, Tx)∥ : x ∈ X}

≤ inf{∥q(Tx2n+1, u)∥+ ∥q(Ix2n+1, u)∥+ ∥q(Ix2n+1, Tx2n+1)∥ : n ∈ N}

= inf{∥q(y2n+1, u)∥+ ∥q(y2n, u)∥+ ∥q(y2n, y2n+1)∥ : n ∈ N}

≤ inf{2K[∥c2n∥+ ∥c2n+1∥] : n ∈ N} = 0.

These are all contradiction. Hence u is a common fixed point of S, T , I and J .

By (2.1),

q(u, u) = q(Su, Tu) ≤ a1q(Ju, Iu) + a2q(Ju, Su) + a3q(Iu, Tu) + a4q(Ju, Tu)

≤ [a1 + a2 + a3 + 2a4]q(u, u),

hence q(u, u) ≤ L1q(u, u). Similarly, by (2.2), we obtain q(u, u) ≤ L2q(u, u). So q(u, u) ≤
L1L2q(u, u). But L = L1L2 < 1, hence q(u, u) = 0 by (p5).

Suppose that v is also a common fixed point of S, T , I and J . Then similarly, we obtain

q(v, v) = 0.

By (2.1),

q(u, v) = q(Su, Tv) ≤ a1q(Ju, Iv) + a2q(Ju, Su) + a3q(Iv, Tv) + a4q(Ju, Tv)
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= [a1 + a4]q(u, v) ≤ [a1 + a2 + a3 + 2a4]q(u, v),

hence q(u, v) ≤ L1q(u, v). Similarly, by (2.2), we obtain q(u, v) ≤ L2q(u, v). So q(u, v) ≤
L1L2q(u, v). But L = L1L2 < 1, hence q(u, v) = 0 by (p5). Therefore, u = v by Lemma 1.6(1).

This completes that u is the unique common fixed point of S,T ,I and J , also q(u, u) = 0.

We say that ϕ ∈ Φ if ϕ : [0,+∞)4 → [0,∞) satisfies (i) ϕ(·, ·, ·, x) is non-decreasing about

x, (ii) there exists Lϕ ∈ [0,+∞) such that u ≤ ϕ(v, v, u, v+ u) implies u ≤ Lϕv. In this case, Lϕ

is said to be a companion constant of ϕ.

Theorem 2.2 Let (X, d) be a metric space, S, T, I, J : X → X four mappings satisfying that

S(X) ⊂ I(X) and T (X) ⊂ J(X) and for each x, y ∈ X,

q(Sx, Ty) ≤ ϕ(q(Jx, Iy), q(Jx, Sx), q(Iy, Ty), q(Jx, Ty)), (2.10)

q(Tx, Sy) ≤ ϕ′(q(Ix, Jy), q(Ix, Tx), q(Jy, Sy), q(Ix, Sy)), (2.11)

where ϕ, ϕ′ ∈ Φ. If a) LϕLϕ′ < 1, b) any one of S(X), T (X), I(X) and J(X) is complete, c) for

each u ∈ {y ∈ X : ∃F ∈ {S, T, I, J}, Fy ̸= y}, one of the following conditions holds:

inf{∥q(Sx, u)∥+ ∥q(Jx, u)∥+ ∥q(Jx, Sx)∥ : x ∈ X} > 0;

inf{∥q(Tx, u)∥+ ∥q(Ix, u)∥+ ∥q(Ix, Tx)∥ : x ∈ X} > 0,

then S, T , I, J have a common fixed point u ∈ X and q(u, u) = 0. Furthermore, ϕ and ϕ′ satisfy

that for all r > 0, r > ϕ(r, 0, 0, r) or r > ϕ′(r, 0, 0, r), then u is the unique common fixed point

of S, T, I, J .

