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Abstract Let R be a ring with an endomorphism « and an a-derivation 6. We introduce the
notions of symmetric a-rings and weak symmetric a-rings which are generalizations of sym-
metric rings and weak symmetric rings, respectively, discuss the relations between symmetric
a-rings and related rings and investigate their extensions. We prove that if R is a reduced ring
and «(1) = 1, then R is a symmetric a-ring if and only if R[z]/(z") is a symmetric a-ring for
any positive integer n. Moreover, it is proven that if R is a right Ore ring, o an automorphism
of R and Q(R) the classical right quotient ring of R, then R is a symmetric a-ring if and only
if Q(R) is a symmetric a-ring. Among others we also show that if a ring R is weakly 2-primal
and (a, §)-compatible, then R is a weak symmetric a-ring if and only if the Ore extension
R[z; «, 8] of R is a weak symmetric a-ring.
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1. Introduction

Throughout this paper R denotes an associative ring with identity, and « is a nonzero
endomorphism of R. Recall that a ring R is called reduced if it has no nonzero nilpotent elements;
R is reversible if ab = 0 implies ba = 0 for all a,b € R; R is semicommutative if ab = 0 implies
aRb = 0 for all a,b € R; an endomorphism « of a ring R is called rigid if ac(a) = 0 implies a = 0
for a € R, and R is called a-rigid if there exists a rigid endomorphism « of R. Baser et al. [3]
introduced the concept of a-shifting rings and investigated characterizations of the generalized
reversible rings. A ring R is said to be right (left) a-shifting if whenever aa(b) = 0 (a(a)b = 0)
for a,b € R, ba(a) = 0 (a(b)a = 0). Baser et al. [2] extended the concept of semicommutative
rings and called a ring R a-semicommutative if ab = 0 implies aRa(b) = 0 for all a,b € R.

Recently, we introduced the concept of semicommutative a-rings in [17]. A ring R is called a
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right (left) semicommutative a-ring if ac(b) = 0 (a(a)b = 0) implies a(a)Rb = 0 (aRa(b) = 0)
for all a,b € R. According to Lambek [12], a ring R is called symmetric if abc = 0 implies acb = 0
for all a,b,c € R. Anderson and Camillo [1] showed that a ring R is symmetric if and only if
Ti72 1y, = 0 implies 75, 75, ** Ty, = 0 for any permutation o of the set {1,2,...,n} and
r; € R. There are many papers to study symmetric rings and their generalization [5,8,11,14,18].
In Kwak [10], an endomorphism « of a ring R is called right (left) symmetric if whenever abe = 0
for a,b,c € R, aca(b) = 0 (a(b)ac = 0). A ring R is called right (left) a-symmetric if there
exists a right (left) symmetric endomorphism « of R. The notion of an a-symmetric ring is a
generalization of a-rigid rings as well as an extension of symmetric rings. Following [15], a ring
R is called weak symmetric if abe € nil(R) implies acb € nil(R) for all a,b, c € R, where nil(R)
is the set of all nilpotent elements of R. Let a be an endomorphism and § an a-derivation of R,
that is, 0 is an additive map such that d(ab) = 6(a)b+ a(a)d(b), for a,b € R. When a = idg, an
a-derivation § is called a derivation of R. A ring R is said to be weak a-symmetric if abe € nil(R)
implies aca(b) € nil(R) for a,b, c € R. Moreover, R is said to be weak d-symmetric if abe € nil(R)
implies acd(b) € nil(R) for a,b,c € R. If R is both weak a-symmetric and weak J-symmetric,
then R is called weak («, ¢)-symmetric. Ouyang and Chen [15] studied the related properties of
weak symmetric rings and weak (a, §)-symmetric rings.

Motivated by the above, for an endomorphism « of a ring R, we introduce the notions of
symmetric a-rings and weak symmetric a-rings to extend symmetric rings and weak symmet-
ric rings, respectively, discuss the relations between symmetric a-rings and related rings and
investigate their extensions.

Let a be an endomorphism and ¢ an a-derivation of R. We denote by R[z;«, ] the Ore
extension whose elements are the polynomials over R, the addition is defined as usual, and
the multiplication subject to the relation xr = «(r)x + §(r) for any r € R. In particular, if
d = Or, we denote by R|x;«a] the skew polynomial ring; if & = 1g, we denote by R[x;d] the
differential polynomial ring. For an endomorphism « and an a-derivation §, a ring R is said to
be a-compatible if for each a,b € R, ab = 0 if and only if aa(b) = 0. Moreover, R is called
d-compatible if ab = 0 implies ad(b) = 0 for each a,b € R. If R is both a-compatible and
d-compatible, then R is called («, §)-compatible. In the following, for integers 4, j with 0 < i < j,
ff € End(R,+) will denote the map which is the sum of all possible words in «,d built with
i letters a and j — 4 letters 8. For instance, fy = a?0% + §2a% + a5 + ad’a + adad + dada.
In particular, f§ = 1, ff = o, fi = &, ;-'71 = ol 1§+ i 25a + - + 6o, For every
1] € End(R,+) with 0 <4 < 7, it has C; monomials in «, d built with i letters a and j — i letters
§. It is well known that for any integer n and r € R, we have z"r = Y. f*(r)z" in the ring
Rlz; a, d].

