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Abstract Nearest polynomial with given properties has many applications in control theory

and applied mathematics. Given a complex univariate polynomial f(z) and a zero α, in this

paper we explore the problem of computing a complex polynomial f̃(z) such that f̃(α) = 0 and

the distance ∥f̃−f∥ is minimal. Considering most of the existing works focus on either certain

polynomial basis or certain vector norm, we propose a common computation framework based

on both general polynomial basis and general vector norm, and summarize the computing

process into a four-step algorithm. Further, to find the explicit expression of f̃(z), we focus

on two specific norms which generalize the familiar ℓp-norm and mixed norm studied in the

existing works, and then compute f̃(z) explicitly based on the proposed algorithm. We finally

give a numerical example to show the effectiveness of our method.
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1. Introduction

Let C[z] be the polynomial ring in z over C and E := {ej(z) | j = 1, . . . , n} an arbitrary

polynomial basis in C[z]. Let f(z) be a given polynomial. Set

Ξ := span{e1(z), . . . , en(z)} =
{ n∑

j=1

cjej(z) | cj ∈ C, j = 1, . . . , n
}

and

ℑ := f(z) + Ξ =
{
f(z) +

n∑
j=1

cjej(z) | cj ∈ C, j = 1, . . . , n
}
.

The aim of this paper is to study the problem of finding a univariate complex polynomial

f̃(z) ∈ ℑ such that it has a prescribed zero α ∈ C and the distance between f̃(z) and f(z) is

minimal.

Let Λ(α) := {g ∈ ℑ | g(α) = 0}, i.e., the set of all elements of ℑ that have a zero α. The

problem can be equivalently formulated as follows:
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Problem 1.1 Find f̃ ∈ Λ(α) such that

∥f̃ − f∥ = min
g∈Λ(α)

∥g − f∥, (1)

where the norm ∥·∥ of a polynomial is defined as the norm of coefficient vector of the polynomial

with respect to E . Assume that f(α) /∈ Λ(α), otherwise choose f̃(z) = f(z).

The sensitivity of the zeros with respect to the uncertainties of the polynomial coefficients

has been studied widely; cf. e.g., [1–3]. Ostrowski [1] introduced a continuous sensitivity analysis

to study the uncertainties of the coefficients as a continuity problem. Such a direction was

developed significantly by Mosier [2], who introduced the notion of a “root neighborhood” or

“pseudozero set” of a polynomial, which means the set of all zeros of polynomials that are near

to a given polynomial. As noticed in [4], a nearest polynomial with a given zero is needed in

computing a pseudozero set. Besides its relationship to the pseudozero set or to the approximate

GCD problem, the computation of nearest polynomials with given properties has applications in

control theory [5–7]. This motivates our study in the problem of a nearest polynomial.

By choosing ej = zj−1 (j = 1, 2, . . . , n − 1), the monomial basis, Hitz and Kaltofen [8–

10] studied Problem 1.1 in case of (weighted) ℓ2-norm and ℓ∞-norm. They converted it into

a parameterized least squares problem for ℓ2-norm, and a linear programming problem for ℓ∞-

norm. Stetter [11] extended these results to ℓp-norms for all values of p based on dual norm

theory. Further, Graillat [12] gave explicit formulas for f̃(z) in case of any ℓp-norms. Problem

1.1 was also studied in some other polynomial bases. For example, Rezvani and Corless [13,14]

chose Lagrangian, Chebyshev, Bernstein and Hermite bases and so forth.

If the point α is replaced with a complex domain, Problem 1.1 becomes a problem of

computing the nearest complex polynomial with a zero in a given domain. For such a problem,

Qiu and Davison [5] addressed it by computing structured singular values for a special class

of rank-one problems [6,7]. Hitz and Kaltofen [8,9] proposed a symbolic-numeric approach for

finding a nearest polynomial in weighted ℓ2-norm. Further, Luo et al. [15] studied the nearest

complex polynomial in ℓp-norm and mixed norm, while a similar problem for the real case in

weighted ℓ∞-norm was researched in [16,17].

Motivated by the fact that previous studies mainly focus on either ℓp-norms and mixed

norm or certain specific polynomial basis, this paper tries to unify these results, and proposes

a common computation framework for Problem 1.1. We will propose a four-step algorithm for

computing f̃(z) in both general polynomial basis E and general vector norm ∥ · ∥. Meanwhile,

since explicit expressions of f̃(z) heavily depend on the dual norm ∥ · ∥∗ and not all the norms

would have concrete forms for their dual norms, we also study the computation of f̃(z) when

focusing on two specific norms, i.e., the generalized weighted norm ∥ · ∥p,w and the generalized

mixed norm ∥ · ∥p,p1,p2 .

Apart from the nearest polynomial computation that will be studied in this paper, these two

norms have many other applications, such as in (block) sparse signal recovery and in function

interpolation [18–20]. Interestingly, we also observe that the second norm can be extended to the

corresponding matrix norm, where ∥ · ∥1,2,2 was popular in joint feature selection and subspace
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learning [21–23]. Like [15], the results obtained in this paper can be extended to computing the

nearest polynomial with a zero in a given domain, but this will not be simply repeated since the

key idea is similar.

The rest of this paper is organized as follows. Section 2 describes some useful notations,

and then a common computation framework for Problem 1.1 is proposed in Section 3. Section

4 shows the detailed computing process for explicit solutions. A numerical example is given in

Section 5, and finally Section 6 concludes the paper.

2. Notations

As in [15], some useful notations are listed:

(i) Let Cn denote the n-dimensional complex vector space. Vectors in Cn will mean column

vectors which are typed in bold, e.g.,

u := (u1, u2, . . . , un)
T ∈ Cn, v := (v1, v2, . . . , vn)

T ∈ Cn.

Let

Φ(z) := (e1(z), e2(z), . . . , en(z))
T ∈ Cn for every z ∈ C. (2)

(ii) (Scalar product) The ordinary scalar product on Cn is denoted by

⟨u,v⟩ := vTu =
n∑

j=1

ujvj , u,v ∈ Cn,

where vj means the conjugate number of vj .