Proof Let x0 ∈ X be arbitrary. Since S(X) ⊂ I(X), there exists x1 ∈ X such that Sx0 = Ix1;

by T (X) ⊂ J(X), there exists x2 ∈ X such that Tx1 = Jx2. By induction, two sequences {xn}
and {yn} can be chosen such that

y2n = Sx2n = Ix2n+1, y2n+1 = Tx2n+1 = Jx2n+2, n = 0, 1, . . . .

For any n, by (2.10) and (q2) and ϕ ∈ Φ,

q(y2n, y2n+1) = q(Sx2n, Tx2n+1)

≤ ϕ(q(Jx2n, Ix2n+1), q(Jx2n, Sx2n), q(Ix2n+1, Tx2n+1), q(Jx2n, Tx2n+1))

= ϕ(q(y2n−1, y2n), q(y2n−1, y2n), q(y2n, y2n+1), q(y2n−1, y2n+1))

≤ ϕ(q(y2n−1, y2n), q(y2n−1, y2n), q(y2n, y2n+1), q(y2n−1, y2n) + q(y2n, y2n+1)).

Hence

q(y2n, y2n+1) ≤ Lϕ q(y2n−1, y2n). (2.12)

Similarly, by (2.11) and (q2) and ϕ′ ∈ Φ,

q(y2n+1, y2n+2) = q(Tx2n+1, Sx2n+2)

≤ ϕ(′q(Ix2n+1, Jx2n+2), q(Ix2n+1, Tx2n+1), q(Jx2n+2, Sx2n+2), q(Ix2n+1, Sx2n+2))

= ϕ′(q(y2n, y2n+1), q(y2n, y2n+1), q(y2n+1, y2n+2), q(y2n, y2n+2))
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≤ ϕ′(q(y2n, y2n+1), q(y2n, y2n+1), q(y2n+1, y2n+2), q(y2n, y2n+1) + q(y2n+1, y2n+2)).

Hence

q(y2n+1, y2n+2) ≤ Lϕ′ q(y2n, y2n+1). (2.13)

Now, from (2.12) and (2.13), we obtain

q(y2n+1, y2n+2) ≤Lϕ′q(y2n, y2n+1) ≤ LϕLϕ′q(y2n−1, y2n) ≤ · · ·

≤(LϕLϕ′)nq(y1, y2) ≤ LnLϕ′q(y0, y1),

where L = LϕLϕ′ < 1, and

q(y2n, y2n+1) ≤ Lϕq(y2n−1, y2n) ≤ LϕL
n−1Lϕ′q(y0, y1) ≤ Lnq(y0, y1).

Following the process of the proof of Theorem 2.1, we obtain that S, T , I, J have a common

fixed point u ∈ X.

On the other hand, by (2.10),

q(u, u) =q(Su, Tu) ≤ ϕ(q(Ju, Iu), q(Ju, Su), q(Iu, Tu), q(Ju, Tu))

≤ϕ(q(u, u), q(u, u), q(u, u), q(u, u) + q(u, u)),

hence q(u, u) ≤ Lϕ q(u, u). Similarly, q(u, u) ≤ Lϕ′ q(u, u) by using (2.11), hence q(u, u) ≤
LϕLϕ′ q(u, u). So q(u, u) = 0.

If v is also a common fixed point of S, T , I, J , then similarly, q(v, v) = 0 also holds.

Using (2.10) and (2.11), we obtain

q(u, v) =q(Su, Tv) ≤ ϕ(q(Ju, Iv), q(Ju, Su), q(Iv, Tv), q(Ju, Tv))

≤ϕ(q(u, v), 0, 0, q(u, v))

and

q(u, v) =q(Tu, Sv) ≤ ϕ′(q(Iu, Jv), q(Iu, Tu), q(Jv, Sv), q(Iu, Sv))

≤ϕ′(q(u, v), 0, 0, q(u, v)).

Hence q(u, v) = 0. Therefore u = v by Lemma 1.6(1). So u is the unique common fixed point of

S, T, I, J.

