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Abstract Nonconvex penalties including the smoothly clipped absolute deviation penalty and

the minimax concave penalty enjoy the properties of unbiasedness, continuity and sparsity,

and the ridge regression can deal with the collinearity problem. Combining the strengths of

nonconvex penalties and ridge regression (abbreviated as NPR), we study the oracle property

of the NPR estimator in high dimensional settings with highly correlated predictors, where

the dimensionality of covariates pn is allowed to increase exponentially with the sample size

n. Simulation studies and a real data example are presented to verify the performance of the

NPR method.

Keywords high dimension; nonconvex penalties; oracle property; ridge regression; variable

selection.
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1. Introduction

High dimensional data are frequently encountered in modern applications [1–3]. A common

feature of high dimensional data is that the dimensionality of covariates pn is large compared

with the number of observations n. In addition, the collinearity problem is unavoidable in

high dimensional data analysis. For example, a typical microarray data has many thousands of

predictors and often fewer than 100 samples. The correlations between those genes sharing the

same biological ‘pathway’ can be high [4]. As pointed in [5,6], the ridge regression can overcome

the collinearity with better prediction performance.

Much progress has been made to overcome these challenges simultaneously. Elastic net

(Enet) proposed by [7] is the first try to understand variable selection with highly correlated

variables. Yuan and Lin [8] gave a necessary and sufficient condition for the Enet to select

the true model in the classical setting when pn is fixed. Jia and Yu [9] demonstrated that the

Enet is selection consistent under an Elastic Irrepresentable Condition (EIC) and certain other

conditions in the case of pn ≫ n. Their results generalize those of [10] on the selection consistency

of the Lasso. However, the Enet estimator cannot obtain the selection consistency and prediction
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accuracy simultaneously due to the L1 part [11,12]. Zuo and Zhang [13] proposed the adaptive

Enet estimator, which is oracle under some regular conditions. However, they assumed that

the design matrix is nonsingular, which excludes the case of pn > n. Due to the unbiasedness,

sparsity and continuity properties of the smoothly clipped absolute deviation (SCAD) proposed

in [14], several authors studied the selection consistency by combining the SCAD and L2 penalties

[15,16]. However, they did not give the theoretical properties when pn is much larger than n.

Furthermore, they only gave the asymptotic results of a local minimizer due to the non-concave

of the SCAD. Kim, Choi and Oh [17] studied the asymptotic properties of the SCAD estimator

when pn > n, but it will perform bad when predictors are highly correlated. Huang, Ma, Li and

et al [18] studied the minimax concave penalty (MCP)[19] to deal with the collinearity problem.

In this paper, based on the definitions of SCAD and MCP, we propose a class of nonconvex

penalties, and study the theoretical properties of the combination of nonconvex penalties and

ridge regression (abbreviated as NPR) for high-dimensional linear models. Under certain con-

ditions, the oracle ridge estimator given in subsection 2.1 is a local minimizer of the penalized

objective function (2.1) even when the number of parameters is much larger than the sample size.

In addition, the oracle ridge estimator becomes the global minimizer of (2.1) asymptotically in

subsection 2.2. That is, this method can correctly select predictors with nonzero coefficients and

estimate the selected coefficients using the ridge regression. Simulation studies and a real data

indicate that the NPR works much better than the nonconvex penalties in high dimensionality

and highly correlated.

The rest of the article is organized as follows. Section 2 gives the theoretical properties

of the NPR estimator. In Section 3, we compare the finite sample performance of the NPR

estimate by simulation studies. A real data example is analyzed to illustrate the application of

our method in Section 4. Some concluding remarks are given in Section 5.

2. Theoretical properties

Consider the linear regression model

Yi = β0 +

pn∑
j=1

Xijβj + εi, i = 1, . . . , n,

where Yi is the response variable, Xij ’s are covariates or design variables and εi’s are independent

and identically distributed random error terms. Without loss of generality, let β0 = 0 which can

be obtained by centering the response and covariates. Throughout this paper, we assume that

the outcome is centered and the predictors are standardized; that is,

n∑
i=1

Yi = 0,
n∑

i=1

Xij = 0 and
1

n

n∑
i=1

X2
ij = 1, j = 1, . . . , pn.

