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Abstract It is proved in this paper that if G is a simple connected r-uniform hypergraph

with ‖G‖ ≥ 2, then G has an edge e such that G − e − V1(e) is also a simple connected r-

uniform hypergraph. This reduction is naturally called a combined Graham reduction. Under

the simple reductions of single edge removals and single edge contractions, the minor minimal

connected simple r-uniform hypergraphs are also determined.
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1. Graph theoretic background

Reductions preserving a graph theoretic property are interesting for at least two reasons:

(1) they help obtain structural characterizations of families of graphs such as in the case of 3-

connected graphs [22] and in the case of a simple proof of Kuratowski’s theorem [21]; (2) they

provide an order theoretic characterization of the family of graphs in question. If the reductions

give rise to specifically defined minor inclusions, then they are particularly interesting. Work

on reductions of hypergraphs in terms of specific minor inclusion is rare, while the graph minor

theorem (the reader is referred to [16] for this theorem and a guide to the literature leading to

it) holds for hypergraphs as well.

It is easy to see that the family of connected hypergraphs of orders at least 2 has an

edge, contraction of which results in a connected hypergraph. Thus, the single edge contraction

preserves connectivity if the hypergraph has an edge. It seems that the next step from this trivial

case is the family of connected simple uniform hypergraphs where the degree of uniformity is

fixed. This question will be addressed in this note.

As in [7], Tutte’s inductive theorem on 3-connected graphs takes the form: Let G be a

3-connected graph. Then there exists a sequence

G0 ≤ G1 ≤ · · · ≤ Gn
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of 3-connected graphs, such that G0 = K4, Gn = G and for each i, 1 ≤ i ≤ n, there exists

e ∈ E(Gi) and Gi−1 = Gi/e. With a slight over-use of notation, ≤ is the minor inclusion if it is

placed between two graphs and denotes “not greater” if it is placed between two numbers. The

family of 2-connected graphs also has a reduction theorem of this form [7, Proposition 3.1.2].

For the family of 4-connected graphs, there is also a reduction theorem of this form [2, 9, 10, 12–

14, 18, 19].

The family of 3-connected triangle-free (i.e., girth at least 4) graphs has recently been

shown to have a reduction structure theorem [11] where each reduction involved is a specific

minor inclusion.

For triangulations of the sphere the reduction theorem was well known earlier in the twen-

tieth century [20] where the reduction was a single edge contraction. Reductions for the family

of quadrangulations of the sphere have been considered by several authors [1, 3, 5, 6, 15]. Among

these, [3] meets both the requirements that the set of reductions preserve the property that the

graphs are connected simple quadrangulations of the sphere, and that each reduction is one that

provides a specific minor inclusion. As in [3], we adhere to these two essential requirements in

this paper. For reductions and minors of hypergraphs the reader is referred to [17]. The notations

and terminologies, except those explicitly declared otherwise, follow those of [4, 8].

For a hypergraphs G = (V,E), the degree of a vertex v ∈ V is defined to be

d(v) = |{e ∈ E : v ∈ e}| .

For an integer k ≥ 0, denote

Vk = {v ∈ V : d(v) = k}.

Let G,H be hypergraphs. If V (H) ⊆ V (G) and E(H) ⊆ E(G), then H is called a subhy-

pergraph of G and this is denoted H ⊆ G. Here, again the symbol ⊆ is used in two different

contexts: first as subset inclusion and then as subhypergraph inclusion.

For a subhypergraph H ⊆ G, denote

dH(v) = |{e ∈ E(H) : v ∈ e}| , Vk(H) = {v ∈ V (H) : dH(v) = k}.

For an edge e ∈ E(G), {e} is a subhypergraph of G and hence we write Vk(e) = {v ∈ e : dG(v) =

k}. For a hypergraph G, the number of vertices |G| = |V (G)| is usually called the order, and the

number of edges ‖G‖ = |E(G)| is usually called the size of G.

