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1. Introduction

Let us recall the concept of Ricci solitons, which was introduced by Hamilton [5] in mid

1980’s. Let (M, g) be an n-dimensional, complete, connected Riemannian manifold. A Ricci

soliton is a Riemannian metric together with a vector field (M, g,X) that satisfies

Ricc +
1

2
LXg = λg (1)

for some constant λ. It is called shrinking, steady or expanding Ricci soliton depending on

whether λ > 0, λ = 0 or λ < 0, respectively. If there is a smooth function f on M such that

X = ∇f , then the equation (1) can be written as

Ricc + Hess f = λg. (2)

This case is called a gradient (Ricci) soliton. The Euclidean space is a shrinking, steady or ex-

panding Ricci soliton considering the function f(x) = ϵ
4 |x|

2, with ϵ ∈ {1, 0,−1}. Both equations

(1) and (2) can be considered as perturbations of the Einstein equation

Ricc = λg

and reduce to this latter case if X or ∇f are Killing vector fields. When X = 0 or f is constant,

we call the underlying Einstein manifold a trivial Ricci soliton.

Ricci solitons are an important object in the study of the Ricci flow, since they are self-

similar solutions of the flow. They also serve as model cases of various Harnack inequalities for

the Ricci flow, which become equalities when the flow consists of Ricci solitons. From the seminal
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work of Hamilton [5] and Perelman’s result [9] that any compact Ricci soliton is necessarily a

gradient soliton, it is to see that any compact steady or expanding Ricci soliton must be Einstein

[2]. So the classification of complete gradient shrinking solitons plays important roles in the

study of the Ricci flow [2, 9]. In recent years, the study of gradient Ricci solitons has become

the subject of a rapidly increasing investigation directed mainly towards two goals, classification

and triviality [2, 3, 4, 11, 12]. However, there are not much works on the more general case of

Ricci solitons, that is, when X is not necessarily the gradient of a potential f , in particular on

noncompact Ricci solitons. Recently, Mastrolia and Rigoli [7] established three basic equations

for a general soliton structure on the Riemannian manifold and drew some geometric conclusions

with the aid of the maximum principle.

Now we improve Theorem 1.1 in [7] to the following

Theorem 1.1 Let (M, g) be a complete manifold with Ricci tensor satisfying

Ricc ≤ 1

2
a(x)g (3)

for some function a(x). Assume that, for some H > 1
2 ,

λLH
1 (M) ≥ 0, (4)

where LH = ∆+Ha(x). For 2H−
√
4H2 − 2H < β < 2H+

√
4H2 − 2H, if there exists a soliton

structure (M, g,X) on (M, g) with X ̸≡ 0 satisfying

lim
R→∞

1

R2

∫
B(p,2R)\B(p,R)

|X|β = 0, (5)

where B(p,R) is the geodesic ball of radius R centered at p in M , then X is a parallel field

and (M, g) is Ricci flat Einstein. Furthermore, the simply connected universal cover of M is a

warped product (R×c P, h) with c = |X|, h = dt2 + cg′ and (P, g′) is Ricci flat Einstein.

Theorem 1.2 Let (M, g) be a complete manifold with Ricci tensor satisfying Ricc ≤ 0. For

some positive number β, if there exists a soliton structure (M, g,X) on (M, g) with X ̸≡ 0 satis-

fying
∫
M

|X|β < ∞, then X is a parallel field and (M, g) is Ricci flat Einstein. Furthermore, the

simply connected universal cover of M is a warped product (R×cP, h) with c = |X|, h = dt2+cg′

and (P, g′) is Ricci flat Einstein.

Theorem 1.3 Let (M, g) be a complete manifold with Ricci tensor satisfying Ricc < 0. Thus,

there are no soliton structure (M, g,X) on (M, g) with X ̸≡ 0 and X ∈ Lp(M) for some p > 0.

Corollary 1.4 Let (M, g) be a complete minimal submanifold in an (n + p)-dimensional Eu-

clidean space Rn+p. For some β > 0, if there exists a soliton structures (M, g,X) on (M, g) with

X ̸≡ 0 satisfying
∫
M

|X|β < ∞, then M must be an affine n-dimensional plane.

2. Proofs of Theorems

Before we prove Theorem 1.1, we need the following Lemma 2.1. Although Lemma 2.1 was
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proved in [7, 11], for completeness, we still include it.

