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Solutions of Linear Differential Equations in the Unit Disc
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Abstract In this paper, some properties of solutions of linear differential equations f (k) +

A(z)f = 0 and f (k) + A(z)f = F (z) are discussed. Our results are a generalization of the

original results.
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1. Introduction

In this paper, we will use notation △ = {z : |z| < 1} to denote the unit disc in the complex

plane, D and A denote Dirichlet space and analytic function space, respectively. We still need

the following definitions.

Definition 1.1 ([1]) We say a function f ∈ A belongs to space Qp(p ∈ (0,∞)) if and only if

sup
a∈△

∫∫
△
|f ′(z)|2gp(z, a)dσ(z) < ∞,

where g(z, a) = log | 1−āz
z−a | is the Green’s function in△ and dσ is an area measure on△ normalized

such that σ(∆) = 1.

Definition 1.2 ([2]) We say that a function f ∈ A belongs to the classical Dirichlet space D if

and only if, ∫∫
△
|f ′(z)|2dσ(z) < ∞.

Definition 1.3 ([3]) We say that a function f ∈ A belongs to the Hardy space Hp (0 < p < ∞)

if and only if

sup
0≤r<1

( 1

2π

∫ 2π

0

|f(reiφ)|pdφ
) 1

p

< ∞.

For p = ∞, it is natural to say that f ∈ H∞ if and only if

sup
z∈△

|f(z)| < ∞.
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For 0 ≤ q < ∞, functions f ∈ A in the corresponding weighted Hardy spaces Hp
q and H∞

q satisfy

sup
0≤r<1

(1− r2)q
( 1

2π

∫ 2π

0

|f(reiφ)|pdφ
) 1

p

< ∞

and

sup
z∈△

(1− |z|2)q|f(z)| < ∞.

For a basic reference to Hardy spaces, see [3].

Definition 1.4 ([4]) Let β ∈ (0,∞) be a constant. Then f ∈ A is in space εβ if and only if

|f(z)| ≤ exp
( α

(1− |z|)β
)

for some constant α ∈ (0,∞).

In 2000, Heittokangas investigated the properties of solutions of the equation

f ′′ +A(z)f = 0 (1.1)

in △ in his Doctoral thesis [2] and obtained the following result.

Theorem 1.5 ([2]) Let A(z) =
∑∞

n=0 anz
n, an ∈ C be the analytic coefficient of (1.1) in △

with |an| ≤ 1 for all n. Then all solutions f of (1.1) belong to
∩

0<p<∞ Qp.

In 2011, Li and Wulan improved Theorem 1.5 and obtained the following result.

Theorem 1.6 ([5]) Let A(z) =
∑∞

n=0 anz
n, an ∈ C be the analytic coefficient of (1.1) in △

with |an| ≤ 1 for all n. Then all solutions f of (1.1) belong to Dirichlet space D.

Remark 1.7 In fact, the inclusion D ⊂
∩

0<p<∞ Qp is strict, see [1].

Our first result contains Theorem 1.6 as a special case.

Theorem 1.8 Let A(z) =
∑∞

n=0 anz
n, an ∈ C be the analytic coefficient of equation

f (k) +A(z)f = 0, k ≥ 2 (1.2)

in △ with |an| ≤ nk−2 for all n. Then all solutions f of (1.2) belong to D.

In 2000, Heittokangas also investigated the properties of solutions of (1.2) in [2] and obtained

the following result.

Theorem 1.9 ([2]) Let A(z) be analytic coefficient of (1.2) in △ satisfying

|A(z)| ≤ α

(1− |z|)β
, (1.3)

where α > 0 and β ≥ 0 are finite constants. Then

(1) f ∈ H∞, if 0 ≤ β < k;

(2) f ∈ H∞
α

(k−1)!
, if β = k;

(3) f ∈ εβ−k, if k < β < ∞.

In Theorem 1.9, Heittokangas investigated the properties of solutions of the higher-order

linear differential equation (1.2). In this paper, we will investigate the properties of solutions of
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the higher-order non-homogeneous linear differential equation

f (k) +A(z)f = F (z), (1.4)

and obtain a similar result to Theorem 1.9.

Theorem 1.10 Let A(z), F (z) be analytic coefficients of (1.3) in △ satisfying

|A(z)| ≤ α

(1− |z|)β
, F (z) ∈ Hp,

where α > 0, β ≥ 0 are finite constants, 1
k ≤ p ≤ +∞. Then every solution f of (1.4) satisfies:

(1) f ∈ H∞, if 0 ≤ β < k;

(2) f ∈ H∞
α

(k−1)!
, if β = k;

(3) f ∈ εβ−k, if k < β < ∞.