Let Y = (Y1, . . . , Yn)
T , Xj = (X1j , . . . , Xnj)

T and X = (X1, . . . ,Xpn). To indicate the depen-

dence of parameters on the sample size, denote β = (β1, . . . , βpn)
T by βn.

Without loss of generality, let the true parameter be β0 = (β01, . . . , β0pn)
T = (βT

10,β
T
20)

T ,
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where β10 ̸= 0 and β20 = 0. Denote Jn1 = {j : β0j ̸= 0} and bn1 = minj∈Jn1 |β0j |. The

cardinality of Jn1 is denoted by |Jn1| and |Jn1| = kn. X1 = (Xj , j ∈ Jn1) and X2 = (Xj , j /∈
Jn1). Define Σ11 = n−1XT

1 X1 with the smallest and largest eigenvalues being τn1 and τn2.

Combining the nonconvex penalties and ridge regression, we consider the following penalized

objective function

Qn(βn) =
1

2n
∥Y −Xβn∥2 +

pn∑
j=1

pλ1(|βnj |) +
1

2
λ2

pn∑
j=1

β2
nj , (2.1)

where pλ(·) belongs to a class of nonconvex penalties which satisfy the following conditions: (a)

Let p ′
λ(·) be nonnegative, nonincreasing and continuous over (0,∞); (b) There exists a constant

a > 0 such that limt→0+ p ′
λ(t) = λ and p ′

λ(t) > λ− t/a (0 < t < aλ); (c) pλ(t) = O(λ2) (t > aλ).

This class includes the SCAD and MCP as special cases.

The value β̂n that minimizes (2.1) is called the NPR estimator. λ1 and λ2 are tuning

parameters. Note that both of them are dependent on n, and we write them without n when

there is no confusion. Let

β̂0
n = argmin

βn

{ 1

n
∥Y −Xβn∥2 + λ2

pn∑
j=1

β2
nj , βnj = 0 for j /∈ Jn1

}
.

Then β̂0
n is the oracle ridge estimator, which only contains all important variables. In practice,

the oracle set with nonzero coefficients cannot be known in advance. Here, we use the oracle

ridge estimator to facilitate the derivation about the oracle property of the NPR estimator.

2.1. Asymptotic properties of the oracle ridge estimator

In this section, we give sufficient conditions such that the oracle ridge estimator is a local

minimizer of the objective function (2.1) even when the number of parameters grows at an

exponential rate of the sample size. We now state the following conditions.

(A1) εi’s are independent and identically distributed random variables with E(εi) = 0

and Var(εi) = σ2. For a constant 1 6 d 6 2, the tail probabilities of εi satisfy Pr(|εi| > t) 6
K exp{−Ctd } for all t > 0 and i = 1, . . . , n, where C and K are positive constants.

(A2) There exist constants C1 > 0 and C2 > 0 such that C1 6 τn1 6 τn2 6 C2 for all n.

(A3) (log n)I(d=1)[ (log kn)
1
d√

n(C1+λ2)(bn1−aλ1)
+ (log pn)

1
d√

nλ1
] → 0.

(A4) For any constant M > 0, M λ2

C1+λ2
∥β10∥ < bn1 − aλ1.

(A5) λ2

C1+λ2

√
C2∥β10∥ < λ1

2 .

Condition (A1) is commonly used in linear regression models ([20]). Condition (A2) implies

that the matrix Σ11 is nonsingular, which is regular for the true model. Although we consider

the collinearity among all variables, the correlations between important variables are small.

Now, we discuss the rationality of conditions (A3–A5). Condition (A3) states the number of

coefficients. Condition (A4) requires that the minimum of nonzero coefficients should not be

too small to be identified from the initial model. Condition (A5) assumes that λ1 should be at

least in the same order as λ2. Similar to [10], suppose kn = O(nd1) for some 0 < d1 < 1 and
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bn1 > Mn(d2−1)/2 for some d1 < d2 < 1. We choose λ1 = O(n(d3−1)/2), with 0 < d3 < d2 − d1.