Lemma 2.1 Let (M, g,X) be a Ricci soliton on (M, g). Then

1

2
∆|X|2 = |∇X|2 − Ricc(X,X). (6)

Proof It is easy to see that
1

2
∆|X|2 = |∇X|2 +XiXikk. (7)

On the other hand

div(LXg)(X) = XiXikk +XiXkik, (8)

and

Xkik −Xkki = XjRji. (9)

So from (7), (8) and (9), we obtain

1

2
∆|X|2 = |∇X|2 + div(LXg)(X)−XiXkki −XiXjRij . (10)

Contracting the soliton equation (1), we have

R+ divX = nλ. (11)

Using (11), we get

XiXkki = ∇X(divX) = −∇X(R). (12)

Since

div(λg)(Y ) = 0, (13)

from (1), we obtain

div(LXg)(X) = −2div(Ricc)(X). (14)

By the second Bianchi’s identities, we have

∇X(R) = 2div(Ricc)(X). (15)

Combining with (12), we get

−XiXkki = 2div(Ricc)(X). (16)

Substitute (15) and (16) to (10), we complete the proof of the lemma. �

Proof of Theorem 1.1 First of all, using Cauchy-Schwarz inequality, we have that for any

vector field Y on M
1

4
|∇|Y |2|2 ≤ |Y |2|∇Y |2. (17)

Setting u = |X|2, we multiply (6) by u and use (17) to obtain

1

2
u∆u+ uRicc(X,X) ≥ 1

4
|∇u|2. (18)

Next we use assumption (3) to deduce

u∆u+ a(x)u2 ≥ 1

2
|∇u|2. (19)
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Directly computing (19), we have

uα∆uα = uα
(
α(α− 1)uα−2|∇u|2 + αuα−1∆u

)
=

α− 1

α
|∇uα|2 + αu2α−2u∆u

≥ α− 1

α
|∇uα|2 + αu2α−2

(1
2
|∇u|2 − a(x)u2

)
≥

(
1− 1

2α

)
|∇uα|2 − αa(x)u2α, (20)

where α is a positive constant.

Let q ≥ 0 and ϕ ∈ C∞
0 (M). Multiplying (20) by u2qαϕ2 and integrating over M , we obtain(

1− 1

2α

) ∫
M

u2qα|∇uα|2ϕ2 ≤α

∫
M

a(x)u2(q+1)αϕ2 +

∫
M

u(2q+1)α∆uαϕ2

=α

∫
M

a(x)u2(q+1)αϕ2 − (2q + 1)

∫
M

u2qα|∇uα|2ϕ2−

2

∫
M

u(2q+1)αϕg(∇ϕ,∇uα),

which gives (
2(q + 1)− 1

2α

) ∫
M

u2qα|∇uα|2ϕ2

≤ α

∫
M

a(x)u2(q+1)αϕ2 − 2

∫
M

u(2q+1)αϕg(∇ϕ,∇uα). (21)

Using the Cauchy-Schwarz inequality, we can rewrite (21) as(
2(q + 1)− 1

2α
− ϵ

) ∫
M

u2qαϕ2|∇uα|2

≤ α

∫
M

a(x)u2(q+1)αϕ2 +
1

ϵ

∫
M

u2(q+1)α|∇ϕ|2. (22)

On the other hand, by using (4), we have

H

∫
M

a(x)u2(1+q)αϕ2 ≤(1 + q)2
∫
M

u2qα|∇uα|2ϕ2 +

∫
M

u2(1+q)α|∇ϕ|2+

2(1 + q)

∫
M

u(2q+1)αϕg(∇ϕ,∇uα), (23)

which gives

H

∫
M

a(x)u2(1+q)αϕ2 ≤(1 + q)(1 + q + ϵ)

∫
M

u2qα|∇uα|2ϕ2+(
1 +

1 + q

ϵ

) ∫
M

u2(1+q)α|∇ϕ|2. (24)

If 2(q + 1)− 1
2α − ϵ > 0, then introducing (24) to (22), we obtain

[(2(q + 1)− 1

2α
− ϵ)H − (1 + q)(1 + q + ϵ)α]

∫
M

u2qα|∇uα|2ϕ2

≤
[H
ϵ

+ α
1 + q + ϵ

ϵ

] ∫
M

u2(1+q)α|∇ϕ|2. (25)
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Let (1 + q)α = β
2 . Thus for 2H −

√
4H2 − 2H < β < 2H +

√
4H2 − 2H, it is easy to see that(

2(q + 1)− 1
2α

)
> 0 and

(
2(q + 1)− 1

2α

)
H−(1+q)2α > 0. Then we can choose ϵ > 0 sufficiently

small so that
(
2(q + 1)− 1

2α − ϵ
)
> 0 and

[(
2(q + 1)− 1

2α − ϵ
)
H − (1 + q)(1 + q + ϵ)α

]
> 0. It

follows from (25) that the following inequality holds:∫
M

u2qα|∇uα|2ϕ2 ≤ C

∫
M

uβ |∇ϕ|2, (26)

where C is a constant that depends on H,α, ϵ and q. Let ϕ be a smooth function on [0,∞) such

that ϕ ≥ 0, ϕ = 1 on [0, R] and ϕ = 0 in [2R,∞) with |ϕ′| ≤ 2
R . Then considering ϕ ◦ r, where r

is the function in the definition of B(R), we have from (26)∫
M

u2qα|∇uα|2ϕ2 ≤ 4C1

R2

∫
B(p,2R)\B(p,R)

uβ . (27)

Let R → +∞. By assumption that limR→∞
1
R2

∫
B(p,2R)\B(p,R)

uβ = 0, from (27) we conclude

∇uα = 0, and uα is constant. Since by assumption X ̸= 0, from (20) we get a(x) ≥ 0. It follows

by substituting the above uα into (23) that

H

∫
B(p,R)

a(x)u2(1+q)α ≤ H

∫
M

a(x)u2(1+q)αϕ2 ≤ 1

R2

∫
B(p,2R)\B(p,R)

uβ .