2. Lemmas for the proof of Theorems

Lemma 2.1 ([6]) Let u(x),v(x) ≥ 0, c be a positive constant and u ≤ c +
∫ t

0
uvdt1. Then

u ≤ c exp(
∫ t

0
vdt1).

Lemma 2.2 ([3]) If f ′ ∈ Hp(p < 1), then f ∈ Hq, q = p
1−p .

Lemma 2.3 ([3]) If f ′ ∈ H1, then f ∈ H∞.

Lemma 2.4 ([3]) If f ∈ Hp(0 < p < ∞), then

|f(z)| ≤ 2
1
p ∥f∥p(1− r)

−1
p , r = |z|,

where ∥f∥p = sup0≤r<1(
1
2π

∫ 2π

0
|f(reiφ)|pdφ)

1
p .

Lemma 2.5 If f (k)(z) ∈ Hp ( 1k ≤ p ≤ ∞, k ≥ 2), then f(z) ∈ H∞.

Proof We divide our proof into four cases.

Case 1 1 < p < ∞. Since f (k)(z) ∈ Hp, by Definition 1.3 and Lemma 2.4, we have

|f (k)(z)| ≤2
1
p ∥f (k)(z)∥p(1− r)

−1
p

≤2
1
p (1− r)

−1
p sup

0≤r<1

( 1

2π

∫ 2π

0

|f (k)(reiφ)|pdφ
) 1

p

≤M1(1− r)
−1
p ,

where M1(> 0) is a constant. After integrating f (k)(z) from z0 to z, we get

f (k−1)(z)− f (k−1)(z0).

We choose z0 = 0 and the path of integration to be the line segment [0, z]. Denoting z = reiφ

and ζ = teiφ, 0 ≤ t ≤ r < 1, we obtain

|f (k−1)(z)| − |f (k−1)(0)| ≤|f (k−1)(z)− f (k−1)(0)|

≤
∫ r

0

|f (k)(teiφ)|dt ≤
∫ r

0

M1(1− t)
−1
p dt.
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Therefore supz∈∆ |f (k−1)(z)| < ∞.

Now integrating f (k−1)(z) from z0 to z, we get

f (k−2)(z)− f (k−2)(z0).

We choose z0 = 0 and the path of integration to be the line segment [0, z]. Denoting z = reiφ

and ζ = teiφ, 0 ≤ t ≤ r < 1, we obtain

|f (k−2)(z)| − |f (k−2)(0)| ≤ |f (k−2)(z)− f (k−2)(0)| ≤
∫ r

0

|f (k−1)(teiφ)|dt,

which means supz∈∆ |f (k−2)(z)| < ∞.

Repeating the above process k times, we can obtain

|f(z)| − |f(0)| ≤ |f(z)− f(0)| ≤
∫ r

0

|f ′(teiφ)|dt,

which means supz∈∆ |f(z)| < ∞. Consequently f(z) ∈ H∞.

Case 2 p = 1. By Lemma 2.3, we have f (k−1)(z) ∈ H∞ from the fact f (k)(z) ∈ H1. Using a

similar discussion to case 1, we can get f(z) ∈ H∞.

Case 3 1
k ≤ p < 1. We divide our discussion into two subcases.

Subcase 3.1 When k = 2, then 1
2 ≤ p < 1. If p = 1

2 , since f
′′(z) ∈ H

1
2 , by Lemma 2.2, we have

f ′(z) ∈ H1. Then, by Lemma 2.3, we can get f(z) ∈ H∞. If 1
2 < p < 1, by Lemma 2.2, we have

f ′(z) ∈ H
p

1−p and p
1−p > 1. Using a similar discussion to case 1, we conclude that f(z) ∈ H∞.

Subcase 3.2 When k > 2, we have 1
k < 1

2 .

If p = 1
2 , it follows from Lemma 2.2 that f (k−1)(z) ∈ H1. Then, by Lemma 2.3, we get

f (k−2)(z) ∈ H∞. Using a similar discussion to case 1 again, we obtain f(z) ∈ H∞.

If p = 1
k , it follows from Lemma 2.2 that f (k−1)(z) ∈ H

1
k−1 and then f (k−2)(z) ∈ H

1
k−2 . By

the induction, we can get f ′(z) ∈ H1. Thus, by Lemma 2.3, we conclude that f(z) ∈ H∞.

