Solutions of Linear Differential Equations in the Unit Disc

Mingxing LI, Lipeng XIAO*
Institute of Mathematics and Informations, Jiangxi Normal University, Jiangxi 330022, P. R. China

Abstract

In this paper, some properties of solutions of linear differential equations $f^{(k)}+$ $A(z) f=0$ and $f^{(k)}+A(z) f=F(z)$ are discussed. Our results are a generalization of the original results.

Keywords unit disc; linear differential equations; analytic function; Q_{p} space.
MR(2010) Subject Classification 30D35; 34M10

1. Introduction

In this paper, we will use notation $\triangle=\{z:|z|<1\}$ to denote the unit disc in the complex plane, D and A denote Dirichlet space and analytic function space, respectively. We still need the following definitions.

Definition 1.1 ([1]) We say a function $f \in A$ belongs to space $Q_{p}(p \in(0, \infty))$ if and only if

$$
\sup _{a \in \triangle} \iint_{\triangle}\left|f^{\prime}(z)\right|^{2} g^{p}(z, a) \mathrm{d} \sigma(z)<\infty
$$

where $g(z, a)=\log \left|\frac{1-\bar{a} z}{z-a}\right|$ is the Green's function in \triangle and $\mathrm{d} \sigma$ is an area measure on \triangle normalized such that $\sigma(\Delta)=1$.

Definition 1.2 ([2]) We say that a function $f \in A$ belongs to the classical Dirichlet space D if and only if,

$$
\iint_{\triangle}\left|f^{\prime}(z)\right|^{2} \mathrm{~d} \sigma(z)<\infty
$$

Definition 1.3 ([3]) We say that a function $f \in A$ belongs to the Hardy space $H^{p}(0<p<\infty)$ if and only if

$$
\sup _{0 \leq r<1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \varphi}\right)\right|^{p} \mathrm{~d} \varphi\right)^{\frac{1}{p}}<\infty
$$

For $p=\infty$, it is natural to say that $f \in H^{\infty}$ if and only if

$$
\sup _{z \in \triangle}|f(z)|<\infty
$$

[^0]For $0 \leq q<\infty$, functions $f \in A$ in the corresponding weighted Hardy spaces H_{q}^{p} and H_{q}^{∞} satisfy

$$
\sup _{0 \leq r<1}\left(1-r^{2}\right)^{q}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \varphi}\right)\right|^{p} \mathrm{~d} \varphi\right)^{\frac{1}{p}}<\infty
$$

and

$$
\sup _{z \in \triangle}\left(1-|z|^{2}\right)^{q}|f(z)|<\infty .
$$

For a basic reference to Hardy spaces, see [3].
Definition $1.4([4])$ Let $\beta \in(0, \infty)$ be a constant. Then $f \in A$ is in space ε^{β} if and only if

$$
|f(z)| \leq \exp \left(\frac{\alpha}{(1-|z|)^{\beta}}\right)
$$

for some constant $\alpha \in(0, \infty)$.
In 2000, Heittokangas investigated the properties of solutions of the equation

$$
\begin{equation*}
f^{\prime \prime}+A(z) f=0 \tag{1.1}
\end{equation*}
$$

in \triangle in his Doctoral thesis [2] and obtained the following result.
Theorem 1.5 ([2]) Let $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, a_{n} \in C$ be the analytic coefficient of (1.1) in \triangle with $\left|a_{n}\right| \leq 1$ for all n. Then all solutions f of (1.1) belong to $\bigcap_{0<p<\infty} Q_{p}$.

In 2011, Li and Wulan improved Theorem 1.5 and obtained the following result.
Theorem 1.6 ([5]) Let $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, $a_{n} \in C$ be the analytic coefficient of (1.1) in \triangle with $\left|a_{n}\right| \leq 1$ for all n. Then all solutions f of (1.1) belong to Dirichlet space D.

