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Abstract An LRHTS(v) (or LARHTS(v)) is a collection of {(X,Bi) : 1 ≤ i ≤ 4(v − 2)},
where X is a v-set, each (X,Bi) is a resolvable (or almost resolvable) HTS(v), and all Bis form
a partition of all cycle triples and transitive triples on X. An OLRHTS(v) (or OLARHTS(v))
is a collection {(Y \{y},Aj

y) : y ∈ Y, j = 0, 1, 2, 3}, where Y is a (v + 1)-set, each (Y \{y},Aj
y)

is a resolvable (or almost resolvable) HTS(v), and all Aj
ys form a partition of all cycle and

transitive triples on Y . In this paper, we establish some directed and recursive constructions
for LRHTS(v), LARHTS(v), OLRHTS(v), OLARHTS(v) and give some new results.

Keywords Hybrid triple system; large set; overlarge set; parallel class; almost parallel

classes
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1. Introduction

Let X be a finite set. In what follows, an ordered pair of X will always be an ordered pair

(x, y), where x ̸= y ∈ X. A cycle triple on X is a set of three ordered pairs (x, y), (y, z) and

(z, x) of X, which is denoted by ⟨x, y, z⟩ (or ⟨y, z, x⟩, or ⟨z, x, y⟩). A transitive triple on X is a

set of three ordered pairs (x, y), (y, z) and (x, z) of X, which is denoted by (x, y, z). Usually, a

cycle triple or a transitive triple is called an oriented triple.

An oriented triple system of order v is a pair (X,B), where B is a collection of oriented

triple, such that every ordered pair of X occurs in exactly one block of B. If the triples in B are

all cycle, then (X,B) is called a Mendelsohn triple system and denoted by MTS(v). If the triples

in B are all transitive, then (X,B) is called a Directed triple system and denoted by DTS(v). If

the triples in B are cycle and transitive, then (X,B) is called a Hybrid triple system and denoted

by HTS(v).

An oriented triple system is resolvable (or almost resolvable), if its block set B can be

partitioned into parallel classes (or almost parallel classes), i.e., a partition of X (or a partition of

X\{x}, where x ∈ X). It is easy to see that a resolvable MTS(v) (or DTS(v), or HTS(v)), denoted

by RMTS(v) (or RDTS(v), or RHTS(v)) contains v − 1 parallel classes. An almost resolvable
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MTS(v) (or DTS(v), or HTS(v)), denoted by ARMTS(v) (or ARDTS(v), or ARHTS(v)) contains

v almost parallel classes.

Two oriented triple systems (X,A) and (X,B) on the same set are called disjoint ifA∩B = ∅.

A large set of Mendelsohn (or Directed, or Hybrid) triple system of order v, denoted by

LMTS(v) (or LDTS(v), or LHTS(v)), is a collection of {(X,Bi)}i, where every (X,Bi) is an

MTS(v) (or DTS(v), or HTS(v)), and all Bis form a partition of all cycle triples (or transitive

triples, or cycle triples and transitive triples) on X. It is easy to see that an LMTS(v) (or

LDTS(v), or LHTS(v)) contains v − 2 (or 3(v − 2), or 4(v − 2)) MTS(v)s (or DTS(v)s, or

HTS(v)s).

The existence results for the three types of large sets of oriented triple system have been

finally completed by Kang, Lei and Chang [1–3].

Lemma 1.1 (1) There exists an LMTS(v) if and only if v ≡ 0, 1 mod 3, v ≥ 3 and v ̸= 6;

(2) There exists an LDTS(v) if and only if v ≡ 0, 1 mod 3, v ≥ 3;

(3) There exists an LHTS(v) if and only if v ≡ 0, 1 mod 3, v ≥ 4.

An LRMTS(v) (or LRDTS(v), or LRHTS(v)), is an LMTS(v) (or LDTS(v), or LHTS(v)),

where every MTS(v) (or DTS(v), or HTS(v)) is resolvable. Similarly, we can define LARMTS(v)

(or LARDTS(v), or LARHTS(v)).

So far, the existence of large sets of resolvable (or almost resolvable) oriented triple system

has not yet been completed. Many researchers have investigated the problem [4–11]. We can list

the known results as follows:

Lemma 1.2 (1) There exist an LRMTS(v) and an LRDTS(v), when

v = 3km, where k ≥ 1 and

m ∈ {1, 4, 5, 7, 11, 13, 17, 23, 25, 35, 37, 41, 43, 47, 53, 55, 57, 61, 65, 67, 91, 123};

v = 7k + 2, 13k + 2, 25k + 2, 24k + 2 and 26k + 2, where k ≥ 0;

v = 12(t+ 1), where t ∈ {0, 1, 2, 3, 4, 6, 7, 8, 9, 14, 16, 18, 20, 22, 24, 28, 32};

v = 3(2t+ 1), where t ∈ {35, 38, 46, 47, 48, 51, 56, 60};

v = 3k
∏
q,r

(2qr + 1)
∏
s

(4s − 1), where k, r, s ≥ 1, q = 12t+ 7 (t ≥ 0) is a prime power.

(2) There exists an LRHTS(v), when

v =3a5bm
r∏

i=1

(2 · 13ni + 1)

p∏
j=1

(2 · 7mj + 1), where m ∈ {1, 4, 11, 17, 35, 43, 67, 91, 123}∪

{22l+125s + 1 : l ≥ 0, s ≥ 0}, a, ni,mj ≥ 1 (1 ≤ i ≤ r, 1 ≤ j ≤ p), b, r, p ≥ 2,

b ≥ 1 and m ̸= 1.

v =3k
∏
q,r

(2qr + 1)
∏
s

(4s − 1), k, r, s ≥ 1, q ≡ 7 mod 12 is a prime power.
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(3) There exist an LARMTS(v) and an LARDTS(v), when

v = 4n, 2(7n + 1), 2(31n + 1) and 2(127n + 1), n ≥ 1.

An overlarge set of Mendelsohn (or Directed, or Hybrid) triple system of order v, denoted by

OLMTS(v) (or OLDTS(v), or OLHTS(v)), is a collection {(Y \{y}, Ai)}i, where Y is a (v + 1)-

set, each y ∈ Y, (Y \{y},Ai) is an MTS(v) (or DTS(v), or HTS(v)) and all Ais form a partition

of all cycle triples (or transitive triples, or cycle triples and transitive triples) on Y. It is easy to

see that an OLMTS(v) (or OLDTS(v), or OLHTS(v)) contains v + 1 (or 3(v + 1), or 4(v + 1))

MTS(v)s (or DTS(v)s, or HTS(v)s).

Recently the existence of spectrum for the three types of overlarge sets of oriented triple

system has been finally completed by Ji, Tian and Cheng [12–14].

Lemma 1.3 (1) There exists an OLMTS(v) if and only if v ≡ 0, 1 mod 3, v ≥ 3 and v ̸= 6;

(2) There exists an OLDTS(v) if and only if v ≡ 0, 1 mod 3, v ≥ 3;

(3) There exists an OLHTS(v) if and only if v ≡ 0, 1 mod 3, v ≥ 4.

An OLRMTS(v) (or OLRDTS(v), or OLRHTS(v)), is an OLMTS(v) (or OLDTS(v), or

OLHTS(v)), where every MTS(v) (or DTS(v), or HTS(v)) is resolvable. Similarly, we can define

OLARMTS(v) (or OLARDTS(v), or OLARHTS(v)). So far, the existence of spectrum for

resolvable (almost resolvable) overlarge sets of oriented triple system has not been completed.

We have known that [4–7]:

Lemma 1.4 (1) There exist an OLRMTS(v) and an OLRDTS(v), when

v = 9, 4k − 1, 2 · 13n + 1, k ≥ 0, n ≥ 1;

v = 2 · qn + 1, where q ≡ 7 mod 12, q is a prime power;

v = 6u+ 3, where u = 4n25m, m+ n ≥ 1;

v = 3k
∏
q,r

(2qr + 1)
∏
s

(4s − 1), where k, r, s ≥ 1, q = 12t+ 7 (t ≥ 0), q is a prime power;

(2) There exist an OLARMTS(v) and an OLARDTS(v), when

v = 10, 4n, 7n, 13n, 25n, 25 · 4n, n ≥ 1.

(3) There exists an OLRHTS(v), where

v = 9, 4n − 1, 2 · 7n + 1, 2 · 13n + 1, ·31n + 1, 2 · 127n + 1, n ≥ 1;

v = 6u+ 3, where u = 4n25m, m+ n ≥ 1;

v = 3k
∏
q,r

(2qr + 1)
∏
s

(4s − 1), where k, r, s ≥ 1, q = 12t+ 7 (t ≥ 0), q is a prime power.

2. Some small constructions

Let Zv = {0, 1, . . . , v− 1} be an additive group of residues modulo v. For an oriented triple

⟨x, y, z⟩ (or (x, y, z)), ⟨z, y, x⟩ (or (z, y, x)) is called its reverse.
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Theorem 2.1 There exists an LARHTS(4).

Proof The desired LARHTS(4) = {(Z4,Bi) : 0 ≤ i ≤ 7}, where

Bi = {⟨i, 1 + i, 3 + i⟩, (2 + i, i, 3 + i), (3 + i, 2 + i, 1 + i), (1 + i, i, 2 + i)}, 0 ≤ i ≤ 3.

Bi is constituted of the reverse blocks of Bi−4, 4 ≤ i ≤ 7.

It is easy to see that each Bi is almost resolvable, and every block is an almost parallel

classes. �

Theorem 2.2 There exists an OLRHTS(9).