If 1
2 < p < 1, by Lemma 2.2, we have f (k−1)(z) ∈ H

p
1−p and p

1−p > 1. Consequently, using

a similar discussion to case 1, we can get f(z) ∈ H∞.

If 1
k < p < 1

2 , it follows from Lemma 2.2 that f (k−1)(z) ∈ H
p

1−p and then f (k−2)(z) ∈ H
p

1−2p .

By the induction, we know f (k−n)(z) ∈ H
p

1−np (1 ≤ n < k). When 1
p is an integer, we know

1 < 1
p − 1 < k − 1, and then f (k−( 1

p−1))(z) ∈ H
p

1−( 1
p
−1)p = H1. By Lemma 2.3, we have

f (k− 1
p )(z) ∈ H∞, and then using a similar discussion to case 1 again, we can get f(z) ∈ H∞.

When 1
p is not an integer, we know 1 < 1

p − 1 < [ 1p ] <
1
p < k, where [ 1p ] denotes integer part of

1
p . Then f (k−[ 1p ])(z) ∈ H

p

1−[ 1
p
]p , where p

1−[ 1p ]p
> 1. Using a similar discussion to case 1, we can

get f(z) ∈ H∞.

Case 4 p = ∞. Using a similar discussion to case 1, we can conclude that f(z) ∈ H∞ from the

fact f (k)(z) ∈ H∞.

Finally, we complete the proof. �
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3. Proof of Theorems 1.8 and 1.10

Theorem 1.8 can be verified by following the proof of Theorem 2.4 in [5] with suitable

modifications.

Proof of Theorem 1.8 We can find a positive integer N0(> k) sufficiently large such that

(n− k − 1)k−2

n
1
2 (n− 1) · · · (n+ 2− k)

+∞∑
i=1

1

i
3
2

+
(n− k)k−2 + (n− k + 1)k−2

n
1
2 (n− 1) · · · (n+ 2− k)

≤ 1 (3.1)

is true for n > N0. Let f(z) =
∑∞

n=0 bnz
n be a formal solution of (1.2). Then

f (k) +A(z)f =

∞∑
n=0

[(n+ k)(n+ k − 1) · · · (n+ 1)bn+k + cn]z
n = 0, (3.2)

where cn = a0bn + a1bn−1 + · · ·+ anb0. Hence (3.2) holds if and only if

bn = − cn−k

n(n− 1) · · · (n+ 1− k)
, (3.3)

for all n = k, k + 1, . . . . Choose a finite constant M > 0 such that |b0| ≤ M , |b1| ≤ M and

|bi| ≤ M

i(i−1)
1
2
for all i = 2, 3, . . . , n (n > N0). Then it follows from (3.3) that

|bn+1| =
1

(n+ 1)n · · · (n+ 2− k)
|cn−k+1|

≤ 1

(n+ 1)n · · · (n+ 2− k)
(|a0bn−k+1|+ · · ·+ |an−k+1b0|)

≤ M∏k−1
i=0 (n+ 2− k + i)

{ n−k−1∑
i=1

ik−2

(n− k + 1− i)(n− k − i)
1
2

+ (n− k)k−2 + (n− k + 1)k−2
}

=
M

(n+ 1)n
1
2

{ 1

n
1
2

∏k−3
i=0 (n+ 2− k + i)

n−k−1∑
i=1

ik−2

(n− k + 1− i)(n− k − i)
1
2

+

(n− k)k−2 + (n− k + 1)k−2

n
1
2

∏k−3
i=0 (n+ 2− k + i)

}
≤ M

(n+ 1)n
1
2

{ (n− k − 1)k−2

n
1
2

∏k−3
i=0 (n+ 2− k + i)

n−k−1∑
i=1

1

(n− k + 1− i)(n− k − i)
1
2

+

(n− k)k−2 + (n− k + 1)k−2

n
1
2

∏k−3
i=0 (n+ 2− k + i)

}
≤ M

(n+ 1)n
1
2

{ (n− k − 1)k−2

n
1
2

∏k−3
i=0 (n+ 2− k + i)

n−k−1∑
i=1

1

(n− k − i)
3
2

+
(n− k)k−2 + (n− k + 1)k−2

n
1
2

∏k−3
i=0 (n+ 2− k + i)

}
≤ M

(n+ 1)n
1
2

{ (n− k − 1)k−2

n
1
2

∏k−3
i=0 (n+ 2− k + i)

+∞∑
i=1

1

i
3
2

+
(n− k)k−2 + (n− k + 1)k−2

n
1
2

∏k−3
i=0 (n+ 2− k + i)

}
.

