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Solutions of Linear Differential Equations in the Unit Disc
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Abstract In this paper, some properties of solutions of linear differential equations f*) +
A(z)f = 0 and f® + A(2)f = F(z) are discussed. Our results are a generalization of the
original results.
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1. Introduction

In this paper, we will use notation A = {z : |z| < 1} to denote the unit disc in the complex
plane, D and A denote Dirichlet space and analytic function space, respectively. We still need

the following definitions.

Definition 1.1 ([1]) We say a function f € A belongs to space Qp(p € (0,00)) if and only if
sup // If'(2)|?¢" (z,a)do(2) < oo,
aEAN A

where g(z,a) = log |1=22| is the Green’s function in /\ and do is an area measure on /\ normalized

such that o(A) = 1.

Definition 1.2 ([2]) We say that a function f € A belongs to the classical Dirichlet space D if

and only if,
/ /A 1F(2)2do () < oo,

Definition 1.3 ([3]) We say that a function f € A belongs to the Hardy space HP (0 < p < o0)
if and only if

1 27 ) %
sup ( / |f(rew)\pd<p> < 0.
0

0<r<1 2m

For p = o0, it is natural to say that f € H* if and only if

sup | f(2)] < oo.
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For 0 < q < oo, functions f € A in the corresponding weighted Hardy spaces H and H;° satisfy
1 2w ) 1
sup (1— rz)q(—/ |f(rew)|pd<p) "< oo
0<r<1 27 Jo

and

sup (1 — [2[*)7|f(2)] < oc.
zEN

For a basic reference to Hardy spaces, see [3].

Definition 1.4 ([4]) Let B € (0,00) be a constant. Then f € A is in space ¢ if and only if
o'
|f(2)] < exp (7— 5
()
for some constant o € (0, 00).

In 2000, Heittokangas investigated the properties of solutions of the equation
I"+AR)f=0 (1.1)
in A in his Doctoral thesis [2] and obtained the following result.

Theorem 1.5 ([2]) Let A(z) = Y..° janz", an € C be the analytic coefficient of (1.1) in A
with |a,| <1 for all n. Then all solutions f of (1.1) belong to (1., @p-
In 2011, Li and Wulan improved Theorem 1.5 and obtained the following result.

Theorem 1.6 ([5]) Let A(z) = > anz", a, € C be the analytic coefficient of (1.1) in A
with |a,| < 1 for all n. Then all solutions f of (1.1) belong to Dirichlet space D.

Remark 1.7 In fact, the inclusion D C [y, .., Qp is strict, see [1].

Our first result contains Theorem 1.6 as a special case.

Theorem 1.8 Let A(z) =Y " anz", a, € C be the analytic coefficient of equation
FB+ARf=0, k>2 (1.2)

in A with |a,| < n*~2 for all n. Then all solutions f of (1.2) belong to D.
In 2000, Heittokangas also investigated the properties of solutions of (1.2) in [2] and obtained
the following result.

Theorem 1.9 ([2]) Let A(z) be analytic coefficient of (1.2) in A satisfying
@
(1 —1[=))?’
where o > 0 and 3 > 0 are finite constants. Then
(1) feH®, if0<p <k
(2) fe H(Ozfl)!, if B =k;
(3) feelF ifk<pB<oo.
In Theorem 1.9, Heittokangas investigated the properties of solutions of the higher-order

[A(z)] <

linear differential equation (1.2). In this paper, we will investigate the properties of solutions of
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the higher-order non-homogeneous linear differential equation
F® + A@2)f = F(2), (1.4)

and obtain a similar result to Theorem 1.9.

Theorem 1.10 Let A(z), F(z) be analytic coefficients of (1.3) in A\ satisfying
@
(1= [=)?
where o > 0, B > 0 are finite constants, % < p < +oo. Then every solution f of (1.4) satisfies:
(1) feH®, if0<B<k;
(2) feH®s ,ifB=k;

*—1)!

(3) feelF ifk<pB<oo.

[A(2)] < F(z) € HY,

2. Lemmas for the proof of Theorems

Lemma 2.1 ([6]) Let u(z),v(x) > 0, ¢ be a positive constant and u < ¢ + fot uvdty;. Then
u < cexp(fot vdty).

Lemma 2.2 ([3]) If f' € HP(p <1), then f € H?, q = .

-p
Lemma 2.3 ([3]) If f' € H', then f € H>.
Lemma 2.4 ([3]) If f € H?(0 < p < o), then
@) <27 fl,1-n)TF, r=]z,
where [| £, = supg<,<1 (&[5 |f(re’®)[Pdip) 7.