Remark 1.7 In fact, the inclusion $D \subset \bigcap_{0<p<\infty} Q_{p}$ is strict, see [1].
Our first result contains Theorem 1.6 as a special case.
Theorem 1.8 Let $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, $a_{n} \in C$ be the analytic coefficient of equation

$$
\begin{equation*}
f^{(k)}+A(z) f=0, \quad k \geq 2 \tag{1.2}
\end{equation*}
$$

in \triangle with $\left|a_{n}\right| \leq n^{k-2}$ for all n. Then all solutions f of (1.2) belong to D.
In 2000, Heittokangas also investigated the properties of solutions of (1.2) in [2] and obtained the following result.

Theorem 1.9 ([2]) Let $A(z)$ be analytic coefficient of (1.2) in \triangle satisfying

$$
\begin{equation*}
|A(z)| \leq \frac{\alpha}{(1-|z|)^{\beta}} \tag{1.3}
\end{equation*}
$$

where $\alpha>0$ and $\beta \geq 0$ are finite constants. Then
(1) $f \in H^{\infty}$, if $0 \leq \beta<k$;
(2) $f \in H_{\frac{\alpha}{(k-1)!}}^{\infty}$, if $\beta=k$;
(3) $f \in \varepsilon^{\beta-k}$, if $k<\beta<\infty$.

In Theorem 1.9, Heittokangas investigated the properties of solutions of the higher-order linear differential equation (1.2). In this paper, we will investigate the properties of solutions of
the higher-order non-homogeneous linear differential equation

$$
\begin{equation*}
f^{(k)}+A(z) f=F(z) \tag{1.4}
\end{equation*}
$$

and obtain a similar result to Theorem 1.9.
Theorem 1.10 Let $A(z), F(z)$ be analytic coefficients of (1.3) in \triangle satisfying

$$
|A(z)| \leq \frac{\alpha}{(1-|z|)^{\beta}}, \quad F(z) \in H^{p}
$$

where $\alpha>0, \beta \geq 0$ are finite constants, $\frac{1}{k} \leq p \leq+\infty$. Then every solution f of (1.4) satisfies:
(1) $f \in H^{\infty}$, if $0 \leq \beta<k$;
(2) $f \in H_{(k-1)!}^{\infty}$, if $\beta=k$;
(3) $f \in \varepsilon^{\beta-k}$, if $k<\beta<\infty$.

2. Lemmas for the proof of Theorems

Lemma 2.1 ([6]) Let $u(x), v(x) \geq 0$, c be a positive constant and $u \leq c+\int_{0}^{t} u v \mathrm{~d} t_{1}$. Then $u \leq c \exp \left(\int_{0}^{t} v \mathrm{~d} t_{1}\right)$.

Lemma 2.2 ([3]) If $f^{\prime} \in H^{p}(p<1)$, then $f \in H^{q}, q=\frac{p}{1-p}$.
Lemma 2.3 ([3]) If $f^{\prime} \in H^{1}$, then $f \in H^{\infty}$.
Lemma 2.4 ([3]) If $f \in H^{p}(0<p<\infty)$, then

$$
|f(z)| \leq 2^{\frac{1}{p}}\|f\|_{p}(1-r)^{\frac{-1}{p}}, \quad r=|z|
$$

where $\|f\|_{p}=\sup _{0 \leq r<1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \varphi}\right)\right|^{p} \mathrm{~d} \varphi\right)^{\frac{1}{p}}$.
Lemma 2.5 If $f^{(k)}(z) \in H^{p}\left(\frac{1}{k} \leq p \leq \infty, k \geq 2\right)$, then $f(z) \in H^{\infty}$.
Proof We divide our proof into four cases.
Case $11<p<\infty$. Since $f^{(k)}(z) \in H^{p}$, by Definition 1.3 and Lemma 2.4, we have