(iii) (ℓp-norm ∥ · ∥p) The ℓp-norm of the vector u is defined by:

∥u∥p :=


(

n∑
j=1

|uj |p))
1
p , if 1 ≤ p < ∞,

max
j=1,...,n

|uj |, if p = ∞.

(iv) (Weighted ℓp-norm ∥·∥p,ω) Let ω = (ω1, ω2, . . . , ωn)
T ∈ Rn

+ be the weight vector, where

R+ denotes the set of all positive real numbers. Then, define

∥u∥p,ω :=


(

n∑
j=1

|ωjuj |p))
1
p , if 1 ≤ p < ∞,

max
j=1,...,n

|ωjuj |, if p = ∞.

(v) (Mixed norm ∥ · ∥mix) Let 1 ≤ r ≤ n− 1 and 1 ≤ p1, p2 ≤ ∞ be given. Then, define

∥u∥mix := max{∥u(1)∥p1 , ∥u(2)∥p2},

where u = (u(1)T ,u(2)T )T , u(1) = (u1, . . . , ur)
T and u(2) = (ur+1, . . . , un)

T .

(vi) (Dual norm ∥ · ∥∗) The dual norm ∥ · ∥∗ associated to any norm ∥ · ∥ is defined by

∥u∥∗ := sup
v ̸=0

| ⟨u,v⟩ |
∥v∥

= sup
∥v∥=1

| ⟨u,v⟩ |. (3)
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Conversely, the dual formulation of Eq. (3) is

∥v∥ = sup
u ̸=0

| ⟨v,u⟩ |
∥u∥∗

= sup
∥u∥∗=1

| ⟨v,u⟩ |. (4)

It is well-known that [14,15]

∥u∥∗p = ∥u∥q, 1 ≤ p, q ≤ ∞,
1

p
+

1

q
= 1;

∥u∥∗p,ω = ∥u∥q,ω∗ , 1 ≤ p, q ≤ ∞,
1

p
+

1

q
= 1, ω∗ = (ω−1

1 , ω−1
2 , . . . , ω−1

n )T ;

∥u∥∗mix = ∥u(1)∥q1 + ∥u(2)∥q2 , 1 ≤ qj ≤ ∞,
1

pj
+

1

qj
= 1, j = 1, 2

with the convention that q = ∞ if p = 1 and q = 1 if p = ∞ which is used throughout this paper.

3. General solutions for Problem 1.1

In this section, we propose a common framework to compute the nearest complex polynomial

in both general norm and general basis, and give the basic forms for nearest polynomial f̃(z)

and minimal distance ∥f̃ − f∥.
We start our discussion with the following lemma:

Lemma 3.1 Let γ ∈ C, |γ| = 1 and u ∈ Cn, ∥u∥∗ = 1. Then, there exists at least one vector

v ∈ Cn, ∥v∥ = 1, such that ⟨u,v⟩ = vTu = γ.

Proof Since {v ∈ Cn | ∥v∥ = 1} is a compact domain, the sup in Eq. (3) can be attained. That

is to say, there exists at least one vector v0 ∈ Cn, ∥v0∥ = 1, such that | ⟨u,v0⟩ | = ∥u∥∗ = 1.

Suppose ⟨u,v0⟩ = γ0 where γ0 ∈ C, |γ0| = 1. Taking v = γγ0v0, we obtain ∥v∥ = 1,

⟨u,v⟩ = γ. 2

If we particularly take ∥ · ∥ = ∥ · ∥p, namely ∥ · ∥∗ = ∥ · ∥q with 1
p + 1

q = 1, Lemma 3.1 has a

more detailed version.

Lemma 3.2 ([13,15]) Let 1
p + 1

q = 1 with 1 ≤ p, q ≤ ∞. Suppose that u ∈ Cn and γ ∈ C are

given such that ∥u∥q = 1 and |γ| = 1. Define v ∈ Cn as follows:

vj =

{
γ|uj |q−2uj , if uj ̸= 0,

0, if uj = 0,
for 1 ≤ q < ∞, (5)

vj =

{
γuj0 , if j = j0,

0, if j ̸= j0,
for q = ∞, (6)

where j0 is any, say the least, index with |uj0 | = 1. Then, we have

⟨u,v⟩ = γ with ∥v∥p = 1.

In Problem 1.1, we observe that

g(z)− f(z) =

n∑
j=1

cjej(z) = cTΦ(z),
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where c = (c1, c2, . . . , cn)
T ∈ Cn. Since ∥g − f∥ is defined as the norm of coefficient vector of

g(z)− f(z) with respect to {e1(z), e2(z), . . . , en(z)}, we have ∥g − f∥ = ∥c∥. Thus, to find f̃(z),

we need to compute the minimum value

min
f(α)+cTΦ(α)=0

∥c∥ (7)

and a vector c where it is attained.

Let

u := τΦ(α) = µ(e1(α), e2(α), . . . , en(α))
T

with τ = 1
∥Φ(α)∥∗ , so ∥u∥∗ = 1. Recalling that f(α) /∈ Λ(α), we set

γ = − f(α)

|f(α)|
.

Then, Lemma 3.1 implies that there exists a vector v = (v1, v2, . . . , vn)
T ∈ Cn satisfying

∥v∥ = 1 and ⟨u,v⟩ = vTu = γ.

Take c = τ |f(α)|v and define

f̃(z) := f(z) + cTΦ(z) = f(z) +
n∑

j=1

cjej(z). (8)

The next theorem proves that f̃(z) is actually a solution to Problem 1.1.

Theorem 3.3 Let ∥ · ∥ and {e1(z), e2(z), . . . , en(z)} be arbitrary norm of Cn and polynomial

basis in C[z], respectively. Then, the polynomial f̃(z) defined by Eq. (8) solves Problem 1.1

with minimal distance |f(α)|
∥Φ(α)∥∗ .

Proof From the definitions of u, γ, v and c, it follows that cTΦ(α) = µ|f(α)|vTΦ(α) =

|f(α)|vTu = |f(α)|γ = −f(α), which implies f̃(α) = 0 and ∥f̃ − f∥ = ∥c∥ = |f(α)|
∥Φ(α)∥∗ .