Lemma 2.5 If f*)(2) € HP (£ <p < o0,k >2), then f(z) € H®.

1
k
Proof We divide our proof into four cases.
Case 1 1< p < oo. Since f*)(z) € HP, by Definition 1.3 and Lemma 2.4, we have
FPE <2 NP @1 - )T
- 1 [ , 3
<=7 s (50 [ 1100)a)
0<r<1 N4T Jo

SMl(l - T)%,
where M; (> 0) is a constant. After integrating f(*)(2) from 2y to z, we get
FEIE) = 57 (z0).

We choose zgp = 0 and the path of integration to be the line segment [0, z]. Denoting z = re®#
and ¢ = te’?, 0 <t <r < 1, we obtain

FED )] = 5D (0)] <D () — 5D (o)
"1 geie)d ' — )7 dt.
< [@eeniar< [ ana-nFa
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Therefore sup,c 5 |[f*71(2)] < oc.

Now integrating f*~1)(z) from zj to z, we get

FED(2) = fE72 (20).

We choose zp = 0 and the path of integration to be the line segment [0, z]. Denoting z = re®#
and ¢ = te’?, 0 <t <r <1, we obtain

2] - I E20) < [F42) - r420) < AR (1) at,
0

which means sup,c |f*72)(2)| < oo.

Repeating the above process k times, we can obtain

£G) = 1O < 17:) = £O)1 < [ 17 (e,
which means sup,¢a |f(2)] < 0o. Consequently f(z) € H.

Case 2 p = 1. By Lemma 2.3, we have f*~1(2) € H*> from the fact f*)(z) € H'. Using a

similar discussion to case 1, we can get f(z) € H®.
Case 3 % < p < 1. We divide our discussion into two subcases.

Subcase 3.1 When k =2, then 3 <p < 1. If p= 3, since f"(z) € H?, by Lemma 2.2, we have
f'(z) € H'. Then, by Lemma 2.3, we can get f(z) € H>. If § < p < 1, by Lemma 2.2, we have

f'(z) € HTF and 125 > 1. Using a similar discussion to case 1, we conclude that f(z) € H*.

Subcase 3.2 When k£ > 2, we have % < %

If p = 3, it follows from Lemma 2.2 that f%=1(z) € H'. Then, by Lemma 2.3, we get
f%*=2)(2) € H*. Using a similar discussion to case 1 again, we obtain f(z) € H*.

If p = 1, it follows from Lemma 2.2 that f*~1(2) € H77 and then fE=2(2) € H%72. By
the induction, we can get f’(z) € H'. Thus, by Lemma 2.3, we conclude that f(z) € H®®.

If % < p <1, by Lemma 2.2, we have f(*~1(z) € HT™% and ﬁ > 1. Consequently, using
a similar discussion to case 1, we can get f(z) € H™.

If < p < 3, it follows from Lemma 2.2 that f(*=1(2) € HT7 and then f(*=2)(z) € HT%.
By the induction, we know f~™)(z) € H=w (1 < n < k). When % is an integer, we know

P
]% —1 < k-1, and then f(k_(ﬁ_l))(z) e GV — H1 By Lemma 2.3, we have

f(k_%)(z) € H*, and then using a similar discussion to case 1 again, we can get f(z) € H™.

1<

When % is not an integer, we know 1 < 1% —-1< [1%] < % < k, where [%] denotes integer part of
D

%. Then f(k_[%])(z) € Hl_[%]”, where 1_’['%]]0 > 1. Using a similar discussion to case 1, we can

get f(z) € H™. ’

Case 4 p = co. Using a similar discussion to case 1, we can conclude that f(z) € H> from the
fact f*)(2) € H™.
Finally, we complete the proof. [
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3. Proof of Theorems 1.8 and 1.10

Theorem 1.8 can be verified by following the proof of Theorem 2.4 in [5] with suitable

modifications.
Proof of Theorem 1.8 We can find a positive integer No(> k) sufficiently large such that

n—k-1F2 X1 (n—k)F 24 (n—k+1)k?
; ( ) Ly ( - ) ( ) 3.1)
n2(n—1)---(n+2—k) i nz(n—1)---(n+2—k)
is true for n > Ny. Let f(z) = Y.,~ ;byz™ be a formal solution of (1.2). Then
FE 4 AR =) [n+k)(n+k—1)(n+ Dbpix + cal2" =0, (3.2)
n=0
where ¢, = agb,, + a1bn—1 + - -+ + anbo. Hence (3.2) holds if and only if
by = — Cnk (3.3)

nn—1)---(n+1—k)’
for all n = k,k + 1,.... Choose a finite constant M > 0 such that |by| < M, |b1] < M and
|b;] < _(_Ml T for all i =2,3,...,n (n > Np). Then it follows from (3.3) that
2(2—1)2