Proof The desired OLRHTS(9) = {(Z10\{x},Ar
x) : x ∈ Z10, r = 0, 1, 2, 3}, where

A0
0 : (1 2 4) (4 7 5) (5 8 4) (3 6 7) (7 4 3) (5 2 6) (8 2 3) ⟨2 8 7⟩

(6 3 5) (8 6 9) ⟨7 6 2⟩ (4 2 9) (1 6 8) (3 4 8) (9 6 4) (4 6 1)

(9 7 8) (3 2 1) (1 9 3) (8 5 1) (9 2 5) (7 9 1) (1 5 7) (5 3 9)

A1
0 : ⟨2 4 1⟩ (5 4 7) (8 4 5) (6 7 3) (3 7 4) (6 5 2) (2 3 8) (8 7 2)

(3 5 6) (6 9 8) (2 7 6) (9 4 2) (8 1 6) (4 8 3) (4 9 6) (6 1 4)

(7 8 9) ⟨1 3 2⟩ (3 1 9) (5 1 8) (2 5 9) (9 1 7) (7 1 5) (9 5 3)

A2
0 : (4 1 2) ⟨7 5 4⟩ (4 5 8) (7 3 6) ⟨4 3 7⟩ (2 6 5) (3 8 2) (7 2 8)

(5 6 3) (9 8 6) (6 2 7) (2 9 4) (6 8 1) (8 3 4) (6 4 9) (1 4 6)

(8 9 7) (2 1 3) (9 3 1) (1 8 5) (5 9 2) (1 7 9) (5 7 1) (3 9 5)

A3
0 : (2 4 1) (7 5 4) ⟨8 4 5⟩ ⟨6 7 3⟩ (4 3 7) ⟨6 5 2⟩ ⟨2 3 8⟩ (2 8 7)

⟨3 5 6⟩ ⟨6 9 8⟩ (7 6 2) ⟨9 4 2⟩ ⟨8 1 6⟩ ⟨4 8 3⟩ ⟨4 9 6⟩ ⟨6 1 4⟩
⟨7 8 9⟩ (1 3 2) ⟨3 1 9⟩ ⟨5 1 8⟩ ⟨2 5 9⟩ ⟨9 1 7⟩ ⟨7 1 5⟩ ⟨9 5 3⟩

and Ar
x = Ar

0 + x, x ∈ Z10, r = 0, 1, 2, 3. �

Theorem 2.3 There exists an OLARHTS(v), when v = 4, 7, 10.

Proof (1) OLARDTS(4) = {(Z5\{x},Ar
x) : x ∈ Z5, r = 0, 1, 2, 3}, where

A0
0 = {⟨1, 2, 3⟩, (1, 4, 3), (2, 4, 1), (3, 4, 2)};

A1
0 = {⟨1, 3, 4⟩, (3, 2, 1), (1, 2, 4), (4, 2, 3))};

A2
0 = {⟨4, 2, 1⟩, (2, 3, 4), (1, 3, 2), (4, 3, 1)};

A3
0 = {⟨3, 2, 4⟩, (2, 1, 3), (4, 1, 2), (3, 1, 4)};

Ar
x = Ar

0 + x, x ∈ Z5, r = 0, 1, 2, 3.

It is easy to see that every Ar
x is almost resolvable, and every block is an almost parallel classes.

(2) OLARHTS(7) = {(Z8\{x},Ar
x) : x ∈ Z8, r = 0, 1, 2, 3}, where

A0
0 : ⟨2 5 6⟩ (4 6 1) (7 1 6) (2 3 1) (1 7 2) (5 1 3) (1 5 4)

(4 7 3) (3 7 5) (4 5 2) (6 5 7) (3 6 4) (2 7 4) ⟨6 3 2⟩
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A1
0 : (5 6 2) ⟨6 1 4⟩ (1 6 7) (3 1 2) (7 2 1) (1 3 5) (5 4 1)

(7 3 4) (5 3 7) (2 4 5) (7 6 5) ⟨4 3 6⟩ (4 2 7) (2 6 3)

A2
0 : (6 2 5) (1 4 6) (6 7 1) (1 2 3) (2 1 7) (3 5 1) (4 1 5)

⟨3 4 7⟩ ⟨7 5 3⟩ (5 2 4) (5 7 6) (6 4 3) (7 4 2) (3 2 6)

A3
0 : (2 5 6) (6 1 4) ⟨6 7 1⟩ ⟨1 2 3⟩ ⟨2 1 7⟩ ⟨3 5 1⟩ ⟨4 1 5⟩

(3 4 7) (7 5 3) ⟨5 2 4⟩ ⟨5 7 6⟩ (4 3 6) ⟨7 4 2⟩ (6 3 2)
and Ar

x = Ar
0 + x, x ∈ Z8, r = 0, 1, 2, 3.

(3) OLARHTS(10) = {(Z11\{x},Ar
x) : x ∈ Z11, r = 0, 1, 2, 3}, where

A0
10 : ⟨7 1 9⟩ (0 4 5) (5 7 0) (6 0 9) (8 1 0) (4 0 6) (0 7 8) (0 1 3) (9 0 2) (3 2 0)

(8 4 2) (6 2 7) (9 1 6) (5 1 8) (2 5 9) (2 3 1) (1 5 2) (9 5 4) (6 1 4) (4 1 7)

(5 6 3) (8 9 3) (3 4 8) (7 2 4) (7 3 6) ⟨9 8 7⟩ (4 3 9) (2 6 8) (3 7 5) (8 6 5)

A1
10 : (1 9 7) ⟨4 5 0⟩ (7 0 5) (9 6 0) (0 8 1) ⟨0 6 4⟩ (8 0 7) (1 3 0) (0 2 9) (2 0 3)

(4 2 8) (7 6 2) (6 9 1) (1 8 5) (9 2 5) (3 1 2) (5 2 1) (5 4 9) (1 4 6) (7 4 1)

(3 5 6) (3 8 9) (8 3 4) (2 4 7) (6 7 3) (7 9 8) (9 4 3) (8 2 6) (5 3 7) (6 5 8)

A2
10 : (9 7 1) (5 0 4) ⟨0 5 7⟩ (0 9 6) (1 0 8) (6 4 0) ⟨7 8 0⟩ (3 0 1) (2 9 0) (0 3 2)

(2 8 4) (2 7 6) (1 6 9) (8 5 1) (5 9 2) (1 2 3) (2 1 5) (4 9 5) (4 6 1) (1 7 4)

(6 3 5) (9 3 8) (4 8 3) (4 7 2) (3 6 7) (8 7 9) (3 9 4) (6 8 2) (7 5 3) (5 8 6)

A3
10 : (7 1 9) (4 5 0) (0 5 7) ⟨0 9 6⟩ ⟨1 0 8⟩ (0 6 4) (7 8 0) ⟨3 0 1⟩ ⟨2 9 0⟩ ⟨0 3 2⟩

⟨2 8 4⟩ ⟨2 7 6⟩ ⟨1 6 9⟩ ⟨8 5 1⟩ ⟨5 9 2⟩ ⟨1 2 3⟩ ⟨2 1 5⟩ 4 9 5⟩ ⟨4 6 1⟩ ⟨1 7 4⟩
⟨6 3 5⟩ ⟨9 3 8⟩ ⟨4 8 3⟩ ⟨4 7 2⟩ ⟨3 6 7⟩ (9 8 7) ⟨3 9 4⟩ ⟨6 8 2⟩ ⟨7 5 3⟩ ⟨5 8 6⟩

and Ar
x = Ar

10 + x+ 1, x ∈ Z11, r = 0, 1, 2, 3. �
From the above examples we can find that, if a transitive triple (a, b, c) was replaced by

a cycle triple ⟨a, b, c⟩, then the Ar
x (r = 0, 1, 2, 3) are the same. An MTS(v) can produce four

HTS(v)s. The relation between an MTS(v) and an HTS(v) was discussed in [15].

For an MTS(v) = (X,B), we denote the cycle triples which can form some subsystems

MTS(3) as B. We define a block-incident graph G(B), where the vertex set is B\B, and the

vertices B and B′ are joint if and only if there are two common elements in B and B′. Evidently,

G(B) is a 3-regular graph. Obviously, if a 2-factor of the block-incident graph G(B) consists

of some disjoint cycles with even length no less than 4, then G(B) is 3-edge-chromatic. In this

paper, a graph G is k-edge-chromatic, if the edges were coloured by k colours, such that the

two adjacent edges have different colour. We summarize the above arguments in the following

lemma.

Lemma 2.4 ([15]) If the block-incident graph of MTS(v) is 3-edge-chromatic, then there exist

four pairwise disjoint HTS(v)s, v ≥ 6.

Lemma 2.5 ([15]) If there is a large set or overlarge set Ω of resolvable (or almost resolvable)

MTS(v), and the block-incident graph of small set which constitutes Ω is 3-edge-chromatic, then

there is a large set or overlarge set of resolvable (or almost resolvable) HTS(v).

Lemma 2.6([15]) If a large set or overlarge set Ω of resolvable (or almost resolvable) MTS(v)

is generated by one or few MTS(v) under automorphism group, and the block-incident graph

of every MTS(v) is 3-edge-chromatic, then there is a large set or overlarge set of resolvable (or

almost resolvable) HTS(v).