2. Symmetric a-rings and related rings
As an extension of symmetric rings, now we give the following

Definition 2.1 Let R be a ring and « a nonzero endomorphism of R. We say that R is a (right)



58 Yao WANG, Weiliang WANG and Yanli REN

symmetric a-ring if aba(c) = 0 implies aca(b) = 0 for a,b,c € R.

Similarly, a ring R is said to be a left symmetric a-ring whenever a(a)bc = 0 for a,b,c € R,
a(b)ac = 0.

Obviously, if @ = idg, the identity endomorphism of R, a (left) symmetric a-ring is a

symmetric ring. In general, a right a-symmetric ring need not be a symmetric a-ring.

Example 2.2 Let R = F[z] be the polynomial ring over a field F and o : R — R, a(f(x)) = f(0)
for f(x) € R. The ais an endomorphism of R but not a monomorphism, and R is an a-symmetric
ring by Kwak [10, Example 2.7 (2)]. But for any 0 # f(z) € R and g(z) =z +a,h(z) =z € R
where a # 0, we have f(z)g(x)a(h(z)) =0, f(x)h(z)a(g(x)) # 0. Hence R is not a symmetric
a-ring.

The next example shows that if a # idg, a symmetric a-ring need not be symmetric and
a left symmetric a-ring also need not be a left symmetric a-ring. Therefore, the classes of
symmetric a-rings and left symmetric a-rings are both non-trivial extension of symmetric rings,
the symmetric a-property for a ring is not left-right symmetric and the concepts of symmetric

a-rings and left symmetric a-rings are independent of each other.

b
Example 2.3 Consider the ring R = { ( g ) la,b,c € Z}, where Z is the ring of integers
c

b 0
and the endomorphism « : R — R, « << g >> = < g 0 ) It is easy to verify that
c

b b b
R is not symmetric. Let A = oo ,B = a2 02 ,C = 4 s € R with
C1 0 C9o 0 C3

AB«a(C) = 0. Then ajagas = 0, so we have ajazaz = 0 and ACa(B) = 0, concluding that

. . . 0 1 11 1 1
R is a symmetric a-ring. For A = , B = ,C = € R, we have
0 1 0 0 0 1

0 1
a(A)BC =0, but a(B)AC = ( 0 0 ) # 0. So R is not a left symmetric a-ring.

In the following, we focus our attention on symmetric a-rings.

Proposition 2.4 For a nonzero endomorphism « of a ring R, the following statements are
equivalent:

(1) R is a symmtric a-ring;

(2) lr(ba(c)) C lr(ca(b)), for any a,b,c € R;

(3) ABa(C) =0 if and only if ACa(B) =0, for any A,B,C C R;

(4) Igr(Ba(C)) Clr(Ca(B)), for any A,B,C C R.

Proof (1) <= (3). Suppose that ACa(B) = 0 for A,B,C C R. Then aba(c) = 0 for any
a € Ab € B,c € C, and hence aca(b) = 0. Therefore, ACa(B) = {>_ a;cia(b;)|a; € A,b; €
B, c¢; € C} =0. The converse is obvious.

(1) <= (2) and (3) < (4) is obvious. O
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Proposition 2.5 For a nonzero endomorphism « of a ring R, the following statements are
equivalent:

(1) R is an «-rigid ring;

(2) R is a symmetric a-ring and aRa(a) = 0 implies a = 0 for any a € R;

(3) R is a left symmetric a-ring and a(a)Ra = 0 implies a = 0 for any a € R.

Proof (1) = (2). Assume that R is a-rigid. Then R is reduced and « is a monomorphism by [6].
For a,b,c € R with aba(c) = 0, we have 0 = aba(c)ca(a)a(b) = abca(a)a(b)a(c) = abea(abe)
and hence abc = 0, bac = 0 since R is an a-rigid ring. It gives that 0 = aca(bac)a?(b) =
aca(b)a(a)a(c)a®(b) = aca(b)al(aca(b)), and hence aca(b) = 0. So R is a symmetric a-ring. For
a € R with aRa(a) = 0, we have aa(a) = 0. This implies that a = 0.

(2) = (1). Suppose that aa(a) = 0 for a € R. Then we have 1-aa(a)a(r) =1-aa(ar) =0
for all » € R. Since R is a symmetric a-ring, 1-ara(a) = ara(a) = 0. Thus, we get a = 0 by the
assumption, concluding that R is an a-rigid ring.

Similarly, we can prove (3) <= (1). O

Proposition 2.6 Let a be a nonzero endomorphism of a ring R. Then we have the following:
(1) The class of symmtric a-rings is closed under a-subrings (not necessarily with identity);

(2) If R is a (left) symmetric a-ring, then R is a right (left) a-shifting ring.

Proof (1) By Definition 2.1.