$$
\begin{aligned}
\left|f^{(k)}(z)\right| & \leq 2^{\frac{1}{p}}\left\|f^{(k)}(z)\right\|_{p}(1-r)^{\frac{-1}{p}} \\
& \leq 2^{\frac{1}{p}}(1-r)^{\frac{-1}{p}} \sup _{0 \leq r<1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f^{(k)}\left(r e^{i \varphi}\right)\right|^{p} \mathrm{~d} \varphi\right)^{\frac{1}{p}} \\
& \leq M_{1}(1-r)^{\frac{-1}{p}}
\end{aligned}
$$

where $M_{1}(>0)$ is a constant. After integrating $f^{(k)}(z)$ from z_{0} to z, we get

$$
f^{(k-1)}(z)-f^{(k-1)}\left(z_{0}\right) .
$$

We choose $z_{0}=0$ and the path of integration to be the line segment $[0, z]$. Denoting $z=r e^{i \varphi}$ and $\zeta=t e^{i \varphi}, 0 \leq t \leq r<1$, we obtain

$$
\begin{aligned}
\left|f^{(k-1)}(z)\right|-\left|f^{(k-1)}(0)\right| & \leq\left|f^{(k-1)}(z)-f^{(k-1)}(0)\right| \\
& \leq \int_{0}^{r}\left|f^{(k)}\left(t e^{i \varphi}\right)\right| \mathrm{d} t \leq \int_{0}^{r} M_{1}(1-t)^{\frac{-1}{p}} \mathrm{~d} t .
\end{aligned}
$$

Therefore $\sup _{z \in \Delta}\left|f^{(k-1)}(z)\right|<\infty$.
Now integrating $f^{(k-1)}(z)$ from z_{0} to z, we get

$$
f^{(k-2)}(z)-f^{(k-2)}\left(z_{0}\right)
$$

We choose $z_{0}=0$ and the path of integration to be the line segment $[0, z]$. Denoting $z=r e^{i \varphi}$ and $\zeta=t e^{i \varphi}, 0 \leq t \leq r<1$, we obtain

$$
\left|f^{(k-2)}(z)\right|-\left|f^{(k-2)}(0)\right| \leq\left|f^{(k-2)}(z)-f^{(k-2)}(0)\right| \leq \int_{0}^{r}\left|f^{(k-1)}\left(t e^{i \varphi}\right)\right| \mathrm{d} t
$$

which means $\sup _{z \in \Delta}\left|f^{(k-2)}(z)\right|<\infty$.
Repeating the above process k times, we can obtain

$$
|f(z)|-|f(0)| \leq|f(z)-f(0)| \leq \int_{0}^{r}\left|f^{\prime}\left(t e^{i \varphi}\right)\right| \mathrm{d} t
$$

which means $\sup _{z \in \Delta}|f(z)|<\infty$. Consequently $f(z) \in H^{\infty}$.
Case $2 p=1$. By Lemma 2.3, we have $f^{(k-1)}(z) \in H^{\infty}$ from the fact $f^{(k)}(z) \in H^{1}$. Using a similar discussion to case 1 , we can get $f(z) \in H^{\infty}$.

Case $3 \frac{1}{k} \leq p<1$. We divide our discussion into two subcases.
Subcase 3.1 When $k=2$, then $\frac{1}{2} \leq p<1$. If $p=\frac{1}{2}$, since $f^{\prime \prime}(z) \in H^{\frac{1}{2}}$, by Lemma 2.2, we have $f^{\prime}(z) \in H^{1}$. Then, by Lemma 2.3, we can get $f(z) \in H^{\infty}$. If $\frac{1}{2}<p<1$, by Lemma 2.2, we have $f^{\prime}(z) \in H^{\frac{p}{1-p}}$ and $\frac{p}{1-p}>1$. Using a similar discussion to case 1 , we conclude that $f(z) \in H^{\infty}$.

Subcase 3.2 When $k>2$, we have $\frac{1}{k}<\frac{1}{2}$.
If $p=\frac{1}{2}$, it follows from Lemma 2.2 that $f^{(k-1)}(z) \in H^{1}$. Then, by Lemma 2.3, we get $f^{(k-2)}(z) \in H^{\infty}$. Using a similar discussion to case 1 again, we obtain $f(z) \in H^{\infty}$.