24 Meihui CHENG and Zhifen GUO

Next, we will use the relation between MTS(v) and HTS(v) to construct a large set or

overlarge set of resolvable (or almost resolvable) HTS(v). For every {⟨x, y, z⟩, ⟨z, y, x⟩} ⊆ B,
define {⟨x, y, z⟩, ⟨z, y, x⟩}, {(x, y, z), (z, y, x)}, {(y, z, x), (x, z, y)}, {(z, x, y), (y, x, z)} belong to

one of the four HTS(v)s, respectively.

Theorem 2.7 There exists an OLARHTS(13).

Proof From [6], there is an OLARMTS(13) on Y = (Z4 × Z3) ∪ {∞1,∞2}, it contains 14

ARMTS(13)s, Ω∞1 , Ω∞2 and Ωx,t (x ∈ Z4, t ∈ Z3). For every ARMTS(13), we give its 13

almost parallel classes which contains four blocks by row. For convenience, we denote (u, v, w) =

(3− x, 2 + x, 1− x), (p, q, r) = (1− x, 2 + x, 3− x), where x ∈ Z4.

Ω∞1 :{⟨(x, 0), (x, 2), (x, 1)⟩ : x ∈ Z4};

{⟨∞2, (x, 1), (x, 2)⟩} ∪ {⟨(u, i), (v, i), (w, i+ 1)⟩ : i ∈ Z3}, x ∈ Z4;

{⟨∞2, (x, 2), (x, 0)⟩} ∪ {⟨(u, i), (v, i+ 1), (w, i)⟩ : i ∈ Z3}, x ∈ Z4;

{⟨∞2, (x, 0), (x, 1)⟩} ∪ {⟨(u, i+ 1), (v, i), (w, i)⟩ : i ∈ Z3}, x ∈ Z4.

Ω∞2 :{⟨(x, 0), (x, 1), (x, 2)⟩ : x ∈ Z4};

{⟨∞1, (x, 2), (x, 1)⟩} ∪ {⟨(u, i), (v, i), (w, i− 1)⟩ : i ∈ Z3}, x ∈ Z4;

{⟨∞1, (x, 0), (x, 2)⟩} ∪ {⟨(u, i), (v, i− 1), (w, i)⟩ : i ∈ Z3}, x ∈ Z4;

{⟨∞1, (x, 1), (x, 0)⟩} ∪ {⟨(u, i− 1), (v, i), (w, i)⟩ : i ∈ Z3}, x ∈ Z4.

Ωx,0 :{⟨∞2, (x, 2), (x, 1)⟩} ∪ {⟨(u, i), (v, i+ 2), (w, i+ 1)⟩ : i ∈ Z3};

{⟨∞1, (x, 1), (x, 2)⟩} ∪ {⟨(p, i), (q, i), (r, i)⟩ : i ∈ Z3};

{⟨∞2,∞1, (x, 2)⟩} ∪ {⟨(p, i), (q, i+ 1), (r, i− 1)⟩ : i ∈ Z3};

{⟨∞1,∞2, (x, 1)⟩} ∪ {⟨(p, i), (q, i− 1), (r, i+ 1)⟩ : i ∈ Z3};

{⟨∞1, (w, i), (u, i)⟩, ⟨∞2, (u, i− 1), (v, i)⟩,

⟨(x, 1), (w, i+ 1), (w, i− 1)⟩, ⟨(x, 2), (v, i− 1), (v, i+ 1)⟩}, i ∈ Z3;

{⟨∞1, (u, i), (v, i)⟩, ⟨∞2, (v, i− 1), (w, i)⟩,

⟨(x, 1), (u, i+ 1), (u, i− 1)⟩, ⟨(x, 2), (w, i− 1), (w, i+ 1)⟩}, i ∈ Z3;

{⟨∞1, (v, i), (w, i)⟩, ⟨∞2, (w, i− 1), (u, i)⟩,

⟨(x, 1), (v, i+ 1), (v, i− 1)⟩, ⟨(x, 2), (u, i− 1), (u, i+ 1)⟩}, i ∈ Z3.

Ωx,1 :{⟨∞2, (x, 0), (x, 2)⟩} ∪ {⟨(u, i), (v, i+ 1), (w, i− 1)⟩ : i ∈ Z3};

{⟨∞1, (x, 2), (x, 0)⟩} ∪ {⟨(p, i), (q, i), (r, i+ 1)⟩ : i ∈ Z3};

{⟨∞2,∞1, (x, 0)⟩} ∪ {⟨(p, i), (q, i+ 1), (r, i)⟩ : i ∈ Z3};

{⟨∞1,∞2, (x, 2)⟩} ∪ {⟨(p, i+ 1), (q, i), (r, i)⟩ : i ∈ Z3};

{⟨∞1, (w, i+ 1), (u, i)⟩, ⟨∞2, (u, i− 1), (v, i− 1)⟩, (x, 2), (w, i+ 2), (w, i)⟩,

⟨(x, 0), (v, i− 2), (v, i)⟩}, i ∈ Z3;
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{⟨∞1, (u, i+ 1), (v, i)⟩, ⟨∞2, (v, i− 1), (w, i− 1)⟩,

⟨(x, 2), (u, i+ 2), (u, i)⟩, ⟨(x, 0), (w, i− 2), (w, i)⟩}, i ∈ Z3;

{⟨∞1, (v, i+ 1), (w, i)⟩, ⟨∞2, (w, i− 1), (u, i− 1)⟩,

⟨(x, 2), (v, i+ 2), (v, i)⟩, ⟨(x, 0), (u, i− 2), (u, i)⟩}, i ∈ Z3.

Ωx,2 :{⟨∞2, (x, 1), (x, 0)⟩} ∪ {⟨(u, i), (v, i), (w, i)⟩ : i ∈ Z3};

{⟨∞1, (x, 0), (x, 1)⟩} ∪ {⟨(p, i), (q, i), (r, i+ 2)⟩ : i ∈ Z3};

{⟨∞2,∞1, (x, 1)⟩} ∪ {⟨(p, i), (q, i+ 2), (r, i)⟩ : i ∈ Z3};

{⟨∞1,∞2, (x, 0)⟩} ∪ {⟨(p, i+ 2), (q, i), (r, i)⟩ : i ∈ Z3};

{⟨∞1, (w, i− 1), (u, i)⟩, ⟨∞2, (u, i− 1), (v, i+ 1)⟩,

{⟨(x, 0), (w, i), (w, i+ 1)⟩, ⟨(x, 1), (v, i), (v, i− 1)⟩}, i ∈ Z3;

{⟨∞1, (u, i− 1), (v, i)⟩, ⟨∞2, (v, i− 1), (w, i+ 1)⟩,

⟨(x, 0), (u, i), (u, i+ 1)⟩, ⟨(x, 1), (w, i), (w, i− 1)⟩}, i ∈ Z3;

{⟨∞1, (v, i− 1), (w, i)⟩, ⟨∞2, (w, i− 1), (u, i+ 1)⟩,

⟨(x, 0), (v, i), (v, i+ 1)⟩, ⟨(x, 1), (u, i), (u, i− 1)⟩}, i ∈ Z3.

To construct an OLARHTS(13), we only need to give a 2-factor of the block-incident graph

Ω∞1 , Ω∞2 and Ωx,t(t ∈ Z3). For the cycle triples of the Mendelsohn triple systems, we omit

“⟨”, “⟩” for short.

A 2-factor of Ω∞1 (consisting of 4 cycles with 4-length and 3 cycles with 12-length):

((x, 0), (x, 2), (x, 1)− ∞2, (x, 1), (x, 2)− ∞2, (x, 2), (x, 0)− ∞2, (x, 0), (x, 1)),

x ∈ Z4;

((0, i), (1, i+ 1), (2, i)− (3, i), (2, i), (1, i+ 1)− (2, i), (3, i), (0, i+ 1)−
(1, i), (0, i+ 1), (3, i)− (0, i+ 1), (1, i), (2, i)− (3, i+ 1), (2, i), (1, i)−
(2, i), (3, i+ 1), (0, i)− (1, i), (0, i), (3, i+ 1)− (0, i), (1, i), (2, i+ 1)−
(3, i), (2, i+ 1), (1, i)− (2, i+ 1), (3, i), (0, i)− (1, i+ 1), (0, i), (3, i)), i ∈ Z3.

A 2-factor of Ω∞2 (consisting of 4 cycles with 4-length and 3 cycles with 12-length):

((x, 0), (x, 1), (x, 2)− ∞1, (x, 2), (x, 1)− ∞1, (x, 0), (x, 2)− ∞1, (x, 1), (x, 0))

x ∈ Z4;

((0, i), (1, i− 1), (2, i)− (3, i), (2, i), (1, i− 1)− (2, i), (3, i), (0, i− 1)−
(1, i), (0, i− 1), (3, i)− (0, i− 1), (1, i), (2, i)− (3, i− 1), (2, i), (1, i)−
(2, i), (3, i− 1), (0, i)− (1, i), (0, i), (3, i− 1)− (0, i), (1, i), (2, i− 1)−
(3, i), (2, i− 1), (1, i)− (2, i− 1), (3, i), (0, i)− (1, i− 1), (0, i), (3, i)), i ∈ Z3.