(2) Suppose that aa(b) = 0 for a,b € R. Then 0 = 1-a«(b) implies that 1-ba(a) = ba(a) = 0.
O

In general, the converses of Proposition 2.6(2) does not hold, and a right a-shifting ring

need not be a right semicommutative a-ring.

Example 2.7 Let Zs be the ring of integers module 2, R = Zy @ Zs and o : R — R be an endo-
morphism of R defined by a((a,b)) = (b, a) for any (a,b) € R. Suppose (a,b)a((c,d)) = (ad,bc) =
0 for (a,b), (¢,d) € R. Then we have (¢, d)a((a,b)) = (¢b, da) = 0, concluding that R is a right a-
shifting ring. However, R is not a symmetric a-ring. In fact, for A = (1,0), B = (0,1),C = (1,1),
we have ABa(C) = (1,0)(0,1)(1,1) =0, but ACa(B) = (1,0)(1,1)(1,0) = (1,0) #£ 0.

Example 2.8 Let R and « be as in Example 2.3. It is easy to verify that R is a right a-shifting

1 1 0 1 1 1
ring. TakingA:( >,B:<O 1>andC:<O )ER,WehaveAa(B):O,

0 1 2
0 2 . . . . .
but a(A)CB = 0 0 # 0. So R is not a right semicommutative a-ring.

[9, Example 1.5] provides an example which is a right semicommutative a-ring but not a
right a-shifting ring.
Let R be a ring and « an endomorphism of R. According to Pourtaherian-Rakhimov [16],

aring R is called satisfying the condition (C,) if whenever aa(b) = 0 with a,b € R, then ab = 0.
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a-rigid rings and a-compatible rings are such rings.

Proposition 2.9 Let o be an endomorphism of a ring R. If R satisfies the condition (C,,), then
the following statements are equivalent:

(1) R is a symmetric ring;

(2) R is a right a-symmetric ring;

(3) R is a (right) symmetric a-ring.

Proof (1) < (2). It is a straight corollary of [18, Lemma 3.1 (2)].

(2) = (3). Suppose that R is a right a-symmetric ring and a,b,¢ € R with aba(c) = 0.
Then we have that abec = 0 by the condition (C,) and aca(b) = 0 since R is right a-symmetric.
This shows that R is a symmetric a-ring.

(3) = (2). Assume that R is a symmetric a-ring. Then R is a right a-shifting ring by
Proposition 2.6, and hence R is reversible by [18, Lemma 3.1(1)]. Now let abc = 0 for a,b,c € R.
Then a(ab)a(c) = 0, and hence a(c)a(ab) = 0 by the reversibility. So a(c)ab = 0 = aba(c) by
the condition (Cy). It follows that aca(b) = 0 since R is a symmetric a-ring. This shows that R

is a right a-symmetric ring. [

Corollary 2.10 Let a be a monomorphism of a ring R. If R is an a-compatible ring, then the
following are equivalent:

(1) R is a symmetric ring;

(2) R is a right a-symmetric ring;

(3) R is a symmetric a-ring.

Proposition 2.11 Let R be a ring with an endomorphism «. If R is a symmetric a-ring, then
the following are equivalent:

(1) « is a monomorphism;

(2) «(l) =1, where 1 is the identity of R.

Proof (1) = (2). Assume that « is a monomorphism. Then (1—a(1))a(1) = 1-(1—«a(1))a(1) =0
implies 1-1-a(l —a(l)) = a(l —a(1)) =0. So we have 1 — (1) =0, (1) = 1.

(2) = (1). Suppose that «(1) = 1. Let a(a) = a(b) for a,b € R. Then we have a(a — b) =
1-1-a(a—>b) =0 and (a —b)a(l) = a —b = 0 since R is a symmetric a-ring. Hence « is a
monomorphism. [

A ring R is called Armendariz if whenever polynomials f(z) = Y.""  a;z*, g(z) = Z?:o bjal €
Rz satisfy f(z)g(z) = 0, then a;b; = 0 for all ¢,j. For an endomorphism « of a ring R, R
is called a-Armendariz if for f(z) = ag + a1+ -+ + ana™ and g(z) = bo + bz + -+ + bpz™
€ R[z;al, fg =0 implies a;b; =0 for all 0 <i <mand 0 < j < n.

Proposition 2.12 Let R be an a-Armendariz ring with an endomorphism «. Then following
statements are equivalent:

(1) R[z;a] is symmetric;
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(2) R is a-symmetric;

(3) R is right a-symmetric;

(4) R is symmetric;

(5) R is a (left) symmetric a-ring.

Proof By Kwak [10, Theorem 2.10], we can see that (1) < (2) & (3) & (4).

Now, we show (2) = (5). Assume that R is a-symmetric. Then R is symmetric by (4). Let
aba(c) = 0 for a,b,c € R. Since R is an a-Armendariz ring, we get abc = 0 by [7, Proposition
1.3(2)]. This implies that aca(b) = 0 since R is right a-symmetric, and hence R is a symmetric
a-ring. On the other hand, suppose that a,b,c € R with a(a)bc = 0. We have bea(a) = 0 by
the symmetry. Since R is an a-Armendariz ring, this implies bca = 0, and hence abc = 0. So
a(b)ac = 0 since R is a left a-symmetric ring. Therefore, R is a left symmetric a-ring.