If $p=\frac{1}{k}$, it follows from Lemma 2.2 that $f^{(k-1)}(z) \in H^{\frac{1}{k-1}}$ and then $f^{(k-2)}(z) \in H^{\frac{1}{k-2}}$. By the induction, we can get $f^{\prime}(z) \in H^{1}$. Thus, by Lemma 2.3, we conclude that $f(z) \in H^{\infty}$.

If $\frac{1}{2}<p<1$, by Lemma 2.2, we have $f^{(k-1)}(z) \in H^{\frac{p}{1-p}}$ and $\frac{p}{1-p}>1$. Consequently, using a similar discussion to case 1 , we can get $f(z) \in H^{\infty}$.

If $\frac{1}{k}<p<\frac{1}{2}$, it follows from Lemma 2.2 that $f^{(k-1)}(z) \in H^{\frac{p}{1-p}}$ and then $f^{(k-2)}(z) \in H^{\frac{p}{1-2 p}}$. By the induction, we know $f^{(k-n)}(z) \in H^{\frac{p}{1-n p}}\left(1 \leq n_{p} k\right)$. When $\frac{1}{p}$ is an integer, we know $1<\frac{1}{p}-1<k-1$, and then $f^{\left(k-\left(\frac{1}{p}-1\right)\right)}(z) \in H^{\frac{p}{1-\left(\frac{1}{p}-1\right) p}}=H^{1}$. By Lemma 2.3, we have $f^{\left(k-\frac{1}{p}\right)}(z) \in H^{\infty}$, and then using a similar discussion to case 1 again, we can get $f(z) \in H^{\infty}$. When $\frac{1}{p}$ is not an integer, we know $1<\frac{1}{p}-1<\left[\frac{1}{p}\right]<\frac{1}{p}<k$, where $\left[\frac{1}{p}\right]$ denotes integer part of $\frac{1}{p}$. Then $f^{\left(k-\left[\frac{1}{p}\right]\right)}(z) \in H^{\frac{p}{1-\left[\frac{1}{p}\right] p}}$, where $\frac{p}{1-\left[\frac{1}{p}\right] p}>1$. Using a similar discussion to case 1 , we can get $f(z) \in H^{\infty}$.

Case $4 p=\infty$. Using a similar discussion to case 1 , we can conclude that $f(z) \in H^{\infty}$ from the fact $f^{(k)}(z) \in H^{\infty}$.

Finally, we complete the proof.

3. Proof of Theorems 1.8 and 1.10

Theorem 1.8 can be verified by following the proof of Theorem 2.4 in [5] with suitable modifications.
Proof of Theorem 1.8 We can find a positive integer $N_{0}(>k)$ sufficiently large such that

$$
\begin{equation*}
\frac{(n-k-1)^{k-2}}{n^{\frac{1}{2}}(n-1) \cdots(n+2-k)} \sum_{i=1}^{+\infty} \frac{1}{i^{\frac{3}{2}}}+\frac{(n-k)^{k-2}+(n-k+1)^{k-2}}{n^{\frac{1}{2}}(n-1) \cdots(n+2-k)} \leq 1 \tag{3.1}
\end{equation*}
$$

is true for $n>N_{0}$. Let $f(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ be a formal solution of (1.2). Then

$$
\begin{equation*}
f^{(k)}+A(z) f=\sum_{n=0}^{\infty}\left[(n+k)(n+k-1) \cdots(n+1) b_{n+k}+c_{n}\right] z^{n}=0 \tag{3.2}
\end{equation*}
$$

where $c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n} b_{0}$. Hence (3.2) holds if and only if

$$
\begin{equation*}
b_{n}=-\frac{c_{n-k}}{n(n-1) \cdots(n+1-k)}, \tag{3.3}
\end{equation*}
$$