A 2-factor of Ωx,0 (consisting of 3 cycles with 6-length and 7 cycles with 4-length):
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((x, 1), (1− x, 1), (1− x, 2)− (x, 2), (1− x, 2), (1− x, 1)− (x, 2), (1− x, 0), (1− x, 2)−
(x, 1), (1− x, 2), (1− x, 0)− (x, 1), (1− x, 0), (1− x, 1)− (x, 2), (1− x, 1), (1− x, 0));

((x, 1), (3− x, 1), (3− x, 2)− (x, 2), (3− x, 2), (3− x, 1)− (x, 2), (3− x, 0), (3− x, 2)−
(x, 1), (3− x, 2), (3− x, 0)− (x, 1), (3− x, 0), (3− x, 1)− (x, 2), (3− x, 1), (3− x, 0));

((x, 1), (2 + x, 1), (2 + x, 2)− (x, 2), (2 + x, 2), (2 + x, 1)− (x, 2), (2 + x, 0), (2 + x, 2)−
(x, 1), (2 + x, 2), (2 + x, 0)− (x, 1), (2 + x, 0), (2 + x, 1)− (x, 2), (2 + x, 1), (2 + x, 0));

(∞2, (x, 2), (x, 1)− ∞1, (x, 1), (x, 2)− ∞2,∞1, (x, 2)− ∞1,∞2, (x, 1));

(∞2, (3− x, 1), (2 + x, 2)− ∞2, (2 + x, 2), (1− x, 0)− ∞2, (1− x, 0), (3− x, 1)−
(1− x, 0), (2 + x, 2), (3− x, 1));

(∞2, (3− x, 2), (2 + x, 0)− ∞2, (2 + x, 0), (1− x, 1)− ∞2, (1− x, 1), (3− x, 2)−
(1− x, 1), (2 + x, 0), (3− x, 2));

(∞2, (3− x, 0), (2 + x, 1) − ∞2, (2 + x, 1), (1− x, 2)− ∞2, (1− x, 2), (3− x, 0)−
(1− x, 2), (2 + x, 1), (3− x, 0));

(∞1, (1− x, i), (3− x, i) − ∞1, (3− x, i), (2 + x, i)− ∞1, (2 + x, i), (1− x, i)−
(1− x, i), (2 + x, i), (3− x, i)), i ∈ Z3.

A 2-factor of Ωx,1 (consisting of 3 cycles with 6-length, 1 cycle with 4-length and 1 cycle

with 30-length):

((x, 2), (1− x, 2), (1− x, 0)− (x, 2), (1− x, 0), (1− x, 1)− (x, 0), (1− x, 1), (1− x, 0)−
(x, 0), (1− x, 0), (1− x, 2)− (x, 0), (1− x, 2), (1− x, 1)− (x, 2), (1− x, 1), (1− x, 2));

((x, 2), (3− x, 2), (3− x, 0)− (x, 2), (3− x, 0), (3− x, 1)− (x, 0), (3− x, 1), (3− x, 0)−
(x, 0), (3− x, 0), (3− x, 2)− (x, 0), (3− x, 2), (3− x, 1)− (x, 2), (3− x, 1), (3− x, 2));

((x, 2), (2 + x, 2), (2 + x, 0)− (x, 2), (2 + x, 0), (2 + x, 1)− (x, 0), (2 + x, 1), (2 + x, 0)−
(x, 0), (2 + x, 0), (2 + x, 2)− (x, 0), (2 + x, 2), (2 + x, 1)− (x, 2), (2 + x, 1), (2 + x, 2));

(∞2, (x, 0), (x, 2)− ∞1, (x, 2), (x, 0)− ∞2,∞1, (x, 0)− ∞1,∞2, (x, 2));

(∞1, (3− x, 1), (2 + x, 0) ∞1, (1− x, 2), (3− x, 1) ∞1, (2 + x, 0), (1− x, 2)

(1− x, 2), (2 + x, 0), (3− x, 2) ∞2, (1− x, 2), (3− x, 2) ∞2, (3− x, 2), (2 + x, 2)

∞2, (2 + x, 2), (1− x, 2) (1− x, 2), (2 + x, 2), (3− x, 0) ∞1, (3− x, 0), (2 + x, 2)

∞1, (1− x, 1), (3− x, 0) ∞2, (2 + x, 2), (1− x, 1) (1− x, 1), (2 + x, 2), (3− x, 1)

∞2, (1− x, 1), (3− x, 1) ∞2, (2 + x, 1), (1− x, 1 ∞2, (3− x, 1), (2 + x, 1)

(1− x, 2), (2 + x, 1), (3− x, 1) (3− x, 0), (2 + x, 1), (1− x, 2) (1− x, 0), (2 + x, 1), (3− x, 0)

∞2, (1− x, 0), (3− x, 0) ∞2, (2 + x, 0), (1− x, 0) ∞2, (3− x, 0), (2 + x, 0)

(1− x, 1), (2 + x, 0), (3− x, 0) (3− x, 2), (2 + x, 0), (1− x, 1) (1− x, 1), (2 + x, 1), (3− x, 2)

∞1, (3− x, 2), (2 + x, 1) ∞1, (2 + x, 1), )(1− x, 0) ∞1, (1− x, 0), (3− x, 2)

(1− x, 0), (2 + x, 2), (3− x, 2) (3− x, 1), (2 + x, 2), (1− x, 0) (1− x, 0), (2 + x, 0), (3− x, 1)).

A 2-factor of Ωx,2 (consisting of 3 cycles with 6-length, 1 cycle with 4-length and 1 cycle
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with 30-length):

((x, 0), (1− x, 0), (1− x, 1)− (x, 0), (1− x, 1), (1− x, 2)− (x, 0), (1− x, 2), (1− x, 0)−
(x, 1), (1− x, 0), (1− x, 2)− (x, 1), (1− x, 2), (1− x, 1)− (x, 1), (1− x, 1), (1− x, 0));

((x, 0), (3− x, 0), (3− x, 1)− (x, 0), (3− x, 1), (3− x, 2)− (x, 0), (3− x, 2), (3− x, 0)−
(x, 1), (3− x, 0), (3− x, 2)− (x, 1), (3− x, 2), (3− x, 1)− (x, 1), (3− x, 1), (3− x, 0));

((x, 0), (2 + x, 0), (2 + x, 1)− (x, 0), (2 + x, 1), (2 + x, 2)− (x, 0), (2 + x, 2), (2 + x, 0)−
(x, 1), (2 + x, 0), (2 + x, 2)− (x, 1), (2 + x, 2), (2 + x, 1)− (x, 1), (2 + x, 1), (2 + x, 0));

(∞2, (x, 1), (x, 0)− ∞1, (x, 0), (x, 1)− ∞2,∞1, (x, 1)− ∞1,∞2, (x, 0));

((3− x, 0), (2 + x, 0), (1− x, 0) (1− x, 0), (2 + x, 0), (3− x, 2) ∞2, (1− x, 0), (3− x, 2)

∞2, (2 + x, 1), (1− x, 0) ∞2, (3− x, 2), (2 + x, 1) (1− x, 2), (2 + x, 1), (3− x, 2)

(3− x, 2), (2 + x, 2), (1− x, 2) (1− x, 1), (2 + x, 2), (3− x, 2) ∞1, (1− x, 1), (3− x, 2)

∞1, (3− x, 2), (2 + x, 0) ∞1, (2 + x, 0), (1− x, 1) (1− x, 1), (2 + x, 0), (3− x, 1)

(3− x, 1), (2 + x, 1), (1− x, 1) (1− x, 0), (2 + x, 1), (3− x, 1) ∞1, (1− x, 0), (3− x, 1)

∞1, (2 + x, 2), (1− x, 0) ∞1, (3− x, 1), (2 + x, 2) (1− x, 2), (2 + x, 2), (3− x, 1)

∞2, (1− x, 2), (3− x, 1) ∞2, (3− x, 1), (2 + x, 2) ∞2, (2 + x, 0), (1− x, 2)

(1− x, 2), (2 + x, 0), (3− x, 0) ∞1, (1− x, 2), (3− x, 0) ∞1, (2 + x, 1), (1− x, 2)

∞1, (3− x, 0), (2 + x, 1) (1− x, 1), (2 + x, 1), (3− x, 0) ∞2, (1− x, 1), (3− x, 0)

∞2, (2 + x, 2), (1− x, 1) ∞1, (3− x, 0), (2 + x, 2) (1− x, 0), (2 + x, 2), (3− x, 0)). �

Theorem 2.8 There exists an LRHTS(18).

Proof By [16], we have known that every Tx of LMTS(18) = {(F16 ∪ {∞1,∞2}, Tx) : x ∈ F16}
contains the blocks as follows, where g is a primitive element (g4 + g = 1), and y ∈ F16\{x}.

(1) ⟨∞1,∞2, x⟩, ⟨∞2,∞1, x⟩;
(2) ⟨∞1, y, g

14x+ g3y⟩, ⟨∞2, y, g
12x+ g11y⟩;

(3) ⟨x, y, g4x+ gy⟩;
(4) ⟨g14x+ g3y, y, gx+ g4y⟩, ⟨g2x+ g8y, y, g13x+ g6y⟩;
(5) ⟨g8x+ g2y, y, g2x+ g8y⟩;
(6) ⟨g10x+ g5y, y, g5x+ g10y⟩, ⟨g5x+ g10y, y, g10x+ g5y⟩.

Notice that the repeat blocks in (6) appeared once. It is easy to see that, for x ∈ F16, Tx = T0+x.

So we only need to partition T0 into parallel classes.

For (1) and (6), we obtain two parallel classes:

A = {⟨∞1,∞2, 0⟩, ⟨g5+i, gi, g10+i⟩ : 0 ≤ i ≤ 4},

A = {⟨∞2,∞1, 0⟩, ⟨g10+i, gi, g5+i⟩ : 0 ≤ i ≤ 4}.