Next, we show (5) = (2). Assume that R is a left symmetric a-ring. If abe = 0 for
a,b,c € R, then a(a)bc = 0 by [7, Proposition 1.3 (1)]. It follows that a(b)ac = 0 since R is
a left symmetric a-ring. Hence R is left a-symmetric. On the other hand, assume that R is
a symmetric a-ring. If abc = 0 for a,b,c € R, then cab = 0 since R is symmetric, and hence
a(c)ab =0 by [7, Proposition 1.3 (1)]. Thus, we get aba(c) = 0. It implies aca(b) = 0 since R is

a symmetric a-ring, concluding that R is right a-symmetric. OJ

3. Extensions of symmetric a-rings

For an endomorphism « of a ring R, an ideal I of R is called a-ideal if o(I) C I. For an
a-ideal T of R, the map a : R/I — R/I defined by a(a) = a(a) is an endomorphism of the
factor ring R/I. Recall that if « is an endomorphism of a ring R, then the map a: R[z] — R]x]
defined by a(> " a;z") = 3", a(a;)z" is an endomorphism of the polynomial ring R[z] and

clearly this map extends a.

Theorem 3.1 Let R be a reduced ring and o(1) = 1. Then R is a symmetric a-ring if and
only if R[z]/(z™) is a symmetric &-ring, where (z™) is the ideal generated by x™, for any positive

integer n.

Proof (1) Suppose that R is a symmetric a-ring and set S = R[z]/(2™). If n = 1, then

S = R. Now we assume n > 2. Let A = Z?;Ol a;pt, B = Z?;Ol bju!,C = ZZ;& cppk € S with

AB&(C) = 0, where u = z + (z™). Note that if i + j + k > n, then a;bja(c,)p+% = 0. Hence

it suffices to show the cases i + j + k < n — 1. We proceed by induction on ¢ + j + k. From
ABa(C) = 0, we have the following equations:

aoboc(co) = 0, (1)

apboa(c1) + agbra(co) + arboa(cy) = 0, (2)

(loboOz(Cg) + aobla(cl) =+ aobga(CO) + albla(co) + azboa(C()) =+ alboa(cl) =0, (3)
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aoboa(cn—2) + -+ aobp_20a(co) + - - + an—2boa(co) + - - - + arboa(c,—3) = 0, (n-1)
apboa(cn_1) + -+ + agbp_1a(co) + - - + an—1boa(co) + - - - + arbpa(c,—2) = 0. (n)

Note that reduced ring R is semicommutative, and hence if ab = 0 for a,b € R, then arb =0
for any r € R. In the following computations, we use freely this fact.

Multiplying Eq. (2) by agbp on the left side gives agbpagboa(c1)+aoboagbia(co)+aoboarboa(co)
=0, then 0 = agbpagboar(c1) = (apbor(c1))?, so apbpa(ci) = 0. Thus we have

aobloé(Co) + alboOZ(Co) =0. (2/)

Multiplying Eq. (2") by ag on the left side gives 0 = agagbia(co) = (agbia(co))?, then we obtain
arbpa(co) = 0 and agbya(cp) = 0.

Thus we obtain ajbpa(c1) = 0, agbia(c;) = 0 and a1bia(cy) = 0 in turn, and hence
a;cpa(b;) =0 for i + j + k = 1 since R is a symmetric a-ring, so ACa(B) = 0.

Inductively we assume that a;bja(cy) =0fori+j+k<n—2 Nowfori+j+k=n—1,
multiplying Eq. (n) by agbg on the right side gives agbga(c,—1)agby = 0 and apbpa(c,—1) = 0, so

we get
aobloé(Cn_g) + -+ aobn_la(C()) + -4 an_lboa(C()) —+ 4 alb()Oé(Cn_Q) = 0 (H/)

If we multiply Eq.(n)" by ap on the left side and by «(cp) on the right side, then we get

apapbn,—1a(co)a(co) = 0, agbp—1a(co) = 0. Thus we have
agbia(cn—2) + -+ + agbp—20(c1) + - - - + an—1boa(co) + - - + arboar(cp—2) = 0. (n")

Multiplying Eq. (n)” by bpar(cg) on the right side, we get a,,—1bpa(co)boa(co) = 0, then a,,—1bgcx(co)

= 0. So we have
apbra(cn—2) + -+ + agbp—sa(cy) + -+ - + an—sbialco) + - - + arbpa(cn—2) = 0. (n"")

If we multiply Eq. (n)"” on the right side by bja(co), boa(cr), ..., and bya(c,—2), respectively,
then we obtain a,_2b1a(co) = 0, an—20pc(c1) =0, ..., and a1bpa(c,—2) = 0 in turn. This shows
that a;b;a(cky) = 0, and then a;cpa(b;) = 0 for all 4,5 and k with ¢ + j + k = n — 1. It follows
that ACa(B) = 0. Therefore, S is a symmetric a-ring.