1
boi1| = .
‘ +1‘ (n—l—l)n(n—f—Q—k)‘C k+1|
1
< _ - _
S i Dn g o=k bkl £+ lan—kiabol)
n—k—1 .
M k=2
= T+ n—k)rF 24 (n—k+1)2
Hk&<n+2—k+z{; ki ki R )2}
_ M { 1 n_k-1 k=2 .
A nE S I 2—k+i) S (n—k+1l—i)(n—k—i)?
(n— k)"

2+ (—k+1)k’2}
ne [I23n+2—k+i)
< M ;{ (n—k—1)k2 1 _
1)nz nznlo(n+2—k+z) = (m—k+1—-i)(n—k—i)2
(n—k)*24 (n—k+ 1)k 2}
%Hlo(n—i-Q—k-&-)

n—k—1
+

E)
+

.M { (Z—k:—l "Z’“:l 3 (n— k)2 + (n —k+1)k—2}
m+Dnz s ([P0 +2-k+i) = (n— —z‘)é nz [ +2—k+i)
M { (:;k—l)‘ Jio1%+(n—1k)’;‘23+(n—k+1)k‘2}.
(m+Dnz Lna [0 (n+2—k+i) = iz nz [[,y(n+2—k+1)

This together with (3.1) and n > Ny, gives

b <
bata] < n%(n—&—l)

holds for all n = 2,3,... and so ZZOZO b,2z™ is absolutely convergent

Therefore, |b,| < (

n—1)2n
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on A. Consequently f is analytic in A and by the definition of Dirichlet space, the assertion
follows. [

Proof of Theorem 1.10 The method of proof is the same as in the proof of [2, Theorem 4.2]
that has been also applied in [7]. After integrating f*)(z) from z to z k times, we get

ALy
f)=> / (, 0) (z — 20)". (3.4)
n=0 :

n

On the other hand,

k z
A = T gy L = 00RO

Fe) = ot [ oo
T FE- ), '
After respectively integrating A(z)f(z), F(z) from 2 to z k times, we get

iy [ - 000 (35)

/ (2= OFR(Q)AC (3.6)

Z0

(k—1)!
So by (1.3), (3.4)—(3.6), we have

k—1
RS PARCD) n 1 : -
f(Z)—nz::0 " (2 — 20) +U€—1)!/ZO(Z_C)k LR(¢)d¢

(k_ll);/z(z —OFAOF(Q)dc. (3.7)

Since F(z) € H? and 1 < p < +0o0, it follows that ﬁ fzzo(z — O)F1F(¢)d¢ € H* because of
Lemma 2.5. That is to say, there exists a constant C; > 0, such that
1 : k—1
LI Ry N |
o [ QA <o s (38)
We choose zp = 0 and the path of integration to be the line segment [0, 2] in (3.7). Denoting
z=re"¥ and ¢ =te’?, 0 <t <r < 1 and combining with (3.8), we obtain

k—1
F™0) R PR
60 < P ot gy [ a- ot e
Hence
1 r . .
1) < C+ Gy / (1= £ =1 A(te)| £ (te9) dt, (3.9)

where C' = Zk_l ‘fw(o)'r” + C1.

n=0 n!

By Lemma 1.1 and (3.9), we have

1) < Com (g [ -0 acelae).
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It follows from (1.3) that
1 "
< — 1—t)F=F-1qe). 1
1)1 < Cosp (= || a1 =0 1ar) (3.10)
(1) If 0 < B < k, it follows from (3.10) that
1 T
su z)| < supqCex 7/a1—tk_5_1dt < 00,
sup |(2)] < sup {Cexp (=g | a1 =0 "ae)}

which means f € H>.
(2) If g =k, it follows from (3.10) that

(1= )0 fre)] (1~ o)™ Cexp (2, [ (-0 )

<C(1 — |z T ( ! YT < C2TT
T

1_
Therefore f € H®a

=

(3) If k < B < o0, it follows from (3.10) that

ol <Com (g [ -0t ar)

! (1—r)k=5 1

~Cer{G it =R

“a 1 o
=Ce (G- G- 0 - G-
<exp((1_aﬁ),

where o is some positive constant, so f € e#~*. Now we complete the proof of Theorem 1.10.
O
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