If λ2 = o(n(d3−d1−1)/2), then conditions (A4) and (A5) hold. For condition (A3), if d = 2, i.e.,

the tails of the error distributions are sub-Gaussian, then the number of parameters pn can be

as large as exp(o(nd3)), which can be much larger than the sample size n.

We first give a lemma that will be used in the proof of Theorem 2.2.

Lemma 2.1 ([20]) Under condition (A1), for all constants ai satisfying
∑n

i=1 a
2
i = 1, we have

Pr(
∑n

i=1 aiεi > t) 6 exp{−td/M(1 + log n)I(d=1)} for certain M depending on {d,K,C}.

Theorem 2.2 Let An(λ1, λ2) be the set of local minimizer of (2.1). Under conditions (A1–A5),

we have Pr(β̂0
n ∈ An(λ1, λ2)) → 1.

Proof By Karush-Kunh-Tucker (KKT) conditions (see, e.g., Bertsekas 1999 [21], p. 320), βn is

the solution of (2.1) if

− 1

n
XT

j (Y −Xβn) + λ2βnj + p′λ1
(|βnj |)sgn(βnj) = 0, βnj ̸= 0,

| 1
n
XT

j (Y −Xβn)| 6 λ1, βnj = 0. (2.2)

Thus it suffices to show that β̂0
n satisfies (2.2). By the definition of β̂0

n, we only need to show

|β̂0
nj | > aλ1, j ∈ Jn1,

| 1
n
XT

j (Y −Xβ̂0
n)| 6 λ1, j /∈ Jn1.

Let β̂0
1n = (β̂0

nj , j ∈ Jn1)
T . It is easy to get β̂0

1n = (Σ11+λ2I11)
−1Σ11β10+

1
n (Σ11+λ2I11)

−1XT
1 ε,

where I11 is a kn × kn identity matrix. Thus, for j ∈ Jn1, we have

β̂0
nj = eTj (Σ11 + λ2I11)

−1Σ11β10 +
1

n
eTj (Σ11 + λ2I11)

−1XT
1 ε,

β̂0
nj − β0j =

1

n
eTj (Σ11 + λ2I11)

−1XT
1 ε− λ2e

T
j (Σ11 + λ2I11)

−1β10, (2.3)

where ej is a unit vector in the direction of the j-th coordinate. For j /∈ Jn1, we have

1

n
XT

j (Y −Xβ̂0
n) =

1

n
XT

j X1

[
I11 − (Σ11 + λ2I11)

−1Σ11

]
β10+

1

n
XT

j

[
In − 1

n
X1(Σ11 + λ2I11)

−1XT
1

]
ε. (2.4)

Here In is an n×n unit matrix. Note that |β̂0
nj | > bn1−maxj∈Jn1 |β̂0

nj −β0j |, for j ∈ Jn1. Hence

Pr
(
β̂0
n /∈ An(λ1, λ2)

)
6Pr

(
∃j ∈ Jn1, |β̂0

nj | < aλ1

)
+ Pr

(
∃j /∈ Jn1, | 1

n
XT

j (Y −Xβ̂0
n)| > λ1

)
6Pr

(
∃j ∈ Jn1, max

j∈Jn1

|β̂0
nj − β0j | > bn1 − aλ1

)
+

Pr
(
∃j /∈ Jn1, | 1

n
XT

j (Y −Xβ̂0
n)| > λ1

)
.