Conversely, since R is a a-subring of R[x]/(z™), it is obvious by Proposition 2.6. OJ

Corollary 3.2 ([8, Theorem 2.3]) Let R be a reduced ring. Then R[z]/(x™) is a symmetric
ring, where (™) is the ideal generated by x™ and n Is any positive integer.

Recall that an element p of a ring R is right regular if yr = 0 implies r = 0 for r € R.
Similarly, left regular is defined, and regular means if it is both left and right regular. Let A be a
multiplicatively closed subset of R consisting of central regular elements. For an automorphism
a of R with a(A) C A, the induced map & : A=t — A~! defined by a(p=ta) = a(u) ta(a) is

also an automorphism.

Proposition 3.3 Let a be an automorphism of R and A be a multiplicatively closed subset of

R consisting of central regular elements with a(A) C A. Then R is a symmetric a-ring if and
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only if A= R is a symmetric a-ring.

Proof It is enough to show the necessity by Proposition 2.6 (1).

Assume that R is a symmetric a-ring. Let ABa(C) = 0 for A = p~ta,B = v=1b,C =
wlc € A7'R, where a,b, ¢, i, v,w € R with y, v,w regular. Since A is contained in the central of
R, we have ABa(C) = p~tav=tba(w)ta(e) = (p v ta(w) ™) (aba(c) = (ura(w)) " (aba(c)) =
0. This implies aba(c) = 0, and hence aca(b) = 0 since R is a symmetric a-ring. Thus, we have
ACa(B) = ptaw tea(v)ta(b) = (n twta(v) ) (aca(d)) = (uwa(v))~(aca(b)) = 0, prov-
ing that A~!'R is a symmetric a-ring. OJ

Corollary 3.4 ([8, Lemma 3.2 (1)]) Let R be a ring and A a multiplicatively closed subset of
R consisting of central regular elements. Then R is symmetric if and only if so is A™'R.

The ring of Laurent polynomials in x, coefficients in a ring R, consists of all formal sum-
s > . mz’ with obvious addition and multiplication, where m; € R and k,n are (possi-
bly negative) integers, denote it by R[z;x~!]. If a is an endomorphism R, then the map
@ : Rlz;z~'] = Rlz;z~!] defined by a(}.]_, a;z’) = Y., a(a;)x’ extends a and also is an

endomorphism of R[z;z~1].

Proposition 3.5 Let R be a ring with an endomorphism «. Then R[z] is a symmetric &-ring

if and only if R[x; 2z~ is a symmetric a-ring.

Proof Let A = {1,z,22,...}. Clearly, A is a multiplicatively closed subset of R[z] consisting
of central regular elements and R[z;x~'] = A7IR[z]. Tt follows that R[z;z~!] is a symmetric

a-ring by Proposition 3.3. O

Corollary 3.6 ([8, Lemma 3.2(2)]) Let R be a ring and A a multiplicatively closed subset of

R consisting of central regular elements. Then R is symmetric if and only if so is A1 R.

Proposition 3.7 Let R be a ring with an endomorphism «. If R is an Armendariz ring, then
the following are equivalent:

(1) R is a symmetric a-ring;

(2) R[x] is a symmetric a-ring;

(3) R[z;x~1] is a symmetric a-ring.

S _gairt,g(z) =

Lemma 3.5], wi

Proof (1) = (2). Assume that R is a symmetric a-ring and f(x ) =
Yitobial h(z) = Yi_gera® € Rla] with f(z)g(z)a(h(z)) = 0. By [7,
have a;bja(cy) = 0 for all 4,7, k since R is Armendariz. So a;cpa(b; ) 0 by (1), and hence
f(@)h(z)alg(
(2) = (3). Assume that R[z] is a symmetric a-ring. For f(x),g(x),h(x) € Rlz;z™1]
with f(x)g(z)a(h(x)) = 0, there exists a positive integer n such that fi(z) = f(z)z"™, g1(x) =
g(z)x™ hi(z) = h(z)z™ € Rlz] and f1(z)g1(z)a(hi(x)) = 0. Since R[z] is a symmetric @-ring,
fi@)hi(@)algi(x)) = 0, then f(z)h(z))a(g(x)) = 2" fi(z)hi(x)a(gr(x)) = 0. This proves
that R[z;z71] is a

x)) = 0. Therefore, R[z] is a symmetric a-ring.

symmetric a-ring.
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(3) = (1). Tt follows from the fact that R is a a-subring of R[z;z~]. O

Corollary 3.8 ([8, Proposition 3.4]) Let R be an Armendariz ring. Then the following are
equivalent:

(1) R is a symmetric ring;

(2) RIx] is a symmetric ring;

(3) R[z;x~!] is a symmetric ring.

A ring R is called right Ore if given a,b € R with b regular, then there exist a1,b; € R with
b1 regular such that ab; = ba;. It is a well-known fact that R is a right Ore ring if and only if
the classical right quotient ring of R exists.