2. Contractions and minors in hypergraphs

In an axiomatic treatment of cycles and acyclic hypergraphs in [23], the concept of Graham

reductions is used in an essential way. A Graham reduction of a hypergraph consists of repeatedly

performing either (1) deletion of a vertex of degree 1; or (2) removal of an edge that is a proper

subset of another. It will be seen in this paper that Graham reduction is also fundamental in our

treatment of uniform hypergraphs. A Graham reduction is sometimes also called an ear reduction.

If the two options of a Graham reduction are performed simultaneously, then the reduction is

called a combined Graham reduction. More explicitly, for e ∈ E(G), a combined Graham



Reductions of connected simple r-uniform hypergraphs 13

reduction of hypergraph G gives rise to hypergraph H = G − e − V1(e). The correspondence

ρ : G → H is the combined Graham reduction.

A path in a hypergraph G = (V,E) is defined to be a subhypergraph P ⊆ G with

V (P ) = {v1, v2, . . . , vr}, E(P ) = {E1, E2, . . . , Er−1}

such that for each i = 1, 2, . . . , r − 1, vi, vi+1 ∈ Ei. Since V (P ) and E(P ) are given in set

notations, their elements are distinct. The path P is said to connect vertices v1 and vr in G and

the vertices v1 and vr are said to be end vertices of P and are connected by P in G. The edges

E1 and Er−1 are called the end edges of P . If each pair of vertices of G are connected by a path,

then G is said to be connected. For S ⊆ V , the subhypergraph G|S induced by S is given by

G|S = (S, 2S ∩ E).

A partition {V1, . . . , Vs} of V is called a contraction, if for each i = 1, . . . , s, G|Vi
is con-

nected. An automorphism is an extreme example of a contraction since it is a permutation of

the trivial partition of V (G) into single vertices. Another extreme example is the contraction of

a connected hypergraph into the hypergraph with a single vertex, since if G is connected, then

for the partition {V (G)}, G|V (G) = G is connected.

If a partition {V1, . . . , Vs} is a contraction of a hypergraph G, then let

V (H) = {V1, . . . , Vs},

E(H) = {{Vi1 , . . . , Vim} : ∀j ∈ {1, . . . ,m}, ∃xij ∈ Vij , {xi1 , . . . , xim} ∈ E(G)}.

This defines a hypergraph H and a surjective mapping f : G → H , specified by fV (x) = Vi if

x ∈ Vi and

fE(e) =

{

Vi, e ⊆ Vi

fV (V (e)), e 6⊆ Vi, i = 1, . . . , s.

Let χX denote the usual binary indicator variable for the event X . Then in a more compact

expression,

fE(e) = χe⊆Vi
Vi + [1− χe⊆Vi

] fV (V (e)).

Such a mapping may be called an egamorphism, as the image of an edge is an edge or a vertex.

A contraction is therefore a preconnected egamorphism (an egamorphism for which the preimage

of each vertex of H induces a connected subhypergraph in G).

A hypergraph H is a minor of G, denoted H ≤ G, if there is a subhypergraph K ⊆ G and

a contraction f : K → H . Clearly, G ≤ G for any hypergraph G (reflexivity) and J ≤ H, H ≤

G ⇒ J ≤ G (transitivity) both hold. In this paper, the main use of the symbol ≤ is that for

minor inclusion. Where a partial order or a quasi order is denoted by ≤, it also refers exclusively

to the minor inclusion of graphs or hypergraphs. Thus there is no great over-use of this symbol.

A reflexive and transitive binary relation is called a quasi ordering. A quasi ordering ≤ on

a set S is a well quasi ordering if every descending chain is finite and every antichain is finite.

Elements of a set with a well quasi ordering are called well quasi ordered. It may be proved
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easily that if a set S has a well quasi ordering, then the set of finite sequences of S is well quasi

ordered [16].