Remark 2.3 If (X, d) is a metric space, Theorem 2.1 is a particular form of Theorem 2.2. In

fact, define two functions ϕ, ϕ′ : [0,+∞)4 → [0,+∞) by

ϕ(u1, u2, u3, u4) = a1u1 + a2u2 + a3u3 + a4u4;

ϕ′(u1, u2, u3, u4) = a′1u1 + a′2u2 + a′3u3 + a′4u4,

where ai, a
′
i ∈ [0,+∞), i = 1, 2, 3, 4, satisfy a3 + a4 < 1, a′3 + a′4 < 1, a1+a2+a4

1−a3−a4

a′
1+a′

2+a′
4

1−a′
3−a′

4
< 1.

Let Lϕ = a1+a2+a4

1−a3−a4
and Lϕ′ =

a′
1+a′

2+a′
4

1−a′
3−a′

4
. Obviously, ϕ is non-decreasing about u4 and u ≤

ϕ(v, v, u, u+v) implies that u ≤ (a1+a2+a4)v+(a3+a4)u, hence u ≤ Lϕv, so ϕ ∈ Φ. Similarly,

ϕ′ ∈ Φ. On the other hand, LϕLϕ′ < 1 implies that Lϕ < 1 or Lϕ′ < 1. If Lϕ < 1, then

a1 + a4 < 1. So ϕ(u, 0, 0, u) = (a1 + a4)u < u for all u > 0. Similarly, Lϕ′ < 1 implies that
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ϕ′(u, 0, 0, u) = (a′1+a′4)u < u for all u > 0. Hence ϕ, ϕ′, Lϕ, Lϕ′ satisfy all conditions of Theorem

2.2. Therefore, the conclusion of Theorem 2.1 follows from Theorem 2.2.

The next two results are all particular forms of Theorems 2.1 and 2.2, respectively.

Theorem 2.4 Let (X, d) be a cone metric space and P0 a normal cone with normal constant

K. Let ai ∈ [0,+∞), i = 1, 2, 3, 4, be real numbers satisfying a1 + a2 + a3 + 2a4 < 1. Suppose

that two mappings S, I : X → X satisfy that S(X) ⊂ I(X) and for each x, y ∈ X,

q(Sx, Sy) ≤ a1q(Ix, Iy) + a2q(Ix, Sx) + a3q(Iy, Sy) + a4q(Ix, Sy). (2.14)

If S(X) or I(X) is complete, and for any u ∈ {y ∈ X : ∃F ∈ {S, I, }, Fy ̸= y},

inf{∥q(Sx, u)∥+ ∥q(Ix, u)∥+ ∥q(Ix, Sx)∥ : x ∈ X} > 0,

then S and I have a unique common fixed point u in X and q(u, u) = 0.

Proof Let S = T , I = J and a′i = ai (i = 1, 2, 3, 4). Then the conclusion follows from Theorem

2.1. �

Theorem 2.5 Let (X, d) be a metric space, S, I : X → X two mappings satisfying that

S(X) ⊂ I(X) and for each x, y ∈ X,

q(Sx, Sy) ≤ ϕ(q(Ix, Iy), q(Ix, Sx), q(Iy, Sy), q(Ix, Sy)), (2.15)

where ϕ ∈ Φ with Lϕ < 1. If S(X) or I(X) is complete, and for each u ∈ {y ∈ X : ∃F ∈
{S, I}, Fy ̸= y},

inf{∥q(Sx, u)∥+ ∥q(Jx, u)∥+ ∥q(Jx, Sx)∥ : x ∈ X} > 0,

then S and I have a common fixed point u in X and q(u, u) = 0.

Proof Let S = T , I = J and ϕ = ϕ′. Then the conclusion follows from Theorem 2.2. �

Remark 2.6 Theorem 2.4 is the main result in [20]. Hence Theorem 2.1 is a generalization of

the main result in [20].
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