Combining (2.3) and (2.4), we obtain

Pr
(
β̂0
n /∈ An(λ1, λ2)

)
6Pr

(
∃j ∈ Jn1, | 1

n
eTj (Σ11 + λ2I11)

−1XT
1 ε| >

1

2
(bn1 − aλ1)

)
+
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Pr
(
∃j ∈ Jn1, |λ2e

T
j (Σ11 + λ2I11)

−1β10| >
1

2
(bn1 − aλ1)

)
+

Pr
(
∃j /∈ Jn1, | 1

n
XT

j X1(I11 − (Σ11 + λ2I11)
−1Σ11)β10| >

λ1

2

)
+

Pr
(
∃j /∈ Jn1, | 1

n
XT

j [In − 1

n
X1(Σ11 + λ2I11)

−1XT
1 ]ε| >

λ1

2

)
△
=T1 +T2 +T3 +T4.

Note that ∥ej∥2 = 1. Let aj = n−1[eTj (Σ11 + λ2I11)
−1XT

1 ]
T . By condition (A2), we have

∥aj∥2 =
1

n2
eTj (Σ11 + λ2I11)

−1XT
1 X1(Σ11 + λ2I11)

−1ej

6 ρmax(Σ11)

(ρmin(Σ11) + λ2)2
1

n
eTj ej 6

C2

(C1 + λ2)2
1

n
eTj ej =

C2

n(C1 + λ2)2
,

where ρmin and ρmax are the minimum and maximum eigenvalues, respectively. So by Lemma

2.1 and condition (A3), we have

T1 6kn Pr
(
| 1

∥aj∥
aT
j ε| >

1

2
(bn1 − aλ1) /∥aj∥

)
6kn Pr

(
| 1

∥aj∥
aT
j ε| >

√
n(C1 + λ2)

2
√
C2

(bn1 − aλ1)
)

6kn · exp
{
− 1

M(log n+ 1)I(d=1)
[

√
n(C1 + λ2)

2
√
C1

(bn1 − aλ1)]
d
}

=exp
{
− log kn[

1

M(log n+ 1)I(d=1)
(

√
n(C1 + λ2)(bn1 − aλ1)

2
√
C1(log kn)1/d

)d − 1]
}
→ 0.

For T2, by the Cauchy-Schwartz inequality, we have

|λ2e
T
j (Σ11 + λ2I11)

−1β10| 6 λ2∥β10∥/(C1 + λ2).

Then under condition (A4), T2 → 0.

Use the Cauchy-Schwartz inequality,∣∣∣ 1
n
XT

j X1

[
I11 − (Σ11 + λ2I11)

−1Σ11

]
β10

∣∣∣
=
∣∣∣ 1
n
XT

j X1(Σ11 + λ2I11)
−1λ2β10

∣∣∣ 6 λ2

ρmin(Σ11) + λ2
| 1
n
XT

j X1β10|

6 λ2ρ
1/2
max(Σ11)

ρmin(Σ11) + λ2

1

n1/2
∥Xj∥ · ∥β10∥ 6 λ2

C1 + λ2

√
C2∥β10∥,

by condition (A5), T3 → 0.

Let bTj = n−1/2XT
j [In − n−1X1(Σ11 + λ2I11)

−1XT
1 ]. Then

∥bj∥2 =
1

n
XT

j

[
In − 1

n
X1(Σ11 + λ2I11)

−1XT
1

][
In − 1

n
X1(Σ11 + λ2I11)

−1XT
1

]
Xj

6 ρ2max

{
In − 1

n
X1(Σ11 + λ2I11)

−1XT
1

} 1

n
XT

j Xj 6 1.

By Lemma 2.1 and condition (A2), we have

T4 6pn · Pr
(
|bTj ε| >

√
nλ1

2

)
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6pn · exp
{
− 1

M(log n+ 1)I(d=1)
(

√
nλ1

2
)d
}

=exp
{
− log pn[

1

M(log n+ 1)I(d=1)
(

√
nλ1

2(log pn)1/d
)d − 1]

}
→ 0.

The proof is completed. �

2.2. Asymptotic equivalence of the NPR estimator and oracle ridge estimator

In this section, under the condition about the smallest eigenvalue of Σ, the following theorem

shows that the NPR estimator is exactly the same as the oracle ridge estimator asymptotically.