A partially ordered set (or poset) P = (S,≤) is a set S with an antisymmetric and transitive

binary relation ≤. Elements x, y ∈ S are comparable if x ≤ y or y ≤ x. If x ≤ y and x 6= y , then

write x < y. If x < y and there is no z with x < z < y, then y covers x, and it will be written

x ⊳ y. If there is a unique element z ∈ S such that z ≤ x for all x ∈ S, then z is called the least

element of P . An element x ∈ S with no y ∈ S such that y < x is called a minimal element of P ,

and x ∈ S with no y ∈ S such that x < y is called a maximal element. If every two elements of

a subset T ⊆ S are comparable, then T is said to form a chain. If no two elements of a subsets

T ⊆ S are comparable, then T is an antichain. A descending chain is:

x1 ≥ x2 ≥ · · · ≥ xn ≥ · · ·

A partially ordered set is said to be well founded if every strictly descending chain is finite

(this is the well known Jordan-Dedekind descending chain condition). A well founded partial

order is also abbreviated as a well founded order.

In a partial order, if the antisymmetry is replaced by the weaker condition a ≤ b, b ≤ a ⇒

a ∼ b, where ∼ is an equivalence relation on S, then the condition is called a weak antisymmetry

and the order is called a weak partial order. If a weak partial order satisfies the Jordan-Dedekind

condition that every strictly descending chain is finite, then it is called a weak well founded order.

For finite hypergraphs G and H , if H ≤ G and G ≤ H , then G ≃ H . Hence for hypergraphs

the equivalence ∼ will be isomorphism. Isomorphic hypergraphs are regarded as equal when the

properties considered are invariant under isomorphisms.

3. Connected uniform hypergraphs

In this section a structure theorem for the family of simple connected uniform hypergraphs

will be observed. After making this observation, critical hypergraphs will be determined under

single edge removal or single edge contration.

Theorem 3.1 Let r ≥ 2 be an integer and let G be a connected simple r-uniform hypergraph.

If ‖G‖ ≥ 2, then there exists e ∈ E(G) such that G− e− V1(e) is a connected simple r-uniform

hypergraph.

Proof Suppose that G is a connected simple r-uniform hypergraph with ‖G‖ ≥ 2 where r ≥ 2

is an integer. Let P be the longest path in G and let e be an end edge of P . Then we claim that

G − e − V1(e) is connected. Suppose that G − e − V1(e) is not connected. Then there exists at

least a component Q different from the component of G − e − V1(e) containing P − e. That is

there is an edge f 6∈ E(P ) such that e ∩ f 6= ∅. But then P ∪ f is a path with ‖P ∪ f‖ > ‖P‖,

contradicting the choice of P . �

For r = 2, this result reduces to the trivial observation that if G is a connected simple graph

with ‖G‖ ≥ 1, then there exists a vertex x ∈ V (G) such that G− x is connected and simple.
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Corollary 3.2 Let r ≥ 2 be an integer and G be a connected simple r-uniform hypergraph.

Then there exists a sequence

G0 ⊆ G1 ⊆ · · · ⊆ Gs

of connected simple r-uniform hypergraphs such that G0 = K1, Gs = G and for each i ≥ 1, there

exists e ∈ E(Gi) with

Gi−1 = Gi − e− V1(e).

Theorem 3.1 implies the existence of a reasonably large proper minor in a connected simple

r-uniform hypergraph with size at least 2, that is also a connected simple r-uniform hypergraph.

Corollary 3.3 Let r ≥ 2 be an integer and G be a connected simple r-uniform hypergraph with

‖G‖ ≥ 2. Then there exists a connected simple r-uniform hypergraph H with H ⊆ G and

|G| − r + 1 ≤ |H | ≤ |G| − 1, ‖H‖ = ‖G‖ − 1.

Proof The proof follows since subgraph inclusion is a minor inclusion. The inequality is true

since at least one and at most r vertices are being deleted and exactly one edge is being removed

in obtaining H from G by the combined Graham reduction. �

4. Critical and minimal hypergraphs

Let S be a set and R be a binary relation on S, that is R ⊆ S × S. Then this gives a graph

G with

V (G) = S, E(G) = R.