Further, taking a block each from (2)–(5), we obtain parallel classes:

A0 = {⟨∞1, g
10, g13⟩, ⟨∞2, g

5, g⟩, ⟨0, g7, g8⟩, ⟨g3, 1, g4⟩, ⟨g14, g6, g12⟩, ⟨g11, g9, g2⟩}.

Let Ak = gkA0, k ∈ Z15. We obtain all parallel classes of T0.
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Next we construct an LRHTS(18) = {(F16 ∪ {∞1,∞2},Br
x) : x ∈ F16, r = 0, 1, 2, 3}, where

Br
x = Br

0 + x, x ∈ F16, r = 0, 1, 2, 3.

First, it is easy to see that the blocks in (1) and (6) of Tx are reverse respectively. Denote

by T x the sets which consist of the blocks in (1) and (6). So the block-incident graph of the

MTS(18) = (F16 ∪ {∞1,∞2}, Tx) contains |Tx\T x| = 90 points. We partition the points into 3

cycles with 10-length, 20-length and 60-length. In the following we will concretely give B0
0,B1

0,B2
0

and B3
0. For short, we denote gk by k and 0 by ∗. The blocks in (1) and (6) do not appear. In

B0
0, the blocks which have been underlined are transitive triples, and the others are cycle triples.

In B1
0,B2

0 and B3
0, the blocks which have been underlined are cycle triples, and the others are

transitive triples.

B0
0 :

0 3 ∞1 0 11 ∞2 ∗ 0 1 4 3 0 0 8 2 8 0 6

1 4 ∞1 12 ∞2 1 1 2 ∗ 5 4 1 1 9 3 9 1 7

5 ∞1 2 13 ∞2 2 ∗ 2 3 2 6 5 2 10 4 10 2 8

6 ∞1 3 3 14 ∞2 3 4 ∗ 3 7 6 5 3 11 11 3 9

7 ∞1 4 ∞2 4 0 ∗ 4 5 4 8 7 12 6 4 4 10 12

8 ∞1 5 1 ∞2 5 5 6 ∗ 5 9 8 7 5 13 11 3 5

9 ∞1 6 6 2 ∞2 ∗ 6 7 6 10 9 6 14 8 6 12 4

∞1 7 10 ∞2 7 3 7 8 ∗ 10 7 11 7 0 9 13 0 7

∞1 8 11 8 4 ∞2 ∗ 8 9 11 8 12 8 1 10 1 8 14

12 ∞1 9 9 5 ∞2 9 10 ∗ 9 13 12 9 2 11 2 9 0

10 13 ∞1 ∞2 10 6 11 ∗ 10 14 13 10 12 10 3 3 10 1

11 14 ∞1 11 7 ∞2 12 ∗ 11 14 11 0 13 11 4 4 11 2

∞1 12 0 ∞2 12 8 ∗ 12 13 1 0 12 14 12 5 3 5 12

∞1 13 1 ∞2 13 9 13 14 ∗ 2 1 13 0 13 6 4 6 13

2 ∞1 14 10 ∞2 14 0 ∗ 14 14 3 2 14 7 1 5 7 14

B1
0 :

0 3 ∞1 ∞2 0 11 ∗ 0 1 4 3 0 0 8 2 6 8 0

1 4 ∞1 12 ∞2 1 1 2 ∗ 5 4 1 1 9 3 9 1 7

5 ∞1 2 13 ∞2 2 ∗ 2 3 2 6 5 2 10 4 10 2 8

6 ∞1 3 3 14 ∞2 3 4 ∗ 3 7 6 5 3 11 11 3 9

7 ∞1 4 0 ∞2 4 ∗ 4 5 4 8 7 12 6 4 4 10 12

8 ∞1 5 1 ∞2 5 5 6 ∗ 5 9 8 7 5 13 11 3 5

9 ∞1 6 6 2 ∞2 ∗ 6 7 6 10 9 14 8 6 6 12 4

∞1 7 10 ∞2 7 3 7 8 ∗ 10 7 11 7 0 9 13 0 7

∞1 8 11 8 4 ∞2 ∗ 8 9 11 8 12 8 1 10 1 8 14

12 ∞1 9 9 5 ∞2 9 10 ∗ 9 13 12 9 2 11 2 9 0

10 13 ∞1 ∞2 10 6 11 ∗ 10 14 13 10 12 10 3 3 10 1

11 14 ∞1 11 7 ∞2 12 ∗ 11 14 11 0 13 11 4 4 11 2

∞1 12 0 ∞2 12 8 ∗ 12 13 1 0 12 14 12 5 3 5 12

∞1 13 1 ∞2 13 9 13 14 ∗ 2 1 13 0 13 6 4 6 13

2 ∞1 14 10 ∞2 14 0 ∗ 14 14 3 2 14 7 1 5 7 14
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B2
0 :

3 ∞1 0 0 11 ∞2 1 ∗ 0 0 4 3 8 2 0 0 6 8

4 ∞1 1 1 12 ∞2 ∗ 1 2 1 5 4 9 3 1 1 7 9

2 5 ∞1 ∞2 2 13 2 3 ∗ 6 5 2 10 4 2 2 8 10

∞1 3 6 14 ∞2 3 ∗ 3 4 7 6 3 11 5 3 3 9 11

∞1 4 7 ∞2 4 0 4 5 ∗ 8 7 4 6 4 12 12 4 10

∞1 5 8 ∞2 5 1 ∗ 5 6 9 8 5 13 7 5 5 11 3

6 9 ∞1 2 ∞2 6 6 7 ∗ 9 6 10 8 6 14 12 14 6

7 10 ∞1 3 ∞2 7 ∗ 7 8 11 10 7 0 9 7 7 13 0

8 11 ∞1 4 ∞2 8 8 9 ∗ 12 11 8 10 8 1 14 1 8

∞1 9 12 5 ∞2 9 10 ∗ 9 12 9 13 2 11 9 9 0 2

13 ∞1 10 10 6 ∞2 ∗ 10 11 10 14 13 10 3 12 1 3 10

14 ∞1 11 7 ∞2 11 11 12 ∗ 11 0 14 4 13 11 11 2 4

12 0 ∞1 8 ∞2 12 13 ∗ 12 0 12 1 5 14 12 12 3 5

1 ∞1 13 13 9 ∞2 ∗ 13 14 13 2 1 6 0 13 13 4 6

∞1 14 2 ∞2 14 10 14 0 ∗ 3 2 14 7 1 14 14 5 7

B3
0 :

∞1 0 3 11 ∞2 0 0 1 ∗ 3 0 4 2 0 8 8 0 6

∞1 1 4 ∞2 1 12 2 ∗ 1 4 1 5 3 1 9 7 9 1

∞1 2 5 2 13 ∞2 3 ∗ 2 5 2 6 4 2 10 8 10 2

3 6 ∞1 ∞2 3 14 4 ∗ 3 6 3 7 3 11 5 9 11 3

4 7 ∞1 4 0 ∞2 5 ∗ 4 7 4 8 4 12 6 10 12 4

5 8 ∞1 5 1 ∞2 6 ∗ 5 8 5 9 5 13 7 13 5 11

∞1 6 9 ∞2 6 2 7 ∗ 6 10 9 6 6 14 8 14 6 12

10 ∞1 7 7 3 ∞2 8 ∗ 7 7 11 10 9 7 0 0 7 13

11 ∞1 8 ∞2 8 4 9 ∗ 8 8 12 11 1 10 8 8 14 1

9 12 ∞1 ∞2 9 5 ∗ 9 10 13 12 9 11 9 2 0 2 9

∞1 10 13 6 ∞2 10 10 11 ∗ 13 10 14 3 12 10 10 1 3

∞1 11 14 ∞2 11 7 ∗ 11 12 0 14 11 11 4 13 2 4 11

0 ∞1 12 12 8 ∞2 12 13 ∗ 12 1 0 12 5 14 5 12 3

13 1 ∞1 9 ∞2 13 14 ∗ 13 1 13 2 13 6 0 6 13 4

14 2 ∞1 14 10 ∞2 ∗ 14 0 2 14 3 1 14 7 7 14 5 �

Theorem 2.9 There exists an LRHTS(66).

Proof By [16], there exists an LMTS(66) = {(F64∪{∞1,∞2}, Tx) : x ∈ F64}. Every Tx contains

the following blocks, where g is a primitive element (g6 + g = 1), y ∈ F64\{x}.

(1) ⟨∞1,∞2, x⟩, ⟨∞2,∞1, x⟩;

(2) ⟨∞1, y, g
27x+ g18y⟩, ⟨∞2, y, g

45x+ g9y⟩;

(3) ⟨x, y, g54x+ g36y⟩;

(4) ⟨g54x+ g36y, y, g9x+ g45y⟩;
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(5) ⟨g26x+ g7y, y, g7x+ g26y⟩, ⟨g7x+ g26y, y, g26x+ g7y⟩,
⟨g35x+ g13y, y, g13x+ g35y⟩, ⟨g13x+ g35y, y, g35x+ g13y⟩,
⟨g11x+ g25y, y, g25x+ g11y⟩, ⟨g25x+ g11y, y, g11x+ g25y⟩,
⟨g6x+ gy, y, gx+ g6y⟩, ⟨gx+ g6y, y, g6x+ gy⟩,
⟨g24x+ g4y, y, g4x+ g24y⟩, ⟨g4x+ g24y, y, g24x+ g4y⟩,
⟨g33x+ g16y, y, g16x+ g33y⟩, ⟨g16x+ g33y, y, g33x+ g16y⟩,
⟨g12x+ g2y, y, g2x+ g12y⟩, ⟨g2x+ g12y, y, g12x+ g2y⟩,
⟨g48x+ g8y, y, g8x+ g48y⟩, ⟨g8x+ g48y, y, g48x+ g8y⟩,
⟨g3x+ g32y, y, g32x+ g3y⟩, ⟨g32x+ g3y, y, g3x+ g32y⟩

(6) ⟨g42x+ g21y, y, g21x+ g42y⟩, ⟨g21x+ g42y, y, g42x+ g21y⟩.
Notice that the repeat blocks in (6) appeared once, and Tx = T0 + x, x ∈ F64. Similarly to

the construction of an LRHTS(18), we only need to partition T0 into parallel classes.