It remains to prove that ∥f̃ − f∥ ≤ ∥g − f∥ for all g ∈ Λ(α). Write an arbitrary g ∈ Λ(α)

as follows:

g(z) = f(z) +
n∑

j=1

rjej(z)

with r = (r1, r2, . . . , rn)
T . Then, since g(α) = 0, an application of Hölder’s inequality yields

|f(α)| = |g(α)− f(α)| =
∣∣∣ n∑
j=1

rjej(α)
∣∣∣ = |rTΦ(α)| ≤ ∥r∥ ∥Φ(α)∥∗,

from which it follows that

∥f̃ − f∥ =
|f(α)|

∥Φ(α)∥∗
≤ ∥r∥ = ∥g − f∥. 2

Denote the minimal distance by

d̃ := µ|f(α)| = |f(α)|
∥Φ(α)∥∗

. (9)

We summarize the above computation process into the following algorithm.



44 Wenyu HU and Zhongxuan LUO

Algorithm 3.4 (Computation of the nearest polynomial)

Input: f(z), α, Φ(z) and a certain norm ∥ · ∥.
Output: A nearest polynomial f̃ and its minimal distance d̃ from f .

Step 1. Compute u = τΦ(α) with ∥u∥∗ = 1, where τ = 1
∥Φ(α)∥∗ .

Step 2. Compute v with ∥v∥ = 1 and ⟨u,v⟩ = γ, where γ = − f(α)
|f(α)| .

Step 3. Compute c = τ |f(α)|v .

Step 4. Return f̃(z) = f(z) + cTΦ(z) and d̃ = τ |f(α)|.
Algorithm 3.4 is valid to any norm, where computations of nearest polynomial f̃(z) and

minimal distance d̃ come down to computing the desired vector v and the dual norm of Φ(α).

However, both of v and ∥Φ(α)∥∗ may not have explicit forms for certain norms. For this reason,

in the next section we shall focus on two specific norms that are not studied in previous works

and in which we can obtain explicit v and ∥Φ(α)∥∗.

4. Explicit solutions for Problem 1.1

We first give the definitions of two norms to be used.

4.1. Norm definitions and dual norms

Motivated by (weighted) ℓp-norm and mixed norm introduced in Section 2, we define two

more general norms.

Definition 4.1 Let W = (wij) ∈ Rn×n be a nonsingular and symmetric weight matrix. For

u = (u1, u2, . . . , un)
T ∈ Cn and 1 ≤ p ≤ ∞, we define

∥u∥p,W := ∥Wu∥p (10)

which is called generalized weighted norm.

It is straightforward to prove that ∥ · ∥p,W is a norm, so we omit the proof.

Definition 4.2 Suppose u = (u1, u2, . . . , un)
T ∈ Cn. Let u = (u(1)T ,u(2)T )T , u(1) =

(u1, . . . , ur)
T , u(2) = (ur+1, . . . , un)

T and 1 ≤ r ≤ n− 1. For 1 ≤ p, p1, p2 ≤ ∞, we define

∥u∥p, p1, p2
:= ∥

(
∥u(1)∥p1 , ∥u(2)∥p2

)
∥p =

(
∥u(1)∥pp1

+ ∥u(2)∥pp2

) 1
p

(11)

which is called generalized mixed norm.

The positivity and homogeneity of ∥ · ∥p, p1, p2 follow directly from its definition. We just

prove the correctness of triangle inequality by applying the Minkowski inequality.

For any u,v ∈ Cn, u = (u(1)T , u(2)T )T , v = (v(1)T , v(2)T )T , we have

∥u+ v∥p, p1, p2
=

∥∥∥(u(1) + v(1), u(2) + v(2)
)∥∥∥

p, p1, p2

=
(
∥u(1) + v(1)∥pp1

+ ∥u(2) + v(2)∥pp2

) 1
p

≤
(
(∥u(1)∥p1 + ∥v(1)∥p1)

p + (∥u(2)∥p2 + ∥v(2)∥p2)
p
) 1

p
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= ∥
(
∥u(1)∥p1 + ∥v(1)∥p1 , ∥u(2)∥p2 + ∥v(2)∥p2

)
∥p

= ∥
(
∥u(1)∥p1 , ∥u(2)∥p2

)
+
(
∥v(1)∥p1 , ∥v(2)∥p2

)
∥p

≤ ∥
(
∥u(1)∥p1 , ∥u(2)∥p2

)
∥p + ∥

(
∥v(1)∥p1 , ∥v(2)∥p2

)
∥p

= ∥u∥p, p1, p2
+ ∥v∥p, p1, p2

.

According to Algorithm 3.4, dual norm is critical to compute f̃(z) and d̃. Thus, the next

theorems reveal the dual norms of ∥ · ∥p,W and ∥ · ∥p,p1,p2 , respectively.

Theorem 4.3 Let u, p,W be as in Definition 4.1. Then

∥u∥∗p,W = ∥u∥q,W−1 (12)

where W−1 denotes the inverse of W, q satisfies 1 ≤ q ≤ ∞ and 1
p + 1

q = 1.

Proof See Appendix A. 2

Theorem 4.4 Let u,u(1),u(2), r, p, p1, p2 be as in Definition 4.2. Then

∥u∥∗p, p1, p2
= ∥u∥q, q1, q2

, (13)

where q, q1, q2 satisfy 1 ≤ q, q1, q2 ≤ ∞, 1
p + 1

q = 1, 1
p1

+ 1
q1

= 1 and 1
p2

+ 1
q2

= 1.

Proof See Appendix B. 2

By default, in the following discussions we always assume that p’s and q’s appear in pairs.

Remark 4.5 The introduced generalized weighted norm and generalized mixed norm include

many familiar norms.

For example, for any u ∈ Cn and 1 ≤ p ≤ ∞, if W = I (identity matrix), then ∥u∥p,W =

∥u∥p; if W = diag(ω1, . . . , ωn), then ∥u∥p,W = ∥u∥p,ω; for any 1 ≤ p1, p2 ≤ ∞, if p = ∞, then

∥u∥∞,p1,p2 = ∥u∥mix.