for all $n=k, k+1, \ldots$. Choose a finite constant $M>0$ such that $\left|b_{0}\right| \leq M,\left|b_{1}\right| \leq M$ and $\left|b_{i}\right| \leq \frac{M}{i(i-1)^{\frac{1}{2}}}$ for all $i=2,3, \ldots, n\left(n>N_{0}\right)$. Then it follows from (3.3) that

$$
\begin{aligned}
\left|b_{n+1}\right| & =\frac{1}{(n+1) n \cdots(n+2-k)}\left|c_{n-k+1}\right| \\
& \leq \frac{1}{(n+1) n \cdots(n+2-k)}\left(\left|a_{0} b_{n-k+1}\right|+\cdots+\left|a_{n-k+1} b_{0}\right|\right) \\
& \leq \frac{M}{\prod_{i=0}^{k-1}(n+2-k+i)}\left\{\sum_{i=1}^{n-k-1} \frac{M}{(n-k+1-i)(n-k-i)^{\frac{1}{2}}}+(n-k)^{k-2}+(n-k+1)^{k-2}\right\} \\
& =\frac{M}{(n+1) n^{\frac{1}{2}}}\left\{\frac{i^{k-2}}{n^{\frac{1}{2}} \prod_{i=0}^{k-3}(n+2-k+i)} \sum_{i=1}^{n-k-1} \frac{i^{k-2}}{(n-k+1-i)(n-k-i)^{\frac{1}{2}}}+\right. \\
& \left.\leq \frac{(n-k)^{k-2}+(n-k+1)^{k-2}}{n^{\frac{1}{2}} \prod_{i=0}^{k-3}(n+2-k+i)}\right\} \\
& \frac{M}{(n+1) n^{\frac{1}{2}}}\left\{\frac{(n-k-1)^{k-2}}{n^{\frac{1}{2}} \prod_{i=0}^{k-3}(n+2-k+i)} \sum_{i=1}^{n-k-1} \frac{(n-k)^{k-2}+(n-k+1)^{k-2}}{n^{\frac{1}{2}} \prod_{i=0}^{k-3}(n+2-k+i)}\right\} \\
& \leq \frac{M}{(n+1) n^{\frac{1}{2}}}\left\{\frac{(n-k-1)^{k-2}}{n^{\frac{1}{2}} \prod_{i=0}^{k-3}(n+2-k+i)} \sum_{i=1}^{n-k-1} \frac{1}{(n-k-i)^{\frac{3}{2}}}+\frac{(n-k)^{k-2}+(n-k+1)^{k-2}}{n^{\frac{1}{2}} \prod_{i=0}^{k-3}(n+2-k+i)}\right\} \\
& \leq \frac{M}{(n+1) n^{\frac{1}{2}}}\left\{\frac{(n-k-1)^{k-2}}{n^{\frac{1}{2}} \prod_{i=0}^{k-3}(n+2-k+i)} \sum_{i=1}^{+\infty} \frac{1}{i^{\frac{3}{2}}}+\frac{(n-k)^{k-2}+(n-k+1)^{k-2}}{n^{\frac{1}{2}} \prod_{i=0}^{k-3}(n+2-k+i)}\right\} .
\end{aligned}
$$

This together with (3.1) and $n>N_{0}$, gives

$$
\left|b_{n+1}\right| \leq \frac{M}{n^{\frac{1}{2}}(n+1)}
$$

Therefore, $\left|b_{n}\right| \leq \frac{M}{(n-1)^{\frac{1}{2}} n}$ holds for all $n=2,3, \ldots$ and so $\sum_{n=0}^{\infty} b_{n} z^{n}$ is absolutely convergent
on Δ. Consequently f is analytic in Δ and by the definition of Dirichlet space, the assertion follows.