Theorem 2.3 Let Σ = n−1XTX and ρ be the smallest eigenvalue of Σ with ρ + λ2 > 0. Let

β̂n be the global minimizer of (2.1). Then under conditions (A1–A5), Pr(β̂n = β̂0
n) → 1.

Proof It suffices to show that Pr(infβn∈Rpn Qn(βn) > Qn(β̂
0
n)) → 1 as n → ∞. By the definition

of β̂0
n, we have

Qn(βn)−Qn(β̂
0
n)

= −
∑

j /∈Jn1

[ 1
n
(Y −Xβ̂0

n)
TXjβnj

]
+

1

2n
(β̂0

n − βn)
TXTX(β̂0

n − βn)+

1

2
λ2

pn∑
j=1

(βnj − β̂0
nj)

2 +

pn∑
j=1

[pλ1(|βnj |)− pλ1(|β̂0
nj |)]

= −
∑

j /∈Jn1

oP (λ1)|βnj |+
1

2
(β̂0

n − βn)
T (Σ + λ2I)(β̂

0
n − βn) +

pn∑
j=1

[pλ1(|βnj |)− pλ1(|β̂0
nj |)]

> −
∑

j /∈Jn1

oP (λ1)|βnj |+
1

2
(ρ+ λ2)∥β̂0

n − βn∥2 +
pn∑
j=1

[pλ1(|βnj |)− pλ1(|β̂0
nj |)].

Define J+
n1 = {j : |βnj | > aλ1, j ∈ Jn1}, J−

n1 = {j : |βnj | < aλ1, j ∈ Jn1}, J+
n2 = {j :

|βnj | < aλ1, j /∈ Jn1} and J−
n2 = {j : |βnj | > aλ1, j /∈ Jn1}. Then, by the definition of nonconvex

penalties, for j ∈ J+
n1, p

′
λ1
(|βnj |) = 0, and for j ∈ J+

n2, pλ1(|βnj |) − pλ1(|β̂0
nj |) = p ′

λ1
(s)|βnj | >

(λ1 − s/a) |βnj | > (λ1 − |βnj |/a) |βnj |, where s is between |βnj | and 0. So we have

pn∑
j=1

[pλ1(|βnj |)− pλ1(|β̂0
nj |)]

>
∑

j∈J−
n1

[pλ1(|βnj |)− pλ1(|β̂0
nj |)] +

∑
j∈J+

n2

(λ1 − |βnj |/a) |βnj |+
∑

j∈J−
n2

pλ1(|βnj |)

> −
∑

j∈J−
n1

pλ1(|β̂0
nj |) +

∑
j∈J+

n2

(λ1 − |βnj |/a) |βnj |.

According to the proof of Theorem 2.2, |β̂0
nj | > aλ1, then pλ1(|β̂0

nj |) = O(λ2
1). Hence,

pn∑
j=1

[pλ1(|βnj |)− pλ1(|β̂0
nj |)] > −|J−

n1|O(λ2
1) +

∑
j∈J+

n2

(λ1 − |βnj |/a) |βnj |.
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In addition, by the definition of β̂0
n, it is easy to show that

∥β̂0
n − β0∥ = OP

(
λ2∥β0∥+ C2σ

2kn/[n(C1 + λ2)]
)
.

For j ∈ J−
n1, we have

|β̂0
nj − βnj | > min

j∈J−
n1

|β0j | − |β̂0
nj − β0j | − |βnj | > bn1 −OP

(λ2∥β0∥+ C2σ
2kn/n

C1 + λ2

)
− aλ1.

Let ζn = bn1 −OP (
λ2∥β0∥+C2σ

2kn/n
C1+λ2

)− aλ1. Then

1

2
(ρ+ λ2)∥β̂0

n − βn∥2 >
∑

j∈J−
n1

1

2
(ρ+ λ2)(β̂

0
nj − βnj)

2 +
∑

j∈J−
n2

1

2
(ρ+ λ2)aλ1|βnj |

> |J−
n1|

1

2
(ρ+ λ2)ζ

2
n +

∑
j∈J−

n2

1

2
(ρ+ λ2)aλ1|βnj |.