For (1) and (6), we obtain two parallel classes:

A = {⟨∞1,∞2, 0⟩, ⟨g21+i, gi, g42+i⟩ : 0 ≤ i ≤ 20},
A = {⟨∞2,∞1, 0⟩, ⟨g42+i, gi, g21+i⟩ : 0 ≤ i ≤ 20}.

For (2)–(5), we obtain the following parallel classes:

A0 = {⟨∞1, g
31, g49⟩, ⟨∞2, g

53, g62⟩, ⟨0, g51, g24⟩, ⟨g36, 1, g45⟩,
⟨g28, g3, g14⟩, ⟨g15, g2, g37⟩, ⟨g16, g5, g30⟩, ⟨g39, g4, g17⟩,
⟨g21, g20, g26⟩, ⟨g35, g23, g25⟩, ⟨g54, g50, g11⟩, ⟨g19, g34, g42⟩,
⟨g43, g40, g9⟩, ⟨g60, g58, g7⟩, ⟨g18, g57, g61⟩, ⟨g56, g48, g33⟩,
⟨g10, g41, g44⟩, ⟨g52, g46, g47⟩, ⟨g29, g59, g12⟩, ⟨g38, g22, g55⟩,
⟨g8, g, g27⟩, ⟨g32, g6, g13⟩}

Ak = gkA0, k ∈ Z63.

Next we construct an LRHTS(66) = {(F64 ∪ {∞1,∞2},Br
x) : x ∈ F64, r = 0, 1, 2, 3}, where

Br
x = Br

0 + x, x ∈ F64, r = 0, 1, 2, 3.

First, it is easy to see that the blocks in (1), (5) and (6) are reverse respectively. Denote

by T x the sets which consist of the blocks in (1), (5) and (6). So the block-incident graph of

MTS(66) = (F64 ∪{∞1,∞2}, Tx) contains |Tx\T x| = 28× 9 points. We partition the points into

18 cycles with 14-length. In the following we will concretely give B0
0,B1

0,B2
0 and B3

0. For short,

let k denote gk, and let ∗ denote 0. The blocks in (1), (5) and (6) do not appear. For every Br
0,

we only list 28 blocks, and the other blocks can be given by x + i (1 ≤ i ≤ 8) mod 63, where

x is different from ∞1,∞2 and ∗. In B0
0, the blocks which have been underlined are transitive

triples, and the others are cycle triples. In B1
0,B2

0 and B3
0, the blocks which have been underlined

are cycle triples, and the others are transitive triples.

B0
0 : ∞1 54 9 ∞2 18 27 18 54 ∗ 54 18 0

9 27 ∞1 27 36 ∞2 ∗ 45 18 9 54 45

45 ∞1 27 ∞2 36 45 45 ∗ 9 27 18 45

∞1 18 36 45 54 ∞2 0 ∗ 27 27 9 0

36 54 ∞1 ∞2 0 9 27 ∗ 54 54 36 27

∞1 45 0 9 18 ∞2 36 ∗ 0 0 45 36

0 18 ∞1 0 ∞2 54 9 ∗ 36 36 18 9
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B1
0 : 9 ∞1 54 27 ∞2 18 54 ∗ 18 18 0 54

∞1 9 27 ∞2 27 36 45 18 ∗ 54 45 9

27 45 ∞1 36 45 ∞2 ∗ 9 45 18 45 27

18 36 ∞1 ∞2 45 54 27 0 ∗ 0 27 9

54 ∞1 36 9 ∞2 0 ∗ 54 27 36 27 54

0 ∞1 45 18 ∞2 9 ∗ 0 36 45 36 0

∞1 0 18 54 0 ∞2 36 9 ∗ 9 36 18

B2
0 : 54 9 ∞1 18 27 ∞2 ∗ 18 54 0 54 18

27 ∞1 9 36 ∞2 27 18 ∗ 45 45 9 54

∞1 27 45 45 ∞2 36 9 45 ∗ 45 27 18

36 ∞1 18 54 ∞2 45 ∗ 27 0 9 0 27

∞1 36 54 0 9 ∞2 54 27 ∗ 27 54 36

45 0 ∞1 ∞2 9 18 0 36 ∗ 36 0 45

18 ∞1 0 ∞2 54 0 ∗ 36 9 18 9 36

B3
0 : ∞1 54 9 18 27 ∞2 54 ∗ 18 18 0 54

9 27 ∞1 36 ∞2 27 18 ∗ 45 45 9 54

∞1 27 45 45 ∞2 36 9 45 ∗ 45 27 18

36 ∞1 18 54 ∞2 45 ∗ 27 0 9 0 27

∞1 36 54 0 9 ∞2 54 27 ∗ 27 54 36

45 0 ∞1 ∞2 9 18 0 36 ∗ 36 0 45

18 ∞1 0 ∞2 54 0 ∗ 36 9 18 9 36 �

3. Recursive constructions

An S(t,K, v), t, v ∈ N,K ⊆ N is a pair (X,B), where X is a v-set, and B is a collection

of subsets on X, called blocks, such that every t-set on X exactly appears once, and |B| ∈ K

is satisfied for every block B ∈ B. When t = 3, S(3,K, v) is called Steiner 3-design. Especially,

whenK = {k}, S(3,K, v) is denoted S(3, k, v) for short. An S(3, 4, v) is called Steiner quaternary

system SQS(v). SQS(v) = (X,B). If the block set B can be partitioned into B1,B2, . . . , B v−2
2
,

and every (X,Bi) is an S(2, 4, v), 1 ≤ i ≤ v−2
2 , then the SQS(v) is 2-resolvable.

Lemma 3.1 ([17]) Let q be a prime power.

(1) There is an S(3, 5, 26);

(2) There is an S(3, q + 1, qn + 1), where n ≥ 1;

(3) Suppose that there exist an S(3, q + 1, v + 1) and an S(3, q + 1, w + 1). Then there

exists an S(3, q + 1, vw + 1).

Lemma 3.2 ([18]) There is a 2-resolvable SQS(v+1), v = 4n−1, 2 ·7n+1, 2 ·31n+1, 2 ·127n+1

and n ≥ 1.

Lemma 3.3 Suppose that there exists an S(3,K, v), and there exists an OLARHTS(k − 1) for

any k ∈ K. Then there exists an OLARHTS(v − 1).
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Construction 3.4 Let S(3,K, v) = (X,Ω), |X| = v. For any B ∈ Ω, there is an OLARHTS(|B|−
1) = {(B\{x},Bx(B, j)) : x ∈ B, j = 0, 1, 2, 3}. The almost parallel classes of Bx(B, j) is

By
x(B, j), y ∈ B\{x}, and By

x(B, j) is the partition of B\{x, y}. Define

Bx(j) =
∪

x∈B∈Ω

Bx(B, j), x ∈ X, and

By
x(j) =

∪
{x,y}⊂B∈Ω

By
x(B, j), x ∈ X, y ∈ X\{x} and j = 0, 1, 2, 3.

Then {(X\{x},Bx(j)) : x ∈ X, j = 0, 1, 2, 3} is an OLARHTS(v − 1), where By
x(j) is the almost

parallel classes of Bx(j), y ∈ X\{x}.

Proof First, for x ∈ X, j = 0, 1, 2, 3, every (X\{x},Bx(j)) is an ARHTS(v − 1).

For a given x ∈ X, let all the blocks which contain element x be B1, B2, . . . , Bs. Then

s∑
i=1

(
|Bi| − 1

2

)
=

(
v − 1

2

)
.

Therefore

|Bx(j)| =
s∑

i=1

(|Bi| − 1)(|Bi| − 2)

3
=

2

3

s∑
i=1

(
|Bi| − 1

2

)
=

(v − 1)(v − 2)

3

is exactly the block number.

For a given ordered pair P = (y, z), y ̸= z ∈ X\{x}, there exists the unique B ∈ Ω such

that {x, y, z} ⊂ B. So P is contained in a block of Bx(B, j) ⊂ Bx(j). Since (X,Ω) is a 3-design,

{B\{x, y} : {x, y} ⊂ B ∈ Ω} is a partition of X\{x, y}. And By
x(B, j) is a partition of B\{x, y}.

So By
x(j) is a partition of X\{x, y}, By

x(j) is an almost parallel classes of Bx(j)\{y}.
Finally, for any triple T = ⟨a, b, c⟩ or (a, b, c) on X, there exists the unique B ∈ Ω such that

{a, b, c} ⊂ B. Therefore, there exists an x ∈ B\{a, b, c} such that T ∈ Bx(B, j) ⊂ Bx(j). So

{(X\{x},Bx(j)) : x ∈ X, j = 0, 1, 2, 3} is an OLARHTS(v − 1). �

Corollary 3.5 There exists an OLARHTS(v), when v = 25 · 4k, 4n, 7n, 13n, 25n, k ≥ 0, n ≥ 1.