Suppose that the classical right quotient ring Q(R) of R exists. Then for an automorphism
a of R and any ab~! € Q(R) where a,b € R with b regular, the induced map a : Q(R) — Q(R)
defined by a(ab™1) = a(a)a(b)~! is an automorphism of Q(R).

Theorem 3.9 Let R be a right Ore ring, « an automorphism of R and Q(R) the classical right

quotient ring of R. Then R is a symmetric a-ring if and only if Q(R) is a symmetric a-ring.

Proof It suffices to establish the necessity by Proposition 2.6 (1).

Assume that R is a symmetric a-ring. Let A = au™',B = bv™1,C = cw™! € Q(R)
with ABa(C) = ap~'bv~ta(c)a(w)™t = 0, where a,b, ¢, u,v,w € R with p,v,w regular. Now,
there exist by, 1 € R with p; regular such that buy = pby, u~'b = byp; . Hence, ABa(C) =
abypy'v~ta(e)a(w) ! = 0. Next, for a(c),v € R there exist ¢;,v; € R with v, regular such that
ale)yy = vey, v tale) = avyt, so ABa(C) = abyipuy teyvy fa(w)™t = 0. Similarly, also there
exist co, i € R with ps regular such that cipus = ulcg,uflcl = czugl. Thus, we obtain that
ABa(C) = ablcnglufla(w)_l = 0 and hence abica = 0. This implies 0 = abicop = apbico =
abpico = abeopiy, and 0 = abcy = abeauy = abuyico = abeips. So we have 0 = abe; = abciv =
abvey = aba(c)vy. It follows that aba(c) = 0, and hence aca(b) = 0 since R is a symmetric
a-ring.

Similarly, there exist cs, u3,b2,w2,b4, us € R with us,ws, pg regular such that cus =
ucs, a(b)ws = wba, bapg = pgby, and

ACa(B) = aczpz 'wta(d)a(v) ™! = acspg tbawy ta(v) ™! = acsbapy twy ta(v) L

From aca(b) = 0, we have 0 = aca(b)wy = acwbs = acbsw, and hence 0 = acby = acbopry =
acpsby = acbgps. It follows that 0 = acby = acbyus = acusby = apcsby = acsbyp, and hence
acgby = 0. Now we have ACa(B) = 0, proving that Q(R) is a symmetric @-ring. [

Corollary 3.10 ([8, Theorem 4.1]) Let R be a ring and A a multiplicatively closed subset of R

consisting of central regular elements. Then R is symmetric if and only if so is A™'R.

Theorem 3.11 Let R be a right Ore ring, a an automorphism of R and Q(R) the classical right
quotient ring of R. Assume that aRa(a) = 0 implies a = 0 for any a € R. Then the following
statements are equivalent:

(1) R is a symmetric ring;
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(2) R is a right a-symmetric ring;
(3) R is a symmetric a-ring;

(4) Q is a symmetric ring;

(5) Q is an a-symmetric ring;

(6) Q is a symmetric a-ring.

Proof We claim that if R satisfies that aRa(a) = 0 implies a = 0 for any a € R, then Q(R)
satisfies that AQ(R)&a(A) = 0 implies A = 0 for any A € Q(R). Let A = au~! € Q(R) with
AQ(R)a(A) = 0. Then 0 = ap 'Q(R)a(ap™t) = aQ(R)a(a)a(u™t) = 0, since p 1Q(R) =
Q(R). This implies a@Q(R)a(a) = 0, and so aRa(a) = 0. By assumption, we get a = 0 and
hence A = 0, completing the claim. Thus the proof is done by Proposition 2.5, Proposition 2.9,
Theorem 3.9 and the claim. O

For an algebra R over a nonzero commutative ring .S, the Dorroh extension of R by S is the ring
D = R x S with operations (r1,$1) + (72, s2) = (r1 + 72,51 + s2) and (1, 51)(r2, s2) = (r1r2 +
$172 + Sa71, $182), where r; € R, s; € S. For an endomorphism « of R and the Dorroh extension

of R by S, the nonzero map & : D — D defined by a(r, s) = («a(r), s) is an endomorphism of D.

Theorem 3.12 Let S be a commutative domain, a be a monomorphism of a ring R and D be

the Dorroh extension of R by S. If R is a symmetric a-ring, then D is a symmetric a-ring.