Proof of Theorem 1.10 The method of proof is the same as in the proof of [2, Theorem 4.2] that has been also applied in [7]. After integrating $f^{(k)}(z)$ from z_{0} to $z k$ times, we get

$$
\begin{equation*}
f(z)-\sum_{n=0}^{k-1} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n} \tag{3.4}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
A(z) f(z) & =\frac{\mathrm{d}^{k}}{\mathrm{~d} z^{k}} \frac{1}{(k-1)!} \int_{z_{0}}^{z}(z-\zeta)^{k-1} A(\zeta) f(\zeta) \mathrm{d} \zeta \\
F(z) & =\frac{\mathrm{d}^{k}}{\mathrm{~d} z^{k}} \frac{1}{(k-1)!} \int_{z_{0}}^{z}(z-\zeta)^{k-1} F(\zeta) \mathrm{d} \zeta
\end{aligned}
$$

After respectively integrating $A(z) f(z), F(z)$ from z_{0} to $z k$ times, we get

$$
\begin{align*}
& \frac{1}{(k-1)!} \int_{z_{0}}^{z}(z-\zeta)^{k-1} A(\zeta) f(\zeta) \mathrm{d} \zeta \tag{3.5}\\
& \frac{1}{(k-1)!} \int_{z_{0}}^{z}(z-\zeta)^{k-1} F(\zeta) \mathrm{d} \zeta \tag{3.6}
\end{align*}
$$

So by (1.3), (3.4)-(3.6), we have

$$
\begin{align*}
f(z)= & \sum_{n=0}^{k-1} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}+\frac{1}{(k-1)!} \int_{z_{0}}^{z}(z-\zeta)^{k-1} F(\zeta) \mathrm{d} \zeta- \\
& \frac{1}{(k-1)!} \int_{z_{0}}^{z}(z-\zeta)^{k-1} A(\zeta) f(\zeta) \mathrm{d} \zeta . \tag{3.7}
\end{align*}
$$

Since $F(z) \in H^{p}$ and $\frac{1}{k} \leq p \leq+\infty$, it follows that $\frac{1}{(k-1)!} \int_{z_{0}}^{z}(z-\zeta)^{k-1} F(\zeta) d \zeta \in H^{\infty}$ because of Lemma 2.5. That is to say, there exists a constant $C_{1}>0$, such that

$$
\begin{equation*}
\left|\frac{1}{(k-1)!} \int_{z_{0}}^{z}(z-\zeta)^{k-1} F(\zeta) \mathrm{d} \zeta\right|<C_{1}, \quad z \in \Delta \tag{3.8}
\end{equation*}
$$

We choose $z_{0}=0$ and the path of integration to be the line segment $[0, z]$ in (3.7). Denoting $z=r e^{i \varphi}$ and $\zeta=t e^{i \varphi}, 0 \leq t \leq r<1$ and combining with (3.8), we obtain

$$
|f(z)| \leq \sum_{n=0}^{k-1} \frac{\left|f^{(n)}(0)\right|}{n!} r^{n}+C_{1}+\frac{1}{(k-1)!} \int_{0}^{r}(1-t)^{k-1}\left|A\left(t e^{i \varphi}\right)\right|\left|f\left(t e^{i \varphi}\right)\right| \mathrm{d} t
$$

Hence

$$
\begin{equation*}
|f(z)| \leq C+\frac{1}{(k-1)!} \int_{0}^{r}(1-t)^{k-1}\left|A\left(t e^{i \varphi}\right)\right|\left|f\left(t e^{i \varphi}\right)\right| \mathrm{d} t \tag{3.9}
\end{equation*}
$$

where $C=\sum_{n=0}^{k-1} \frac{\left|f^{(n)}(0)\right|}{n!} r^{n}+C_{1}$.
By Lemma 1.1 and (3.9), we have

$$
|f(z)| \leq C \exp \left(\frac{1}{(k-1)!} \int_{0}^{r}(1-t)^{k-1}\left|A\left(t e^{i \varphi}\right)\right| \mathrm{d} t\right)
$$

It follows from (1.3) that

$$
\begin{equation*}
|f(z)| \leq C \exp \left(\frac{1}{(k-1)!} \int_{0}^{r} \alpha(1-t)^{k-\beta-1} \mathrm{~d} t\right) \tag{3.10}
\end{equation*}
$$