Moreover, Theorems 4.3 and 4.4 imply

∥u∥∗p = ∥u∥q, ∥u∥∗p,W = ∥u∥q,W−1 = ∥u∥q,ω∗

and

∥u∥∗∞,p1,p2
= ∥u∥1,q1,q2 = ∥u(1)∥p1 + ∥u(2)∥p2 = ∥u∥∗mix.

These results are consistent with the ones in Section 2.

4.2. Solutions in generalized weighted norm

Following the flow of Algorithm 3.4, we will find explicit solution formulas in generalized

weighted norm for Problem 1.1 in the following steps:

Step 1. Compute u:

For p ∈ [1,∞], let

u = τΦ(α)
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with τ = 1
∥Φ(α)∥∗

p,W
= 1

∥Φ(α)∥q,W−1
and 1

p + 1
q = 1. Then, we have

∥u∥∗p,W = ∥u∥q,W−1 = 1.

Step 2. Compute v:

Let x = W−1u ∈ Cn so that ∥x∥q = ∥u∥q,W−1 = 1. Set γ = − f(α)
|f(α)| ; then, by using Lemma

3.2, there exists y ∈ Cn, ∥y∥p = 1 such that ⟨x,y⟩ = γ.

Now, let

v = W−1y (14)

which satisfies { ∥v∥p,W = ∥WW−1y∥p = ∥y∥p = 1,

⟨u, v⟩ =
⟨
Wx,W−1y

⟩
= ⟨x,y⟩ = γ.

Step 3. Compute c = τ |f(α)|v:
Owing to Lemma 3.2, we can deduce each component of c in details. First, denote the

inverse ofW byW−1 = (ϕij)n×n ∈ Rn×n. Due to the symmetry ofW, W−1 is also symmetrical,

namely, ϕij = ϕji, i, j = 1, . . . , n. Next, we divide p, q ∈ [1,∞] that satisfy 1
p + 1

q = 1 into two

cases to discuss:

Case a 1 < p ≤ ∞, 1 ≤ q < ∞ and 1
p + 1

q = 1.

In this case, τ and the j-th component of x are

τ =
1

∥Φ(α)∥q,W−1

=
1( n∑

i=1

|
n∑

j=1

ϕijej(α)|q
) 1

q

,

xj = τ
n∑

k=1

ϕjkek(α), j = 1, . . . , n.

By Eq. (5) in Lemma 3.2, if xj ̸= 0, i.e.,
∑n

k=1 ϕjkek(α) ̸= 0, one has the j-th component of y as

follows:

yj = γ|xj |q−2xj = − f(α)

|f(α)|

|
n∑

k=1

ϕjkek(α)|q−1

∥Φ(α)∥q−1
q,W−1

n∑
k=1

ϕjkek(α)

|
n∑

k=1

ϕjkek(α)|
,

otherwise, one sets yj = 0.

By using Eq. (14), we compute the i-th component of v that is

vi =

n∑
j=1

ϕijyj = − f(α)

|f(α)|
1

∥Φ(α)∥q−1
q,W−1

n∑
j=1

n∑
k=1

ϕjkek(α)̸=0

ϕij |
n∑

k=1

ϕjkek(α)|q−1

n∑
k=1

ϕjkek(α)

|
n∑

k=1

ϕjkek(α)|

 ,

where i = 1, 2, . . . , n. Therefore, the i-th component of c is

ci = τ |f(α)|vi = − f(α)

∥Φ(α)∥qq,W−1

n∑
j=1

n∑
k=1

ϕjkek(α)̸=0

ϕij |
n∑

k=1

ϕjkek(α)|q−1

n∑
k=1

ϕjkek(α)

|
n∑

k=1

ϕjkek(α)|

 .
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Case b p = 1, q = ∞.

In this case, let i0 be any index with |
∑n

j=1 ϕi0jej(α)| = ∥Φ(α)∥∞,W−1 . Then, we have
τ =

1

∥Φ(α)∥∞,W−1

=
1

|
n∑

j=1

ϕi0jej(α)|
,

xj = τ
n∑

k=1

ϕjkek(α), j = 1, . . . , n.

By Eq. (6) in Lemma 3.2, we have

yj =


γxi0 = − f(α)

|f(α)|

n∑
k=1

ϕi0kek(α)

|
n∑

j=1

ϕi0jej(α)|
, j = i0,

0, otherwise.

By Eq. (14), one has the i-th component of v as follows:

vi =
n∑

j=1

ϕijyj = ϕii0yi0 = − f(α)

|f(α)|
ϕii0

|
n∑

j=1

ϕi0jej(α)|

n∑
k=1

ϕi0kek(α), i = 1, . . . , n.

Therefore, due to that c = τ |f(α)|v, the i-th component of c is

ci = τ |f(α)|vi
k→j
= − f(α)

|
n∑

j=1

ϕi0jej(α)|

n∑
j=1

ϕi0jej(α)

|
n∑

j=1

ϕi0jej(α)|
ϕii0 , i = 1, . . . , n.

Step 4. Return f̃(z) and d̃:

After obtaining each component of vector c, we have
f̃p,W(z) := f(z) +

n∑
i=1

ciei(z),

d̃p,W :=
|f(α)|

∥Φ(α)∥q,W−1

.

(15)

Remark 4.6 Note that computing ci employs the fact of ϕij = ϕji. In addition, for different

values of p, if we take the weight matrix W as I or diag(ω1, ω2, . . . , ωn), the results implied

by Eq. (15) are consistent with the ones in previous works. For example, for 1 < p ≤ ∞, take

W = I; then ϕij = δij , where δij denotes the Kronecker delta, i, j = 1, 2, . . . , n. Consequently,

we have 

f̃p,I(z) = f(z)− f(α)∑n
k=1 |ek(α)|q

n∑
j=1

ej(α) ̸=0

|ej(α)|q−1 ej(α)

|ej(α)|
ej(z),

d̃p,I =
|f(α)|

(
n∑

i=1

|ei(α)|q)
1
q

(16)

which are the same as Eqs. (14) and (15) in [15].
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4.3. Solutions in generalized mixed norm

Following the flow of Algorithm 3.4, now we are going to find explicit solution formulas in

generalized mixed norm for Problem 1.1 in the following steps:

Step 1. Compute u:

For p, p1, p2 ∈ [1,∞], denote
Φ(1)(α) = (e1(α), . . . , er(α))

T , u(1) = µ(1)Φ(1)(α), µ(1) =
1

∥Φ(1)(α)∥q1
;

Φ(2)(α) = (er+1(α), . . . , en(α))
T , u(2) = µ(2)Φ(2)(α), µ(2) =

1

∥Φ(2)(α)∥q2
.