Hence, we have

Qn(βn)−Qn(β̂
0
n) >−

∑
j /∈Jn1

oP (λ1)|βnj |+ |J−
n1|

1

2
(ρ+ λ2)ζ

2
n +

∑
j∈J−

n2

1

2
(ρ+ λ2)aλ1|βnj |−

|J−
n1|O(λ2

1) +
∑

j∈J+
n2

(
λ1 − max

j∈J+
n2

|βnj |/a

)
|βnj |

>
[
min{1

2
(ρ+ λ2)a, 1− max

j∈J+
n2

|βnj |/(aλ1)}λ1 − oP (λ1)
] ∑
j /∈Jn1

|βnj |+

|J−
n1|
[1
2
(ρ+ λ2)ζ

2
n −O(λ2

1)
]
.

By conditions (A3) and (A4), we have Pr(infβ∈Rpn Qn(βn) > Qn(β̂
0
n)) → 1 as n → ∞. �

Remark 2.4 In Theorem 2.3, we assume that the matrix Σ may be singular, but ρ + λ2 > 0.

Hence, for ultra-high dimensional data, if we choose λ2 > 0, the oracle ridge estimator is the

global minimizer of (2.1).

3. Numerical studies

In this section, we present simulation studies to examine the finite sample performance

of the NPR estimate. The nonconvex penalized method includes the SCAD and MCP, so we

consider the combinations of these two methods and ridge regression, denoted by Snet and Mnet,

respectively. The simulation studies in [21] suggested that a = 3 is a reasonable choice for the

MCP, so we set a = 3 for the MCP. As suggested in [14], we choose a = 3.7 for the SCAD. We

consider six methods in simulations: the Lasso, the Enet, the MCP, the Mnet, the SCAD and

the Snet. All these estimates are computed using the ncvreg package [22]. The regularization

parameters λ1 and λ2 are selected by ten-fold cross validation.

To evaluate the performance of these methods, we give four summary statistics: the average

number of zero coefficients that are correctly estimated by zero (C), the average number of

nonzero coefficients that are incorrectly estimated by zero (IC), the median of L2 loss ∥β̂−β∥2,
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and the median of the prediction error (PE) defined as E(Y −XT β̂ )2. We compute the prediction

error on the basis of 1000 independent test data sets. Summary statistics are given based on 100

replications. The numbers in parentheses of all tables are the corresponding standard errors.

We simulate data from the linear model

Y =

pn∑
j=1

xjβ0j + ε,

where β0 = (β01, . . . , β0pn)
T is a pn-vector, X = (x1, . . . , xpn)

T is a multivariate normal dis-

tribution with zero mean and the covariance of xj and xk being r|j−k|, 1 6 j, k 6 pn, and

ε ∼ N(0, 1). The true coefficients are β0j = 3, for j = 1, . . . , 15, the rest are zero. We con-

sider r = 0.5 and r = 0.9, which represent moderate and strong correlation, respectively. We

investigate pn = 40, 600 for n = 100, 300.

r n Methods C IC L2 loss PMSE

Lasso 17.51 (3.486) 0 (0) 0.615 (0.113) 1.292 (0.110)

Enet 15.53 (4.565) 0 (0) 0.631 (0.137) 1.311 (0.149)

MCP 24.71 (0.998) 0 (0) 0.516 (0.117) 1.165 (0.092)

100 Mnet 24.14 (2.531) 0 (0) 0.514 (0.140) 1.179 (0.132)

SCAD 24.41 (1.408) 0 (0) 0.527 (0.110) 1.168 (0.085)

Snet 23.97 (2.380) 0 (0) 0.515 (0.133) 1.179 (0.101)

0.5 Truth 25.00 (0.000) 0 (0) 0.501 (0.115) 1.160 (0.074)

Lasso 16.63 (4.223) 0 (0) 0.343 (0.065) 1.089 (0.053)

Enet 15.36 (5.252) 0 (0) 0.354 (0.068) 1.102 (0.066)