Proof Assume that R is a symmetric a-ring. Let Dy = (rq, $1), D2 = (12, 82), D3 = (r3,83) € D
with D1 Daa(D3) = 0. Then we have s1sess = 0 and rirea(rs) + sirea(rs) + saria(rs) +
s1820(r3) + s3rire + S38172 + S38911 = 0. Since S is a domain, s; = 0 or s = 0 or s3 = 0.
If sy = 0, then riroa(rs) + seria(rs) + ssrirs + s3sory = 0. Since R is a symmetric a-ring
with a monomorphism «, we have «(1) = 1 by Proposition 2.10. It follows that 71 (roa(rs) +
so0u(r3) + s3r2 + 5352) = ri(r2 + 52 - 1)(a(rs) + s3a(1)) = r1(r2 + s2)a(rz + s3 - 1) = 0. Then
r1(rs+s3)a(ra+s2) = 0, and hence rirsa(ry)+rirsse+rissa(ra)+r1s3se = 0. So D1 Dsa(Dsy) =
(rirsa(ry) + sirsa(re) + ssria(re) + s183a(re) + sar173 + S25173 + S28371, $18382) = (rirsa(re) +
ssria(ry) + sarirs + 828371,0) = (r1r3a(re) + rirsss + r1s3a(re) + r18382,0) = 0. If s5 =0 or
s3 = 0, we also have D1 Dsa(D3) = 0, including that the Dorroh extension D of R by S is a

symmetric a-ring. O

Corollary 3.13 ([8, Proposition 4.2 (1)]) Let R be an algebra over a commutative ring S and
D be the Dorroh extension of R by S. If R is symmetric and S is a domain, then D is also

symmetric.

4. Weak symmetric a-rings

For a ring R, we denote by Nil.(R) its lower nil-radical, Nil*(R) its upper nil-radical and
L-rad(R) its Levitzki radical. For a nonempty subset M of a ring R, the symbol (M) denotes
the subring (may not with 1) generated by M. A ring R is called NI if nil(R) = Nil*(R), and
a ring R is called 2-primal if nil(R) = Nil,.(R). According to Chen et al.[4], a ring R is called



66 Yao WANG, Weiliang WANG and Yanli REN

weakly 2-primal if nil(R) = L-rad(R), and following Hong et al.[5], a ring R is called locally
2-primal if each finite subset generates a 2-primal ring. The following implications hold: reduced
= symmetric = semicommutative = 2-primal = locally 2-primal = weakly 2-primal = NI-ring.

As an extension of weak symmetric rings, we now introduce the notion of a weak symmetric

a-ring.

Definition 4.1 Let « be an endomorphism of a ring R. A ring R is called (right) weak symmetric
a-ring if aba(c) € nil(R) implies aca(b) € nil(R) for a,b,c € R.

Similarly, a ring R is said to be a left weak symmetric a-ring if a(a)bc € nil(R), then
a(b)ac € nil(R) for a,b,c € R.

It is easy to see that every subring S with a(S) C S of a (left) weak symmetric a-ring is
also a (left) weak symmetric a-ring.

Obviously, if @ = idg, then a (left) weak symmetric a-ring is a weak symmetric ring.
Example 2.3 provides that if a # idg, there exists a weak symmetric ring which is not a weak

symmetric a-ring.

Lemma 4.2 Let R be an (a, §)-compatible ring. Then we have the following:

(1) If ab = 0, then afg(b) =0forall0<i<jandabeR;

(2) If abc = 0, then ad(b)c = 0, ad™a™(b)c = 0, afl(b)c = 0 for all 0 < i < j, any
non-negative integer m,n and a,b,c € R;

(3) For a,b € R and any positive integer m, ab € nil(R) if and only if ac™ (b) € nil(R);

(4) If ab € nil(R), then aé™(b) € nil(R) for any a,b € R and any positive integer m;

(5) If R is an NI ring, then ab € nil(R) implies afij(b) € nil(R) for all0 <i < j and a,b € R;

(6) If R is a weak symmetric a-ring, then aba(c) € nil(R) implies aca™(b) € nil(R) for any

positive integer n and a,b,c € R.

Proof (1) Since R is («, §)-compatible, ab = 0 = aa(b) = 0,ad(b) = 0 = aa’(b) = 0,ad’ (b) =
0 for all positive integer 4, j. This implies that afij(b) =0forall0<i<janda,beR.

(2) First, we have abc = 0 = a(ab)c = 0 = a(ab)d(c) = 0 = afa)a(b)i(c) = 0 =
lL.a(a)a(a(b)d(c)) = 0 = aa(b)d(c) = 0 and abc = 0 = ad(bc) = 0 = ad(b)c = 0. On the
other hand, abc = 0 = aa(bc) = 0 = aa(b)c = 0 = aa™(b)c = 0 = ad™a™(b)c = 0 for
any positive integer m,n. Thus we obtain that aa’d’(b)c = 0, and hence af!(b)c = 0 for all
0<i<j.

(3) It is an immediate consequence of [13, Lemma 3.1] and [15, Lemma 2.8].

(4) Since ab € nil(R), there exists some positive integer k such that (ab)* = 0. In the

following computations, we use freely (2):
(ab)k = ab(ab---ab) = 0 = ad(b)(ab- - - ab) = (ad(b)a)b(ab---ab) =0
= (ad(b)a)é(b)(ab---ab) =0 = -
= (ad(b))*tabl = 0= (ad(b))* = 0.

This implies that ad(b) € nil(R), and hence ad™(b) € nil(R) for any a,b € R and any positive
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integer m.

(5) ab € nil(R) = aa’(b),ad? (b) € nil(R) = ad’a’(b), aa’s’ (b) € nil(R) for all i > 0 and
4= 0by (3) and (4). Since R is NI, we have af/ (b) € nil(R) for all 0 < i < j.