So we conclude by letting R → ∞ that a(x) ≡ 0. Thus, by (3) and Lemma 2.1, we have

0 ≥ Ricc(X,X) = |∇X|2,

i.e., ∇X ≡ 0 and X is a parallel vector field. Thus X is a Killing field and going back to (1)

Ricc = λg ≤ 0,

that is, (M, g) is Einstein with λ ≤ 0. Thus, if λ < 0, we obtain the following as the same as

(22) (
2(q + 1)− 1

2α
− ϵ

) ∫
M

u2qαϕ2|∇uα|2 − αλ

∫
M

u2(q+1)αϕ2 ≤ 1

ϵ

∫
M

uβ |∇ϕ|2. (28)

Then, under assumption that limR→∞
1
R2

∫
B(p,2R)\B(p,R)

uβ = 0 and choosing suitably ϕ, from

(28) we conclude X = 0. Contradiction. Consequently, we have λ = 0. Hence (M, g) is Ricci

flat Einstein.

Now, since X is parallel and a closed conformal field, the final part of the Theorem follows

from [8, Proposition 2 (c)] and from [1, Corollary 9.107]. �
Using the same argument as Theorem 1.1, we obtain

Corollary 2.2 Let (M, g) be a complete manifold with Ricci tensor satisfying Ricc ≤ 0. For

some β > 1
2 , if there exists a soliton structure (M, g,X) on (M, g) with X ̸≡ 0 satisfying

lim
R→∞

1

R2

∫
B(p,2R)\B(p,R)

|X|β = 0,

then X is a parallel field and (M, g) is Ricci flat Einstein. Furthermore, the simply connected

universal cover of M is a warped product (R ×c P, h) with c = |X|, h = dt2 + cg′ and (P, g′) is

Ricci flat Einstein.
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Proof of Theorem 1.2 We can rewrite (19) as

u∆u ≥ 1

2
|∇u|2 ≥ 0.

Thus, by [13, Theorem 3], u is constant under assumption that
∫
M

|X|β < ∞ for all β ̸= 1. The

remaining proof now follows exactly as Theorem 1.1. And under assumption that
∫
M

|X| < ∞,

by Theorem 1.1, we get this result. �
Using the same argument as Theorems 1.1 and 1.2, we obtain Theorem 1.3.

Proof of Corollary 1.4 By Gauss equation in [6], we have

Ricc ≤ 0.

By Theorem 1.2, we obtain Ricc = 0. Hence, (M, g) must be Einstein. By Gauss equation, we

obtain |B|2 = n2|H|2 − ρ, where B,H and ρ denote the second fundamental form, the mean

curvature and the scalar curvature of M , respectively. Since M is minimal and ρ = 0, we obtain

B = 0. Thus M must be an affine n-dimensional plane. �
Using the same argument as Corollary 1.4, by Corollary 2.2, we obtain

Corollary 2.3 Let (M, g) be a complete minimal submanifold in an (n + p)-dimensional Eu-

clidean space Rn+p. For some β > 1
2 , if there exists a soliton structures (M, g,X) on (M, g) with

X ̸≡ 0 satisfying

lim
R→∞

1

R2

∫
B(p,2R)\B(p,R)

|X|β = 0,

then M must be an affine n-dimensional plane.
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[4] M. FERNÁNDEZ-LÓPEZ, E. GARCIA-RIO. A remark on compact Ricci solitons. Math. Ann., 2008,

340(4): 893–896.

[5] R. S. HAMILTON. The Ricci Flow on Surfaces. Amer. Math. Soc., Providence, RI, 1988.

[6] S. KOBAYASHI, K. NOMIZU. Foundations of differential geometry (Vol. II). Interscience Publishers John

Wiley & Sons, Inc., New York-London-Sydney, 1969.

[7] P. MASTROLIA, M. RIGOLI. On the geometry of complete Ricci solitons. arXiv:1009.1480v1 [math.DG],

2010.

[8] S. MONTIEL. Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana

Univ. Math. J., 1999, 48(2): 711–748.

[9] G. PERELMAN. The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159vl

[math.DG], 2002.

[10] G. PERELMAN. Ricci flow with surgery on three manifolds. arXiv:math/0303109v1 [math.DG], 2003.

[11] P. PETERSEN, W. WYLIE. Rigidity of gradient Ricci solitons. Pacific J. Math., 2009, 241(2): 329–345.

[12] S. PIGOLA, M. RIMOLDI, A. G. SETTI. Remark on non-compact gradient Ricci solitons. Math. Z., 2011,

268(3-4): 777–790.

[13] S. T. YAU. Some function-theoretic properties of complete Riemannian manifold and their applications to

geometry. Indiana Univ. Math. J., 1976, 25(7): 659–670.