MCP 24.46 (1.629) 0 (0) 0.311 (0.075) 1.065 (0.051)

300 Mnet 24.02 (1.682) 0 (0) 0.312 (0.072) 1.052 (0.063)

SCAD 24.19 (1.774) 0 (0) 0.307 (0.069) 1.045 (0.052)

Snet 23.92 (1.942) 0 (0) 0.306 (0.070) 1.060 (0.049)

Truth 25.00 (0.000) 0 (0) 0.299 (0.067) 1.053 (0.054)

Lasso 22.02 (2.318) 0 (0) 1.263 (0.328) 1.210 (0.100)

Enet 20.47 (3.341) 0 (0) 1.149 (0.313) 1.205 (0.109)

MCP 23.52 (1.817) 0 (0) 1.246 (0.386) 1.205 (0.165)

100 Mnet 24.56 (1.358) 0 (0) 0.849 (0.289) 1.125 (0.086)

SCAD 23.43 (1.677) 0 (0) 1.227 (0.370) 1.177 (0.139)

Snet 24.25 (1.629) 0 (0) 0.890 (0.377) 1.136 (0.120)

0.9 Truth 25.00 (0.000) 0 (0) 1.184 (0.311) 1.159 (0.088)

Lasso 21.93 (2.289) 0 (0) 0.677 (0.168) 1.065 (0.049)

Enet 21.33 (2.305) 0 (0) 0.655 (0.159) 1.074 (0.057)

MCP 24.65 (0.936) 0 (0) 0.662 (0.176) 1.057 (0.049)

300 Mnet 24.70 (0.916) 0 (0) 0.549 (0.167) 1.051 (0.062)

SCAD 24.45 (1.123) 0 (0) 0.675 (0.170) 1.048 (0.052)

Snet 24.61 (1.053) 0 (0) 0.557 (0.169) 1.047 (0.053)

Truth 25.00 (0.000) 0 (0) 0.667 (0.166) 1.053 (0.053)

Table 1 Simulation results for pn = 40
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The results on variable selection and prediction errors are shown in Tables 1–2. It can be

seen that (1) Table 1 shows the prediction and selection performance in low dimensional case.

When the correlation is moderate, the Lasso, the MCP and the SCAD perform better than the

Enet, the Mnet and the Snet, respectively. The four methods with oracle property outperform

the lasso and the Enet which do not have the oracle property, in terms of variable selection

and prediction. Both the L2 loss and the prediction error decrease as the sample size increases.

However, when the correlation is high, the three combination approaches are better than the

three methods without L2 penalty. This is in line with our theoretical results.

(2) In the settings of high dimension (Table 2), when the correlation is moderate, the four

oracle-like methods perform much better than the Lasso and the Enet, especially for large sample

size. However, the SCAD and the MCP are much worse in the case of high correlation. The Snet

and the Mnet are similar in all cases. All these findings confirm the theoretical results obtained

in Section 2.

r n Methods C IC L2 loss PMSE

Lasso 554.80 (15.475) 0 ( 0) 0.856 (0.152) 1.856 (0.268 )

Enet 553.74 (15.640) 0 ( 0) 0.866 (0.165) 1.795 (0.312 )

MCP 584.07 ( 2.253) 0 ( 0) 0.541 (0.136) 1.184 (0.102 )

100 Mnet 583.00 ( 3.088) 0 ( 0) 0.539 (0.149) 1.218 (0.160 )

SCAD 581.71 ( 6.323) 0 ( 0) 0.547 (0.135) 1.170 (0.096 )

Snet 580.36 ( 6.774) 0 ( 0) 0.550 (0.136) 1.199 (0.114 )

0.5 Truth 585.00 ( 0.000) 0 ( 0)

Lasso 554.89 (20.680) 0 ( 0) 0.413 (0.072) 1.191 (0.073)

Enet 553.62 (22.994) 0 ( 0) 0.411 (0.079) 1.187 (0.089)