(1) If $0 \leq \beta<k$, it follows from (3.10) that

$$
\sup _{z \in \Delta}|f(z)| \leq \sup _{z \in \Delta}\left\{C \exp \left(\frac{1}{(k-1)!} \int_{0}^{r} \alpha(1-t)^{k-\beta-1} \mathrm{~d} t\right)\right\}<\infty,
$$

which means $f \in H^{\infty}$.
(2) If $\beta=k$, it follows from (3.10) that

$$
\begin{aligned}
\left(1-|z|^{2}\right)^{\frac{\alpha}{(k-1)!}}\left|f\left(r e^{i \varphi}\right)\right| & \leq\left(1-|z|^{2}\right)^{\frac{\alpha}{(k-1)!}} C \exp \left(\frac{\alpha}{(k-1)!} \int_{0}^{r}(1-t)^{-1} \mathrm{~d} t\right) \\
& \leq C\left(1-|z|^{2}\right)^{\frac{\alpha}{(k-1)!}}\left(\frac{1}{1-r}\right)^{\frac{\alpha}{(k-1)!}} \leq C 2^{\frac{\alpha}{(k-1)!}}
\end{aligned}
$$

Therefore $f \in H_{\frac{\alpha}{(k-1)!}}^{\infty}$.
(3) If $k<\beta<\infty$, it follows from (3.10) that

$$
\begin{aligned}
|f(z)| & \leq C \exp \left(\frac{\alpha}{(k-1)!} \int_{0}^{r}(1-t)^{k-\beta-1} \mathrm{~d} t\right) \\
& =C \exp \left\{\frac{\alpha}{(k-1)!}\left(\frac{(1-r)^{k-\beta}}{\beta-k}-\frac{1}{\beta-k}\right)\right\} \\
& =C \exp \left(\frac{-\alpha}{(k-1)!(\beta-k)}\right) \exp \left(\frac{1}{(k-1)!(\beta-k)}\left(\frac{\alpha}{(1-r)^{\beta-k}}\right)\right) \\
& <\exp \left(\frac{\alpha_{1}}{(1-r)^{\beta-k}}\right),
\end{aligned}
$$

where α_{1} is some positive constant, so $f \in \varepsilon^{\beta-k}$. Now we complete the proof of Theorem 1.10.

Acknowledgements The authors would like to thank the referees for helpful suggestions to improve this paper.

References

[1] R. AULASKARI, Jie XIAO, Ruhan ZHAO. On subspaces and subsets of BMOA and UBC. Analysis, 1995, 15(2): 101-121.
[2] J. HEITTOKANGAS. On complex differential equations in the unit disc. Ann. Acad. Sci. Fenn. Math. Diss., 2000, 122: 1-54.
[3] P. DUREN. Theory of H^{P} Spaces. Academic Press, New York-London, 1970.
[4] H. S. SHAPIRO, A. L. SHIELDS. On the zeros of functions with finite Dirichlet integral and some related function spaces. Math. Z., 1962, 80: 217-229.
[5] Hao LI, Hasi WULAN. Linear differential equations with solutions in the Q_{k} spaces. J. Math. Anal. Appl., 2011, 375(2): 478-489.
[6] I. LAINE. Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter, Berlin, 1993.
[7] J. HEITTOKANGAS, R. KORHONEN. J. RÄTTYÄ. Growth estimates for solutions of nonhomogeneous linear differential equations. Ann. Acad. Sci. Fenn., 2009, 34(1): 145-156.

[^0]: Received October 1, 2013; Accepted April 16, 2014
 Supported by the National Natural Science Foundation of China (Grant Nos. 11301232; 11171119), the Youth Science Foundation of Education Bureau of Jiangxi Province (Grant No. GJJ12207) and the Natural Science Foundation of Jiangxi Province (Grant No. 20132BAB211009).

 * Corresponding author

 E-mail address: 15180475689@126.com (Mingxing LI); lipeng_xiao08@yahoo.com (Lipeng XIAO)