Then, we have ∥u(j)∥qj = 1, j = 1, 2, Φ(α) = (Φ(1)(α)
T
, Φ(2)(α)

T
)T and

∥Φ(α)∥q,q1,q2 =
(
∥Φ(1)(α)∥qq1 + ∥Φ(2)(α)∥qq2

) 1
q

=
∥(µ(1), µ(2))T ∥q

µ(1)µ(2)
.

Denote µ = ∥(µ(1), µ(2))T ∥q, so that ∥Φ(α)∥q,q1,q2 = 1
τ = µ

µ(1)µ(2) . Let

u =
Φ(α)

∥Φ(α)∥q,q1,q2
=

(µ(2)

µ
u(1)T ,

µ(1)

µ
u(2)T

)T
. (17)

Then, we have ∥u∥∗p,p1,p2
= ∥u∥q,q1,q2 = 1.

Step 2. Compute v:

Let x = (x1, x2) = (µ
(2)

µ , µ(1)

µ )T ∈ R2. Then from the definition of µ, we have ∥x∥q = 1. So

for γ0 = 1, by Lemma 3.2 there exists y = (y1, y2) ∈ R2, ∥y∥p = 1 such that

⟨x,y⟩ = x1y1 + x2y2 = γ0 = 1,

where x1, x2 ≥ 0 implies y1, y2 ≥ 0 by Eqs. (5) and (6).

Let γ = − f(α)
|f(α)| . Since ∥u(1)∥q1 = 1 and ∥u(2)∥q2 = 1, by Lemma 3.2 again there exist

v(1) = (v1, . . . , vr)
T ∈ Cr, ∥v(1)∥p1 = 1 and v(2) = (vr+1, . . . , vn)

T ∈ Cn−r, ∥v(2)∥p2 = 1

satisfying ⟨
u(1), v(1)

⟩
= γ,

⟨
u(2), v(2)

⟩
= γ.

Now, we let

v =
(
y1v

(1)T , y2v
(2)T

)T
(18)

which is the exact vector we are looking for, because v satisfies
∥v∥p,p1,p2 = ∥y∥p = 1,

⟨u, v⟩ = µ(2)

µ
y1
⟨
u(1),v(1)

⟩
+

µ(1)

µ
y2
⟨
u(2),v(2)

⟩
= γ(x1y1 + x2y2) = γ.

Step 3. Compute c = τ |f(α)|v:
The main purpose of this step is to compute each component of c explicitly by applying

Lemma 3.2. For simplicity, we divide p, q ∈ [1,∞] into two cases which are further subdivided

into several subcases according to the values of p1, p2, q1, q2 to discuss.

Case a 1 < p ≤ ∞, 1 ≤ q < ∞.
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In this case, we have y = (y1, y2)
T = ((µ

(2)

µ )q−1, (µ
(1)

µ )q−1)T by Eq. (5). Now we shall

compute v by using Eq. (18) and the relationship between u(j) and v(j).

Case a1 1 < pj ≤ ∞, 1 ≤ qj < ∞, 1
pj

+ 1
qj

= 1, j = 1, 2.

If ej(α) ̸= 0, then, by Eqs. (5) and (18) one has the j-th component of v as follows:

vj =


γy1|u(1)

j |q1−2u
(1)
j = − f(α)

|f(α)|
µ(2)q−1

µq−1

|ej(α)|q1−1

∥Φ(1)(α)∥q1−1
q1

ej(α)

|ej(α)|
, j = 1, . . . , r,

γy2|u(2)
j |q2−2u

(2)
j = − f(α)

|f(α)|
µ(1)q−1

µq−1

|ej(α)|q2−1

∥Φ(2)(α)∥q2−1
q2

ej(α)

|ej(α)|
, j = r + 1, . . . , n.

Otherwise, one has vj = 0.

Due to c = µ(1)µ(2)

µ |f(α)|v and the definition of µ(j), one has the j-th component of c as

follows:

cj =


−f(α)(

µ(1)µ(2)

µ
)q

|ej(α)|q1−1

∥Φ(1)(α)∥q1−q
q1

ej(α)

|ej(α)|
, j = 1, . . . , r,

−f(α)(
µ(1)µ(2)

µ
)q

|ej(α)|q2−1

∥Φ(2)(α)∥q2−q
q2

ej(α)

|ej(α)|
, j = r + 1, . . . , n

(19)

where µ(1)µ(2)

µ = 1
∥Φ(α)∥q,q1,q2

= |f(α)|[(∑r
k=1 |ek(α)|q1

) q
q1 +

(∑n
k=r+1 |ek(α)|q2

) q
q2
] 1

q
.

Case a2 p1 = 1, q1 = ∞, 1 < p2 ≤ ∞, 1 ≤ q2 < ∞, 1
p2

+ 1
q2

= 1.

Let j0 (1 ≤ j0 ≤ r) be any index with |ej0(α)| = ∥Φ(1)(α)∥∞. Then we have

µ(j) =
1

∥Φ(j)(α)∥qj
=


1

|ej0(α)|
, j = 1,

1(∑n
k=r+1 |ek(α)|q2

) 1
q2

, j = 2.

By Eqs. (5) and (18), one has the j-th component of v as follows:

vj =



γy1u
(1)
j0

= − f(α)

|f(α)|
µ(2)q−1

µq−1

ej0(α)

|ej0(α)|
, j = j0,

γy2|u(2)
j |q2−2u

(2)
j = − f(α)

|f(α)|
µ(1)q−1

µq−1

|ej(α)|q2−1

∥Φ(2)(α)∥q2−1
q2

ej(α)

|ej(α)|
, j = r + 1, . . . , n, ej(α) ̸= 0,

0, otherwise.