If the binary relation R is a given transformation, the graph G is usually called a transformation

graph. It may easily be seen from this definition that the concept of a transformation graph is

as general as that of a graph. Examples abound of which only a few will be mentioned here:

(1) if G is a graph, then the line graph L(G) is a transformation graph, with V (L(G)) = E(G)

and for x, y ∈ V (L(G)), xy ∈ E(L(G)) if the edges x and y have a common end vertex in G;

(2) if G is a hypergraph, then its corresponding bipartite incidence graph H is the one with

V (H) = V (G) ∪ E(G) and

E(H) = {xy : x ∈ V (G), y ∈ E(G), x ∈ y}.

(3) Let S be a set of nonisomorphic finite groups and for groups x and y, (x, y) ∈ R if there

exists a homomorphism f : x → y. This transformation graph (a complete graph) may as well

be called the homomorphism graph of these groups. Of course if S is the set of all finite groups,

then this graph is isomorphic to the category of all finite groups.

The aim of this section is to determine critical and minimal connected simple r-uniform

hypergraphs. A connected simple r-uniform hypergraph G is called contraction critical if for each

e ∈ E(G), G/e is not a connected, simple and r-uniform hypergraph. Some illustrative examples

of simple, connected and 3-uniform contraction critical hypergraphs are shown in Figure 1 using

their bipartite incidence graphs. In this figure, the black vertices denote edges.
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Figure 1 Examples of 3-uniform contraction critical hypergraphs

Let G be a simple, connected and r-uniform hypergraph with ‖G‖ ≥ 2. If for e ∈ E(G) the

hypergraph H = G− e− V1(e) is connected and has the property that |V (e) ∩ V (H)| ≥ 2, then

G/e is not simple and r-uniform. It is clear that G/e is connected. We observe that the converse

is also true.

Lemma 4.1 Let r ≥ 2 be an integer and G be a connected simple r-uniform hypergraph with

‖G‖ ≥ 2. Then G is contraction critical if and only if for each e ∈ E(G) with H = G− e−V1(e),

|V (e) ∩ V (H)| ≥ 2.

Proof The sufficiency was observed before the statement of the theorem.

For the necessity let G be a simple, connected and r-uniform hypergraph and let e ∈ E(G)

such that G/e is not a simple, connected and r-uniform hypergraph.

It is clear that G/e is connected. Suppose that G/e is not simple. Let f, h ∈ E(G/e) with

f ⊆ h and let f : G → G/e be the contraction. Since f, h are edges of G/e, f−1(f), f−1(h) ∈

E(G). But then f−1(f) ⊆ f−1(h) since f is a contraction mapping. This contradicts the

condition that G is simple.

Hence G/e is not r-uniform, and hence |V (e) ∩ V (H)| ≥ 2. �

Suppose that for each i with 1 ≤ i ≤ s, Hi is a connected simple r-uniform hypergraph

with V1(e) 6= ∅ for each e ∈ E(Hi). Let |ej | = r (j = 1, 2, . . . , t) be distinct sets satisfying

V1(e)− ej 6= ∅ for each e ∈ E(Hi). Let T be the graph with

V (T) = {Hi : 1 ≤ i ≤ s} ∪ {ej : 1 ≤ j ≤ t}.

Suppose that T is connected and each {ej} is a separator. Then clearly the hypergraph

G = H1 ∪ · · · ∪Hs ∪ e1 ∪ · · · ∪ et

is a connected simple r-uniform hypergraph such that for each e ∈ E(G), G− e is not connected.

That is, each of these hypergraph is minimal under edge removal. Each edge f of every Hi is

not removable since it satisfies V1(f) − ej 6= ∅ for each ej , and no ej is removable since it is a

separating edge by the definition of T.

The next aim of this section is to establish the converse of this statement. A connected

simple r-uniform hypergraph G is minimal under edge removal if for each e ∈ E(G), G− e is not

a connected simple r-uniform hypergraph.