This together with (3.1) and n > N0, gives

|bn+1| ≤
M

n
1
2 (n+ 1)

.

Therefore, |bn| ≤ M

(n−1)
1
2 n

holds for all n = 2, 3, . . . and so
∑∞

n=0 bnz
n is absolutely convergent
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on ∆. Consequently f is analytic in ∆ and by the definition of Dirichlet space, the assertion

follows. �

Proof of Theorem 1.10 The method of proof is the same as in the proof of [2, Theorem 4.2]

that has been also applied in [7]. After integrating f (k)(z) from z0 to z k times, we get

f(z)−
k−1∑
n=0

f (n)(z0)

n!
(z − z0)

n. (3.4)

On the other hand,

A(z)f(z) =
dk

dzk
1

(k − 1)!

∫ z

z0

(z − ζ)k−1A(ζ)f(ζ)dζ,

F (z) =
dk

dzk
1

(k − 1)!

∫ z

z0

(z − ζ)k−1F (ζ)dζ.

After respectively integrating A(z)f(z), F (z) from z0 to z k times, we get

1

(k − 1)!

∫ z

z0

(z − ζ)k−1A(ζ)f(ζ)dζ, (3.5)

1

(k − 1)!

∫ z

z0

(z − ζ)k−1F (ζ)dζ. (3.6)

So by (1.3), (3.4)–(3.6), we have

f(z) =
k−1∑
n=0

f (n)(z0)

n!
(z − z0)

n +
1

(k − 1)!

∫ z

z0

(z − ζ)k−1F (ζ)dζ−

1

(k − 1)!

∫ z

z0

(z − ζ)k−1A(ζ)f(ζ)dζ. (3.7)

Since F (z) ∈ Hp and 1
k ≤ p ≤ +∞, it follows that 1

(k−1)!

∫ z

z0
(z − ζ)k−1F (ζ)dζ ∈ H∞ because of

Lemma 2.5. That is to say, there exists a constant C1 > 0, such that∣∣∣ 1

(k − 1)!

∫ z

z0

(z − ζ)k−1F (ζ)dζ
∣∣∣ < C1, z ∈ ∆. (3.8)

We choose z0 = 0 and the path of integration to be the line segment [0, z] in (3.7). Denoting

z = reiφ and ζ = teiφ, 0 ≤ t ≤ r < 1 and combining with (3.8), we obtain

|f(z)| ≤
k−1∑
n=0

|f (n)(0)|
n!

rn + C1 +
1

(k − 1)!

∫ r

0

(1− t)k−1|A(teiφ)||f(teiφ)|dt.

Hence

|f(z)| ≤ C +
1

(k − 1)!

∫ r

0

(1− t)k−1|A(teiφ)||f(teiφ)|dt, (3.9)

where C =
∑k−1

n=0
|f(n)(0)|

n! rn + C1.

By Lemma 1.1 and (3.9), we have

|f(z)| ≤ C exp
( 1

(k − 1)!

∫ r

0

(1− t)k−1|A(teiφ)|dt
)
.
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It follows from (1.3) that

|f(z)| ≤ C exp
( 1

(k − 1)!

∫ r

0

α(1− t)k−β−1dt
)
. (3.10)

(1) If 0 ≤ β < k, it follows from (3.10) that

sup
z∈∆

|f(z)| ≤ sup
z∈∆

{
C exp

( 1

(k − 1)!

∫ r

0

α(1− t)k−β−1dt
)}

< ∞,

which means f ∈ H∞.

(2) If β = k, it follows from (3.10) that

(1− |z|2)
α

(k−1)! |f(reiφ)| ≤(1− |z|2)
α

(k−1)!C exp
( α

(k − 1)!

∫ r

0

(1− t)−1dt
)

≤C(1− |z|2)
α

(k−1)! (
1

1− r
)

α
(k−1)! ≤ C2

α
(k−1)! .

Therefore f ∈ H∞
α

(k−1)!
.

(3) If k < β < ∞, it follows from (3.10) that

|f(z)| ≤C exp
( α

(k − 1)!

∫ r

0

(1− t)k−β−1dt
)

=C exp
{ α

(k − 1)!
(
(1− r)k−β

β − k
− 1

β − k
)
}

=C exp
( −α

(k − 1)!(β − k)
) exp(

1

(k − 1)!(β − k)
(

α

(1− r)β−k
)
)

< exp(
α1

(1− r)β−k
),

where α1 is some positive constant, so f ∈ εβ−k. Now we complete the proof of Theorem 1.10.
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