Due to c = µ(1)µ(2)

µ |f(α)|v and the definition of µ(j) again, one has the j-th component of

c as follows:

cj =


−f(α)(

µ(1)µ(2)

µ
)q

1

|ej0(α)|1−q

ej0(α)

|ej0(α)|
, j = j0,

−f(α)(
µ(1)µ(2)

µ
)q

|ej(α)|q2−1

∥Φ(2)(α)∥q2−q
q2

ej(α)

|ej(α)|
, j = r + 1, . . . , n, ej(α) ̸= 0,

0, otherwise

(20)

where µ(1)µ(2)

µ = 1
∥Φ(α)∥q,∞,q2

= 1[
|ej0 (α)|q+

(∑n
k=r+1 |ek(α)|q2

) q
q2
] 1

q
.



50 Wenyu HU and Zhongxuan LUO

Case a3 pj = 1, qj = ∞, j = 1, 2.

Let j1 (1 ≤ j1 ≤ r) and j2 (r + 2 ≤ j2 ≤ n) be any indices with |ej1(α)| = ∥Φ(1)(α)∥∞
and |ej2(α)| = ∥Φ(2)(α)∥∞. By the discussions in Case a1 and Case a2, we can write the j-th

component of c directly:

cj =


−f(α)(

µ(1)µ(2)

µ
)q

1

|ej1(α)|1−q

ej1(α)

|ej1(α)|
, j = j1,

−f(α)(
µ(1)µ(2)

µ
)q

1

|ej2(α)|1−q

ej2(α)

|ej2(α)|
, j = j2,

0, otherwise

(21)

where µ(1)µ(2)

µ = 1
∥Φ(α)∥q,∞,q2

= 1(
|ej1 (α)|q+|ej2(α)|q

) 1
q
.

Case b p = 1, q = ∞.

Remember that x = (x1, x2)
T = 1

µ

(
µ(2), µ(1)

)T
and µ = ∥

(
µ(1), µ(2)

)T ∥q. For q = ∞,

if µ = max{µ(1), µ(2)} = µ(2), then x1 = 1, x2 ≤ x1 which implies y1 = 1, y2 = 0 by Eq. (6),

otherwise, y1 = 0, y2 = 1. Without loss of generality, we only take y1 = 1, y2 = 0 into account.

Thus, we have µ = µ(2), µ(1) ≤ µ(2) and ∥Φ(α)∥∞,q1,q2 = µ
µ(1)µ(2) = 1

µ(1) = ∥Φ(1)(α)∥q1 .

Case b1 1 < pj ≤ ∞, 1 ≤ qj < ∞, 1
pj

+ 1
qj

= 1, j = 1, 2.

Because of Eqs. (5) and (18), one has the j-th component of v as follows:

vj =

 γy1|u(1)
j |q1−2u

(1)
j = − f(α)

|f(α)|
|ej(α)|q1−1

∥Φ(1)(α)∥q1−1
q1

ej(α)

|ej(α)|
, j = 1, . . . , r, ej(α) ̸= 0,

γy2|u(2)
j |q2−2u

(2)
j = 0, j = r + 1, . . . , n.

Since c = µ(1)µ(2)

µ |f(α)|v = µ(1)|f(α)|v, one has the corresponding j-th component of c:

cj =

−f(α)µ(1) |ej(α)|q1−1

∥Φ(1)(α)∥q1−1
q1

ej(α)

|ej(α)|
= − f(α)

∥Φ(1)(α)∥q1q1
|ej(α)|q1−2ej(α), j = 1, . . . , r, ej(α) ̸= 0,

0, j = r + 1, . . . , n.
(22)

Case b2 p1 = 1, q1 = ∞, 1 < p2 ≤ ∞, 1 ≤ q2 < ∞, 1
p2

+ 1
q2

= 1.

Similarly to Case a2, we let j0(1 ≤ j0 ≤ r) be any index with |ej0(α)| = ∥Φ(1)(α)∥∞. Then,

we have the j-th component of v as follows:

vj =


γy1u

(1)
j0

= − f(α)

|f(α)|
ej0(α)

|ej0(α)|
, j = j0,

γy2|u(2)
j |q2−2u

(2)
j = 0, j = r + 1, . . . , n, ej(α) ̸= 0,

0, otherwise.

Subsequently, we have the j-th component of c as follows:

cj =

−f(α)
ej0(α)

|ej0(α)|2
, j = j0,

0, otherwise.

(23)

Case b3 pj = 1, qj = ∞, j = 1, 2.
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For this case, because of y2 = 0, vj (j = r + 1, . . . , n) are still equal to 0. Therefore, vector

c here is the same as that in Case b2.

Step 4. Return f̃(z) and d̃:

After obtaining each component of vector c, we have
f̃p,p1,p2(z) := f(z) +

n∑
i=1

ciei(z),

d̃p,p1,p2 :=
|f(α)|

∥Φ(α)∥q,q1,q2
.

(24)

Remark 4.7 The discussions for the case of 1 < p1 ≤ ∞, 1 ≤ q1 < ∞, 1
p1
+ 1

q1
= 1, p2 = 1, q2 = ∞

are similar to the ones in Case a2 and Case b2, so we skip the details.

Note that if p = ∞, q = 1, the results in Case a degenerate to the ones in [15]. For example,

the nearest polynomial and minimal distance of Case a1 turn to

f̃∞,p1,p2(z) = f(z)− f(α)

∥Φ(α)∥1,q1,q2

[ r∑
j=1

ej(α) ̸=0

|ej(α)|q1−1

∥Φ(1)(α)∥q1−1
q1

ej(α)

|ej(α)|
ej(z)+

n∑
j=r+1

ej(α)̸=0

|ej(α)|q2−1

∥Φ(2)(α)∥q2−1
q2

ej(α)

|ej(α)|
ej(z)

]
,

d̃∞,p1,p2 =
f(α)

∥Φ(α)∥1,q1,q2
=

|f(α)|(∑r
k=1 |ek(α)|q1

) 1
q1 +

(∑n
k=r+1 |ek(α)|q2

) 1
q2

(25)

which are the same as f̃mix(z) and Qn,p1,p2(α) in Eq. (22) in [15].