MCP 583.58 ( 3.540) 0 ( 0) 0.291 (0.068) 1.063 (0.057)

300 Mnet 583.24 ( 3.937) 0 ( 0) 0.288 (0.066) 1.057 (0.051)

SCAD 581.93 ( 6.612) 0 ( 0) 0.291 (0.064) 1.059 (0.052)

Snet 580.74 ( 8.816) 0 ( 0) 0.289 (0.068) 1.059 (0.055)

Truth 585.00 ( 0.000) 0 ( 0)

Lasso 573.99 (11.230) 0.00 (0.000) 1.340 (0.305) 1.325 (0.168 )

Enet 572.51 (11.076) 0.00 (0.000) 1.234 (0.308) 1.315 (0.155 )

MCP 577.88 ( 3.560) 7.68 (1.213) 12.803 (1.934) 13.481 (5.353 )

100 Mnet 582.75 ( 2.746) 0.02 (0.200) 0.858 (0.469) 1.148 (0.338 )

SCAD 569.66 ( 6.046) 7.39 (1.270) 12.411 (1.946) 13.415 (7.067 )

Snet 578.05 ( 5.068) 0.04 (0.400) 0.913 (0.700) 1.148 (0.527 )

0.9 Truth 585.00 ( 0.000) 0.00 (0.000)

Lasso 574.59 (10.937) 0 ( 0) 0.682 (0.165) 1.093 (0.065)

Enet 572.84 (11.939) 0 ( 0) 0.674 (0.162) 1.109 (0.070)

MCP 584.02 ( 1.864) 0 ( 0) 0.658 (0.158) 1.069 (0.055)

300 Mnet 584.26 ( 1.952) 0 ( 0) 0.515 (0.163) 1.048 (0.050)

SCAD 582.55 ( 4.314) 0 ( 0) 0.657 (0.160) 1.066 (0.043)

Snet 582.47 ( 4.747) 0 ( 0) 0.556 (0.154) 1.058 (0.054)

Truth 585.00 ( 0.000) 0 ( 0)

Table 2 Simulation results for pn = 600
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4. Data analysis

In this section, we apply the NPR method to the Boston housing data, which were previously

used to evaluate the performance of different regression methods for example in [23]. Originally,

the data set contains 13 variables which may have influence over the house prices. As in [23],

we include the interaction terms between the variables in the analysis such that the data has 91

variables and 506 observations. Note that, because of the way that the variables are produced,

there are large sample correlations across the columns of the design matrix. We randomly

partition the data into a training set with 60 observations and a test set with 446 observations.

We fit the model with the training data, then calculate the prediction error (residual sum of

squares) for the test data. Note that this partition results in high dimensionality. Random

splitting of the data is repeated 200 times, and each time a new training data and test data are

made. The median of the number of selected variables and the median of prediction errors are

reported in Table 3.

As shown in Table 3, the Lasso, the MCP and the SCAD, which cannot deal with the

collinearity problem, produce smaller models than the Enet, the Mnet and the Snet, respectively.

Although the Lasso gives the smallest prediction error, it may miss some important variables and

include some irrelevant variables. Specifically, the Snet performs much better than the SCAD.

Compared to the Mnet, the Snet has smaller perdition error with two more variables.

Methods Number of nonzero Prediction errors

coefficients

Lasso 9.5 8.169

Enet 13.0 8.656

MCP 5.0 10.136

Mnet 7.0 8.828

SCAD 6.0 9.726

Snet 9.0 8.459

Table 3 Boston housing data: the median of the prediction errors and

the number of nonzero coefficients

5. Discussion

We have adopted the nonconvex penalties and ridge regression to deal with high-dimensional

variable selection for linear models with high correlation. In theory, we demonstrate the oracle

property of the NPR estimator under certain conditions. In simulation, we find that the NPR

performs much better than the nonconvex penalties in high dimensionality. In addition, we focus

on the NPR in the context of linear models. It seems possible to extend our results to some

other complex parametric models and semiparametric models. However, these extensions are by

no means straightforward.
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