Proof From Lemma 3.1, we have S(3, 5, 26) and recursive theorem:

“S(3, q + 1, v + 1) −→ S(3, q + 1, qv + 1), where q is a prime power”.

There exists an S(3, 4+ 1, 4k · 25+ 1), k ≥ 0. From Theorem 2.3, there exists an OLARHTS(4).

From above lemma, there exists an OLARHTS(25 · 4k).
On the other side, for any prime power q, there exists an S(3, q+1, qn+1), particularly, for

q = 4, 7, 13, 52. From Theorems 2.3, 2.7 and above conclusion, when q = 4, 7, 13, 52, there exists

an OLARHTS(q). So from Lemma 3.3, there exists an OLARHTS(v), when v = 4n, 7n, 13n, 25n.

�
An S(3,K0

∪
K1, v + 1), we denote S(3, (K0,K1), v + 1) = (Zv ∪ {∞},Ω). If block sizes of

B0 and B1 are from K0 and K1, where B0 does not contain ∞, B1 contains ∞.
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An LHTS(v) = {(X,Bi) : 1 ≤ i ≤ 4(v−2)} is called quasi symmetric, denoted by LQHTS(v),

if for every i,

⟨a, b, x⟩ (or (a, b, x), or (a, x, b), or (x, a, b)) ∈ Bi ⇐⇒

⟨b, a, x⟩(or (x, b, a), or (b, x, a), or (b, a, x)) ∈ Bi. (*)

Lemma 3.6 Suppose that there exists an S(3, (K0,K1), v+1) on Zv∪{∞}. Suppose that there
exists an LRQHTS(k1 +1) for any k1 ∈ K1, an OLARHTS(k0 − 1) for any k0 ∈ K0. Then there

exists an LRHTS(v + 2).

Construction 3.7 Let S(3, (K0,K1), v + 1) = (Zv ∪ {∞},Ω0 ∪Ω1), where Ω1 is the blocks set

which contains ∞, Ω0 is the blocks set which does not contain ∞. Denote Ω1 = {B\{∞} : B ∈
Ω1}.

For any block A ∈ Ω0, there exists an OLARHTS(|A|−1) = {(A\{x}, CA(x, j)) : x ∈ A, j =

0, 1, 2, 3}. The almost parallel classes of CA(x, j) is Cy
A(x, j), y ∈ A\{x}. For any block B ∈ Ω1,

there exists an LRQHTS(|B|+2) = {({∞0,∞1} ∪B,AB(x, j)): x ∈ B, j = 0, 1, 2, 3}, where the

parallel classes of AB(x, j) are A′
B(x, j), A′′

B(x, j), and Ay
B(x, j), y ∈ B\{x}. From the above

condition (*), we have

⟨∞0,∞1, x⟩ ∈ A′
B(x, 0), ⟨∞1,∞0, x⟩ ∈ A′′

B(x, 0),

(∞0,∞1, x) ∈ A′
B(x, 1), (x,∞1,∞0) ∈ A′′

B(x, 1),

(∞1, x,∞0) ∈ A′
B(x, 2), (∞0, x,∞1) ∈ A′′

B(x, 2),

(x,∞0,∞1) ∈ A′
B(x, 3), (∞1,∞0, x) ∈ A′′

B(x, 3).

For the Ay
B(x, j), y can be given in the following way: define a graph GB(x, j) on the vertex

set B\{x}, {y, z} is its edge if and only if {∞0, y, z} is an underlying triple of AB(x, j) for

y ̸= z ∈ B\{x}. It is easy to see that GB(x, j) is a 2-regular graph, so it can be partitioned into

some disjoint cycles. Now, define an order on every cycle. Then we can get a directed graph

GB(x, j) from GB(x, j). Besides A′
B(x, j) and A′′

B(x, j), there exists a unique block T which

contains ∞0 on every parallel class of AB(x, j). Let y, z differ from ∞0 as a directed edge of

GB(x, j). If the order of {y, z} is from y to z, then the parallel class is Ay
B(x, j).

Let X = {∞0,∞1} ∪ Zv. Define:

Bj
x =

( ∪
x∈B∈Ω1

AB(x, j)
)∪( ∪

x∈A∈Ω0

CA(x, j)
)
, x ∈ Zv, j = 0, 1, 2, 3,

then {(X,Bj
x) : x ∈ Zv, j = 0, 1, 2, 3} is an LRHTS(v + 2).

Proof First, let Ω1 contain t blocks B1, B2, . . . , Bt, Ω0 contain s blocks A1, A2, . . . , As. For a

given x ∈ Zv, we get:∣∣∣ ∪
x∈B∈Ω1

AB(x, j)
∣∣∣ = 2 +

t∑
i=1

(
(|Bi|+ 1)(|Bi|+ 2)

3
− 2) = 2 +

t∑
i=1

((|Bi|2 + 3|Bi| − 4)/3,
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x∈A∈Ω0

CA(x, j)
∣∣∣ = ∑

x∈A∈Ω0

|CA(x, j)| =
s∑

j=1

(|Aj | − 1)(|Aj | − 2)

3
,

t∑
i=1

(|Bi| − 1) = v − 1,

t∑
i=1

(
|Bi| − 1

2

)
+
∑
j=1

(
|Aj | − 1

2

)
=

(
v − 1

2

)
.

Therefore,

∣∣∣∪
B

AB(x, j)
∣∣∣+ ∣∣∣∪

A

CA(x, j)
∣∣∣ = 2 +

1

3
(

t∑
i=1

(|Bi|2 + 3|Bi| − 4) +
s∑

j=1

(|Aj | − 1)(|Aj | − 2))

= 2 +
1

3

(
6

t∑
i=1

(|Bi| − 1) + 2
t∑

i=1

(
|Bi| − 1

2

)
+ 2

s∑
j=1

(
|Aj | − 1

2

))
=

(v + 1)(v + 2)

3
,

which is exactly the block number of Bj
x.

In what follows, we will prove that for a given x ∈ Zv, j = 0, 1, 2, 3, each ordered pair P of

X appears in exactly one block of Bj
x.

(i) P = (∞k,∞1−k), (∞k, x) and (x,∞k), k = 0, 1, belong to the blocks ⟨∞0,∞1, x⟩ and
⟨∞1,∞0, x⟩ (j = 0), or (∞0,∞1, x) and (x,∞1,∞0) (j = 1), or (∞1, x,∞0) and (∞0, x,∞1) (j =

2), or (x,∞0,∞1) and (∞1,∞0, x) (j = 3) of AB(x, j), x ∈ B ∈ Ω1. Notice, under “ ∪ ”, repeat

triple block appears once in AB(x, j).

(ii) P = (∞k, y), (y,∞k), (x, y) and (y, x), k = 0, 1, y ∈ Zv\{x}, there exists a unique

block B containing {x, y} on Ω1, then P appears in one block of AB(x, j).

(iii) P = (y, z), y ̸= z ∈ Zv\{x}, there exists a block B ∈ Ω0

∪
Ω1 such that {x, y, z} ⊂ B.

If B ∈ Ω1, then P appears in one block of AB(x, j); If B ∈ Ω0, then P appears in one block of

CB(x, j).
More, every block T on X appears in a Bj

x, x ∈ Zv, j = 0, 1, 2, 3.

(i) For T = ⟨∞k,∞1−k, x⟩, k = 0, 1, appear in B0
x; (∞0,∞1, x), (x,∞1,∞0) appear in B1

x;

(∞1, x,∞0), (∞0, x,∞1) appear in B2
x ; (x,∞0,∞1), (∞1,∞0, x) appear in B3

x.

(ii) For T = ⟨∞k, y, z⟩( or (∞k, y, z), (y,∞k, z), (y, z,∞k)), k = 0, 1, there is a block

B ∈ Ω1 such that {y, z} ⊂ B. So there is an AB(x, j), x ∈ B, j = 0, 1, 2, 3, such that T appears

in AB(x, j).

(iii) For T = ⟨y, z, t⟩( or (y, z, t)), there is a block B ∈ Ω0

∪
Ω1 such that {y, z, t} ⊂ B.

If ∞ ∈ B, then B = B\{∞} ∈ Ω1, there is an x ∈ B, j = 0, 1, 2, 3, such that T appears in

AB(x, j) ⊂ Bj
x. If ∞ ̸∈ B, then B ∈ Ω0, there is an element x ∈ B, j = 0, 1, 2, 3, such that T

appears in CB(x, j) ⊂ Bj
x.

Finally, every Bj
x can be partitioned into parallel classes as follows:
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(i) A′(x, j) =
∪

x∈B∈Ω1
A′

B(x, j). It contains

1 +
t∑

i=1

(
|Bi|+ 2

3
− 1) = 1 +

1

3

t∑
i=1

(|Bi| − 1) = 1 +
v − 1

3
=

v + 2

3

triples, where every A′
B(x, j) is the partition of B

∪
{∞0,∞1}. And {B\{x} : x ∈ B ∈ Ω1} is

the partition of Zv\{x}.
(ii) Similarly, A′′(x, j) =

∪
x∈B∈Ω1

A′′
B(x, j) is another parallel class.