5. Examples

For the generalized weighted norm and generalized mixed norm, since there are analytic and

explicit expressions for the nearest polynomial f̃(z) and minimal distance d̃, we can calculate

them directly and efficiently.

Example 5.1 Suppose that 0 < n < ∞ is given. Let f(z) = z2 + 2, ej(z) = zj−1 (j =

1, 2, . . . , n) and α = i. Here, i denotes the unit imaginary number with i2 = −1. Then, we have

ℑ =
{
f(z) +

∑n
j=1 cjej(z) | cj ∈ C, j = 1, . . . , n

}
.

First, for p = ∞ and W = diag(ω1, ω2, . . . , ωn) ∈ Rn×n with ωj ̸= 0 (j = 1, 2, . . . , n), we

consider the problem of computing a polynomial f̃(z) ∈ ℑ such that f̃(α) = 0 and ∥f̃ − f∥p,W
is minimal.

Since q = 1 and W−1 = diag(ω−1
1 , ω−1

2 , . . . , ω−1
n ), Eq. (15) then is equal to

f̃p,W(z) = f(z)− f(α)∑n
k=1 |

ek(α)
ωk

|

n∑
j=1

ej(α)̸=0

ej(α)

|ej(α)|
ej(z)

|ωj |
,

d̃p,W =
|f(α)|∑n

k=1 |
ek(α)
ωk

|
.

(26)
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Therefore, the desired nearest polynomial is

(z2 + 2)− 1∑n
k=1

1
|ωk|

n∑
j=1

(−i)j−1

|ωj |
zj−1

with minimal distance 1∑n
k=1

1
|ωk|

.

For example, considering the special case of n = 2 and W = diag(1, 1), we have the nearest

polynomial: f̃(z) = z2 + i
2z + 3

2 and the minimal distance: d̃ = 1
2 ; considering another special

case of n = 3 and W = diag(−1, 2,−1), we have the nearest polynomial: f̃(z) = 7
5z

2 + i
5z +

8
5

and minimal distance: d̃ = 2
5 .

Next, for p = ∞, consider the problem of computing a polynomial f̃(z) ∈ ℑ such that

f̃(α) = 0 and ∥f̃ − f∥p,p1,p2 is minimal.

Recalling Eq. (25), we have the nearest polynomial as follows:

f̃∞,p1,p2(z) = (z2 + 2)− 1

r
1
q1 + (n− r)

1
q2

[ r∑
j=1

ej(α)̸=0

(−i)j−1

r
q1−1
q1

zj−1 +

n∑
j=r+1

ej(α)̸=0

(−i)j−1

(n− r)
q2−1
q2

zj−1
]

(27)

with minimal distance 1

r
1
q1 +(n−r)

1
q2

.

For example, fix r = 1 and p1 = p2 = 2. Considering the special case of n = 2, we have the

nearest polynomial: f̃(z) = z2 + i
2z +

3
2 and the minimal distance: d̃ = 1

2 ; considering another

special case of n = 3, we have the nearest polynomial: f̃(z) = (2−
√
2
2 )z2+(1−

√
2
2 )iz+(3−

√
2)

and the minimal distance: d̃ =
√
2− 1.

Remark 5.2 From Example 5.1, the nearest polynomial and minimal distance are related to

choices of the polynomial basis and the vector norm. Moreover, there may exist more than one

solutions to Problem 1.1, while our aim in this paper is to find any one of them. For example, for

the case of p = ∞ and W = diag(1, 1), if given f(z) = z+1, e1(z) = 1, e2(z) = z, and α = 0, by

utilizing Algorithm 3.4, one can find that f̃(z) = z is a nearest polynomial with d̃ = 1. However,

in fact, any of the polynomials fβ(z) = βz with β ∈ [0, 2] is also a nearest polynomial.

6. Conclusion

For a given complex polynomial f(z) and a prescribed zero α, we proposed a common frame-

work to compute nearest complex polynomial and minimal distance for Problem 1.1. Besides, we

studied the explicit expressions in two generalized norms, which include many previous results.

As the explicit expression of nearest real polynomial can be derived only in the case of ℓ2-norm,

in future research we will consider the explicit solutions with real coefficients to Problem 1.1 in

the case of other norms.

Appendix A. Proof of Theorem 4.3

(a) Let v = (v1, . . . , vn)
T ∈ Cn, v ̸= 0. Then we have

⟨u,v⟩ = vTu = vTWW−1u = (Wv)T (W−1u) =
⟨
W−1u,Wv

⟩
.



The nearest complex polynomial with a prescribed zero 53

By applying the Hölder inequality, we get that

| ⟨u,v⟩ | = |
⟨
W−1u,Wv

⟩
| ≤ ∥W−1u∥q∥Wv∥p = ∥u∥q,W−1∥v∥p,W

where 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1. According to the definition of dual norm, this implies that

∥u∥∗p,W ≤ ∥u∥q,W−1 .

(b) Let x = W−1u
∥u∥q,W−1

, that is u = ∥u∥q,W−1Wx and ∥x∥q = 1. By Lemma 3.2, there exists

y ∈ Cn, ∥y∥p = 1 such that ⟨x,y⟩ = γ where γ ∈ C, |γ| = 1 and 1
p + 1

q = 1.

Let v = W−1y. Then we have ∥v∥p,W = ∥y∥p = 1, and

⟨u,v⟩ =
⟨
∥u∥q,W−1Wx,W−1y

⟩
= ∥u∥q,W−1 ⟨x,y⟩ = ∥u∥q,W−1γ.

That is to say, we have found a vector v ∈ Cn, ∥v∥p,W = 1 satisfying | ⟨u, v⟩ | = ∥u∥q,W−1 .

Therefore, by Eq. (3), we obtain

∥u∥∗p,W ≥ ∥u∥q,W−1 . 2

Appendix B. Proof of Theorem 4.4

The proof is similar to but more complex than the one in Theorem 4.3. Here, some unspec-

ified notations are deemed to be defined as above.