Theorem 4.2 A connected simple r-uniform hypergraph G with ‖G‖ ≥ 2 is minimal under

edge removal if and only if

G = H1 ∪ · · · ∪Hs ∪ e1 ∪ · · · ∪ et
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such that for each i ∈ {1, 2, . . . , s}, j ∈ {1, 2, . . . , t} and each f ∈ E(Hi), V1(f)−ej 6= ∅ and each

ej is separating.

Proof The sufficiency was proved before the statement of the theorem.

The necessity will be proved by induction on the size of the hypergraphs. The conclusion is

clearly true for ‖G‖ = 1, 2. Suppose ‖G‖ ≥ 3 and the conclusion of the theorem holds for each

connected simple r-uniform hypergraph with size less than that of G.

Suppose that G is a connected simple r-uniform hypergraph minimal under edge removal.

Let e ∈ E(G). Then by the assumption G− e is not a connected simple r-uniform hypergraph.

Note that G− e is simple since G− e ⊆ G.

Suppose that G− e is not r-uniform. Then G− e has isolated vertices.

Hence suppose that G − e is r-uniform. But then G − e is not connected. Suppose that

H1, . . . , Hs are the components of G− e. Each Hi is a connected simple r-uniform hypergraph.

Now for each i, 1 ≤ i ≤ s, ‖Hi‖ < ‖G‖. By the inductive hypothesis, each

Hi = Ji,1 ∪ · · · ∪ Ji,si ∪ ei,1 ∪ · · · ∪ ei,ti

where Ji,k is a connected simple r-uniform hypergraph, ei,l is separating for each l, 1 ≤ l ≤ ti

and for each f ∈ E(Ji,k), V1(f)− ei,l 6= ∅. Hence G satisfies that condition of the theorem, that

is

G = H1 ∪ · · · ∪Hs ∪ e1 ∪ · · · ∪ et

where each Hi is a connected simple r-uniform hypergraph, each ej is separating and for each

f ∈ ∪E(Hi), V1(f)− ej 6= ∅. �

Note that the union in this theorem is edge disjoint union. More precisely, for i 6= j,

E(Hi) ∩ E(Hj) = ∅.

5. Contraction critical hypergraphs minimal under edge removal

It is clear that the first hypergraph of Figure 1 is both minimal under edge removal and

contraction critical. It is minimal since removal of either of the edges results in isolated vertices

and the hypergraph is not connected; it is contraction critical by Lemma 4.1.

Let

H1
3 = {e1, e2, e3 : |e1 ∩ e2| ≥ 2, |e1 ∩ e3| ≥ 2, |e2 ∩ e3| ≥ 1, V1(ei) 6= ∅ (i = 1, 2, 3)}.

Then it may also be shown that H1
3 is the only contraction critical connected simple r-uniform

hypergraph of order 3 minimal under edge removal.

A contraction critical connected simple r-uniform hypergraph minimal under edge removal

are characterized by the condition of Lemma 4.1 and the condition of Theorem 4.2. This obser-

vation will not be separately stated as a theorem.

As an illustrative example, consider the family of connected simple 3-uniform hypergraphs.

Let

G0 = {{a, b, c}}
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and, in general, let a0, a1, . . . , an, b, c be distinct and let

Gn = {{ai, b, c} : 0 ≤ i ≤ n}.

Let H be any connected multigraph without loops. A connected simple 3-uniform hypergraph

may be constructed by replacing each edge with a Gn for some n ≥ 0.

Suppose that h = uv ∈ E(H) is separating. Denote by Hu and Hv the components of H−h

containing u and v, respectively. Replace h with Gi, i ≥ 0 by identifying a vertex of Gi with u

and another vertex of Gi with v.

Suppose that h = uv is not a separating edge. Replace h with a Gi, i ≥ 0 by identifying a

vertex of Gi of degree at least 2 with u and another vertex of Gi of degree at least 2 with v.

Let G be the family of hypergraphs constructed in this manner, in addition to the member

G0. Then each G ∈ G is a connected simple 3-uniform hypergraph that is contraction critical

and minimal under edge removal. The theorem guarantees that if G is any connected simple

3-uniform hypergraph that is contraction critical and minimal under edge removal, then G ∈ G .
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