(iii) For y ∈ Zv\{x}, Ay(x, j) = Ay
B(x, j)

∪
(
∪

{x,y}∈A∈Ω0
Cy
A(x, j)) is a parallel class, where

B is the unique block in Ω1 which contains {x, y}. It is easy to see that,

|Ay(x, j)| = |B|+ 2

3
+

w∑
i=1

|Ai| − 2

3
=

v + 2

3
,

A1, A2, . . . , Aw are all the blocks in Ω0, each Ai (1 ≤ i ≤ x) contains {x, y} and satisfies the

equation
∑w

i=1(|Ai| − 2) + |B| − 2 = v − 2. Note that B containing {x, y} and Ai\{x, y},
1 ≤ i ≤ w, form the partition of Zv, the parallel class is the partition of {∞1,∞2} ∪B, and the

almost parallel class of Cy
Ai
(x) is the partition of Ai\{x, y}. �

Corollary 3.8 There is an LRHTS(v + 2), when v = 7n, 13n, 25n, 24n, 26n, n ≥ 0.

Proof Let K0 = K1 = {k} and k = 7 + 1, 13 + 1, 52 + 1, 24 + 1, 26 + 1, respectively. For

k−1 = 7, 13, 52, 42 and 43, from Theorems 2.3, 2.7 and Lemma 3.6, there is an OLARHTS(k−1).

For k+1 = 9, 15, 27, 18 and 66, from Lemma 1.7, Theorems 2.8 and 2.9, there is an LRHTS(k+1).

These LRHTS(k + 1)s are all LRQHTS(k + 1)s. �
A quasigroup of order v is a pair (X, ◦), where X is a v−set and ◦ is a binary operation on

X such that equations a ◦ x = b and y ◦ a = b are uniquely solvable for every pair of element

a, b ∈ X. A quasigroup (X, ◦) is called idempotent if the identity i◦ i = i, holds for all i ∈ X. An

idempotent quasigroup of order v is denoted by IQ(v). Furthermore, an idempotent quasigroup

(X, ◦) is called resolvable if all v(v − 1) pairs of distinct elements of X can be partitioned into

subsets Ti, 1 ≤ i ≤ 3(v − 1), such that every {(x, y, x ◦ y) : (x, y) ∈ Ti} (called parallel class ) is

a partition of X. A resolvable idempotent quasigroup of order v is denoted by RIQ(v).

An IQ(v) is called first-transitive, if there exists a group G of order v acting transitively on

X which forms an automorphism group of (X, ◦). A first-transitive RIQ(v) is briefly denoted by

TRIQ(v).

Take any fixed ordered pair (i, j), i ̸= j ∈ {0, 1, 2}. For an IQ(X, ◦) and the given ordered

pair (i, j), define a set T (i, j) of transitive triples of X × {i, j} as follows: for each ordered pair

(x, y), x ̸= y ∈ X, let t(x, y, x ◦ y) be the three transitive triples of X × {i, j} defined by

t(x, y, x ◦ y) = {((x, i), (y, i), (x ◦ y, j)), ((x, i), (x ◦ y, j), (y, i)), ((x ◦ y, j), (x, i), (y, i))},

T (i, j) =
∪

x ̸=y∈X

t(x, y, x ◦ y).

The IQ(X, ◦) is called second-transitive provided that T (i, j) can be partitioned into three

sets T0, T1 and T2 such that
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(i) The three transitive triples in t(x, y, x ◦ y) belong to different Tk(i, j)s (k = 0, 1, 2);

(ii) If a ̸= b ∈ X, each of the ordered pairs ((a, i), (b, j)), and ((b, j), (a, i)) belongs to

exactly one transitive triple in each of T0, T1 and T2.

An IQ(X, ◦) with both first- and second- transitivity is called doubly transitive. A doubly

transitive RIQ(v) is denoted by DTRIQ(v). In [7], Chang, Zhou gave the results below:

Lemma 3.9 A DTRIQ(v) exists if and only if v is a positive integer such that 3|v and v ̸≡ 2

mod 4.

In [19], Lei introduced the concept of LR-design. An LR-design of order v (briefly LR(v))

is a collection {(X,Aj
k) : 1 ≤ k ≤ u−1

2 , j = 0, 1} of v − 1 KTS(v)s with the following properties:

(i) Let the resolution of Aj
k be T j

k = {Aj
k(h) : 1 ≤ k ≤ u−1

2 }. There is an element in each

T j
k , say, A

j
k(1), such that

u−1
2∪

k=1

A0
k(1) =

u−1
2∪

k=1

A1
k(1) = A

and (X,A) is a KTS(v).

(ii) For any triple T = {x, y, z} ⊆ X,x ̸= y ̸= z ̸= x, there exist k, j such that T ∈ Aj
k.

Lemma 3.10 There exists an LR(3a5bm
∏r

i=1(2 · 13ni + 1)
∏p

j=1(2 · 7mj + 1)), where ni,mj ≥
1 (1 ≤ i ≤ r, 1 ≤ j ≤ p), a, b, r, p ≥ 0 with a+ r + p ≤ 1.

Using the auxiliary design and results, Zhou [11] have given the following recently.

Lemma 3.11 If there exist a DTRIQ(v) and an LRHTS(v), then there exists an LRHTS(3v).

Lemma 3.12 If there exist an LRHTS(u), a DTRIQ(u), and an LR(v), then there exists an

LRHTS(uv).

Corollary 3.13 There exists an LRHTS(v), when v = 3a5bm
∏r

i=1(2·13ni+1)
∏p

j=1(2·7mj +1),

where m ∈ {1, 4, 11, 17, 35, 43, 67, 91, 123, 7n +2, 13n +2, 25n +2} ∪ {22l+125s +1 : l ≥ 0, s ≥ 0},
a, ni,mj ≥ 1 (1 ≤ i ≤ r, 1 ≤ j ≤ p), b, r, p ≥ 2 . b ≥ 1 and m ̸= 1.

Proof From Lemmas 3.10, 3.11, 3.12 and Theorem 1.2, we have the results. �
In [20], Teirlinck introduced the concept of overlarge set.

An LS(λ, 1; t, (k,K), v), k ≥ t, λ ∈ N\{0} and k ≤ min{j; j ∈ K} is a set {(X,Br) : r ∈ R}
which is constituted by some S(t,K, v) = (X,Br)s, such that (X,

∪
r∈R Br) is an S(k,K, v), and

for every B ∈
∪

r∈R Br, there exist λ
(|B|−t

k−t

)
elements r on R, satisfying B ∈ Br (Note that∪

r∈R Br does not contain repeated set). Let LS(1, 1; t, (k,K), v) denote LS(t, (k,K), v). We have

known that LS(λ, 1; t, (k,K), v), v ≥ k contains λ
(
v−t
k−t

)
S(t,K, v)s. Repeating LS(t, (k,K), v) λ

times, we get an LS(λ, 1; t, (k,K), v).

Lemma 3.14 Suppose there exists an LS(4, 1; 2, (3,K), v), and there exists an LARHTS(k) for

any k ∈ K. Then there exists an LARHTS(v).

Construction 3.15 Let {(X,Br) : r ∈ R} be an LS(4, 1; 2, (3,K), v). For any B ∈
∪

r∈R Br,
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there is an LARHTS(|B|) = {(B, Cr(B)) : r ∈ RB}, where RB = {r : B ∈ Br}. Define

Ar =
∪

B∈Br

Cr(B), r ∈ R.

Then {(X,Ar) : r ∈ R} is an LARHTS(v).

Proof First, |X| = v, |R| = 4(v − 2), |RB| = 4(|B| − 2).

For a given r ∈ R, we consider the ordered pair P = (x, y) on X. Since (X,Br) is an

S(2,K, v), the unordered pair {x, y} appears in the unique block B ∈ Br. Since (B, Cr(B)) is an

HTS(|B|), P appears in the unique block of Cr(B) ⊂ Ar. Then, (X,Ar) is an HTS(v). Cr(B)

can be partitioned into |B| almost parallel classes Cr(B, x), x ∈ B, where Cr(B, x) is a partition

of B\{x}. Denote

Ar(x) =
∪

x∈B∈Br

Cr(B, x), x ∈ X.

For a given r ∈ R, x ∈ X, Ar(x) is a partition of X\{x}. In fact, for a given y ∈ X\{x},
ordered pair {x, y} appears in the unique block B ∈ Br, and y appears in the unique triple of

Cr(B, x) ⊂ Ar(x). And

Ar =
∪

B∈Br

Cr(B) =
∪

B∈Br

∪
x∈B

Cr(B, x) =
∪
x∈X

∪
x∈B∈Br

Cr(B, x) =
∪
x∈X

Ar(x),

so, (X,Ar) is an ARHTS(v).

Finally, for any block T = ⟨x, y, z⟩ or (x, y, z) on X. Since (X,
∪

r∈R Br) is an S(3,K, v),

there exists block B ∈
∪

r∈R Br such that {x, y, z} ⊂ B. Since {(B,Cr(B)) : r ∈ RB} is an

LHTS(|B|),
∪

r∈RB
Cr(B) contains all the cycle and transitive triples on B, So T appears in

Cr(B) ⊂ Ar.

Lemma 3.16 If there exists a 2- resolvable S(3, 4, v), then there exists an LS(2, (3, {4}), v).
Therefore there exists an LS(λ, 2, (3, {4}), v).

Corollary 3.17 For v = 4n, 2(7n + 1), 2(31n + 1), 2(127n + 1), n ≥ 1, there is an LARHTS(v).

Proof By Lemma 3.2, there is a 2- resolvable S(3, 4, v) for v = 4n, 2(7n + 1), 2(31n + 1),

2(127n + 1), n ≥ 1. So there is an LS(2, (3, {4}), v). There is an LARHTS(4) by Theorem 2.1,

and we have the results from Lemma 3.14. �
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