(a) Let v = (v1, . . . , vn)
T ∈ Cn, v ̸= 0. Then, by the Hölder inequality, we have

| ⟨u, v⟩ | = |
⟨
u(1),v(1)

⟩
+
⟨
u(2),v(2)

⟩
| ≤ |

⟨
u(1),v(1)

⟩
|+ |

⟨
u(2),v(2)

⟩
|

≤ ∥u(1)∥q1∥v(1)∥p1 + ∥u(2)∥q2∥v(2)∥p2

=
(
∥u(1)∥q1 , ∥u(2)∥q2

)
·
(
∥v(2)∥p1

, ∥v(2)∥p2

)T
≤ ∥

(
∥u(1)∥q1 , ∥u(2)∥q2

)
∥q∥

(
∥v(2)∥p1 , ∥v(2)∥p2

)
∥p

= ∥u∥q,q1,q2 ∥v∥p,p1,p2
.

Similarly, according to the definition of dual norm, this implies that

∥u∥∗p,p1,p2
≤ ∥u∥q,q1,q2 .

(b) Assume p = ∞: Let x(1) = u(1)

∥u(1)∥q1

, x(2) = u(2)

∥u(2)∥q2

such that ∥x(1)∥q1 = 1 and

∥x(2)∥q2 = 1. Suppose γ ∈ C, |γ| = 1. Then, by Lemma 3.2, there exist y(1) ∈ Cr, ∥y(1)∥p1 = 1

and y(2) ∈ Cn−r, ∥y(2)∥p2 = 1 satisfying⟨
x(1), y(1)

⟩
= γ,

⟨
x(2), y(2)

⟩
= γ.

Let v = (y(1)T ,y(2)T )T , i.e., ∥v∥∞, p1,p2
= max{∥y(1)∥p1 , ∥y(2)∥p2} = 1. Then, we have

⟨u, v⟩ =
⟨
u(1), v(1)

⟩
+

⟨
u(2), v(2)

⟩
= ∥u(1)∥q1

⟨
x(1), y(1)

⟩
+ ∥u(2)∥q2

⟨
x(2), y(2)

⟩
= γ

(
∥u(1)∥q1 + ∥u(2)∥q2

)
= γ ∥u∥1, q1, q2

,

which implies | ⟨u,v⟩ | = ∥u∥1, q1, q2
. Therefore, from the definition of dual norm, we have

∥u∥∗∞, p1, p2
≥ ∥u∥1, q1, q2

.
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Assume p ∈ [1,∞): Let x =
(∥u(1)∥q1 ,∥u

(2)∥q2)
∥u∥q,q1,q2

. Then we have x ∈ R2 and ∥x∥q =

∥u∥q,q1,q2 = 1. Suppose γ0 = 1. Then, using Lemma 3.2, there exists y = (y1, y2)
T ∈ R2,

y1 ≥ 0, y2 ≥ 0 and ∥y∥p = 1 such that ⟨x,y⟩ = γ0 = 1. Equivalently, we have

y1∥u(1)∥q1 + y2∥u(2)∥q2 = ∥u∥q,q1,q2 . (28)

Let x(1) = u(1)

∥u(1)∥q1

and x(2) = u(2)

∥u(1)∥q2

. Then, we have ∥x(1)∥q1 = 1 and ∥x(2)∥q2 = 1.

For any γ ∈ C, |γ| = 1, by Lemma 3.2 again, there exist y(1) ∈ Cr,y(2) ∈ Cn−r, ∥y(1)∥p1 =

1, ∥y(2)∥p2 = 1 such that ⟨x(1),y(1)⟩ = γ and ⟨x(2), y(2)⟩ = γ, i.e.,⟨
u(1),y(1)

⟩
= γ∥u(1)∥q1 ,

⟨
u(2),y(2)

⟩
= γ∥u(2)∥q2 . (29)

Set v = (y1y
(1)T , y2y

(2)T )T . Then, combining Eqs. (28) and (29), we have
∥v∥p,p1,p2

= ∥
(
∥y1y(1)∥p1 , ∥y2y(2)∥p2

)
∥p = ∥(y1, y2)∥p = ∥y∥p = 1,

⟨u,v⟩ = y1
⟨
u(1),y(1)

⟩
+ y2

⟨
u(2),y(2)

⟩
= γ

(
y1∥u(1)∥q1 + y2∥u(2)∥q2

)
= γ ∥u∥q,q1,q2

which implies that there exists v ∈ Cn, ∥v∥p,p1,p2
= 1 such that | ⟨u,v⟩ | = ∥u∥q,q1,q2 . Therefore,

we get that

∥u∥∗p,p1,p2
≥ ∥u∥q,q1,q2 . 2
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[18] E. J. CANDÈS, M. B. WAKIN, S. P. BOYD. Enhancing sparsity by reweighted ℓ1 minimization. J. Fourier

Anal. Appl., 2008, 14(5-6): 877–905.

[19] Yao WANG, Jianjun WANG, Zongben XU. On recovery of block-sparse signals via mixed ℓ2/ℓq (0 < q ≤ ∞)

norm minimization. EURASIP Journal on Advances in Signal Processing, 2013, 76(1): 1–17.

[20] P. BOUFOUNOS, G. KUTYNOIK, H. RAUHUT. Sparse recovery from combined fusion frame measure-

ments. IEEE Trans. Inform. Theory, 2011, 57(6): 3864–3876.

[21] Feiping NIE, Heng HUANG, Xiao CAI, et al. Efficient and robust feature selection via joint ℓ2,1-norms

minimization. Proceedings of the Neural Information Processing Systems, 2010, 1813–1821.

[22] Quanquan GU, Zhenhui LI, Jiawei HAN. Joint feature selection and subspace learning. Proceedings of the

Twenty-Second International Joint Conference on Artificial, 2011, 1294–1299.

[23] Xiaoshuang SHI, Yujiu YANG, Zhenhua GUO, et al. Face recognition by sparse discriminant analysis via

joint L2,1-norm minimization. Pattern Recognition, 2014, 47(7): 2447–2453.