(6) Since R is a weak symmetric a-ring, aba(c) € nil(R) = aca(b) € nil(R) = aca™(b) €
nil(R) by (4), for a,b,c € R and any positive integer n. OJ
Lemma 4.3 Let R be a weakly 2-primal ring. If R is (o, §)-compatible, and f(z) = Y./, a;z" €
R[z;a, 0], then f(z) € nil(R[z;«,d]) if and only if a; € nil(R) for each 0 < i < n, that is, we
have, nil(R[x; v, 0]) = nil(R)[x; e, d].

Proof Let f(z) = Y1 ja;z' € nil(R[z;,d]). Then there exists some positive integer k such
that 0 = f(2)F = (ap+aiz+- - -+anz™)* = “lower terms” +a,a"(a,)a?*(ay,) - - - aF= D" (a, )z
Thus, we have that
ana™(an)a®™(ayn) - - a*"HD(a,) =0
= ana”((an)a"(an) - P (a,)) = 0
éCL @ (an) . k S)n( ) (k72)n(an):0
Oén((ln) (k 3)n( ) =0
=>~-~:>an=0:an6nil(R).
By Lemma 4.2, a,, = 1 - a,, € nil(R) implies 1 - fi(a,) = fi(a,) € nil(R) for all 0 < s < t. Let
Q=ay+az+- - +a,_12"'. Then we have
0=(Q+ anxn)k = (@ +an2™)(Q + anz™) -+ (Q + anz™)

= (Q*+ Q- apn2™ + apnz™ - Q + apx" - apnx™)(Q + anz™) - (Q + anx™)

= ... = Qk + A,
where A € R[z;«,d]. Notice that the coefficients of A can be written as sums of monomials
in a; and f.(a;) where a;,a; € {ag,a1,...,a,} and 0 < u < v are positive integers, and each
monomial has a,, or f!(a,). Since nil(R) is an ideal of R, we obtain that each monomial is in
nil(R), and then A € nil(R)[x;, ). Thus we obtain (ag + a1z + -+ + a,_12" " 1)* = “lower
terms” +a,_ 10" Ya,_1)---a®"DED (g, )z(=DE ¢ nil(R)[z; o, 6]. By Lemma 4.2, we have

an_10" " Yap_1)---a"DED (g 1) e nil(R)

(an-10""Han_1)--- P DED (g, 1)) €nil(R)
=a2 0" Hap 1) --amVE2D (g 1) enil(R)

(an_1)--- " DE3 (g, 1) € nil(R)
= .- =da" ! enil(R) = a,_; €nil(R).

Using induction on n, we have a; € nil(R) for all 0 < i < n.
Conversely, consider the finite subset {ag, a1, ..., a,}. Since R is weakly 2-primal, nil(R) =
L — rad(R) and (ag,a1,...,a,) is nilpotent subring of R. So, there exists a positive integer k

such that any product of k elements a;1a;2 - - a; from {ag,a1,...,a,} is zero. Note that the



68 Yao WANG, Weiliang WANG and Yanli REN

coefficients of f(z)**1 = (31, a;z))**! in R[z;, 6] can be written as sums of monomials of
length k+1 in a; and f(a;), where a;,a; € {ao,a1,...,a,} and 0 < u < v are positive integers.
For each monomial a;, fi2(a;,) - - ;,’jﬂ (@iy,,), where a; ,ai,,... a4, € {ag,a1,...,a,} and
tj,s; (t; > 55,2 < j < k+1) are nonnegative integers, we obtain a;, f22 (as,) - - - ﬁ,’jﬂ (@) =0

by Lemma 4.2. Thus, we have f(x)¥*! =0 and hence f(z) € nil(R[x;,d]). O

Proposition 4.4 Let R be an (a, 5) compatible weakly 2-primal ring. Then for f(x) =
Sty ait, glz) = Z] _obja?, h(z) = 38 _, ckx® € R[z; . 0], and ¢ € R, we have the following:
(1) fg € nil(R[z; a,6]) < a;b; € nil(R) for all 0 <i<m, 0< j < n;
(2) fgc € nil(R[z; e, 8]) < azbje € nil(R) for all 0 <i < m, 0 < j < n;
(3) fgh € nil(R[z; o, d]) < a;bjer, € nil(R) for al 0 <i<m, 0< j<nand 0 <k < p.

Proof We refer to the proof of [15, Theorem 2.11] to show the proposition.
(1) (=) Let f(z) = X" aix’, g(x) = Y7 bj27 € Rla;, 6] such that fg € nil(R[z; a, d]).
Then

fl@)g(a) = Z beﬂ
=0
=Zaifa'(bo) +<Zaiff<bo)+Zaif3<bl)>x+-~-+< > O aifiby)z
=0 =1 =0

s+t=k i=s
o+ @™ (by) ™™ € nil(R[z; o, 8]).

Thus, we have the following system of equations by Lemma 4.3:

Qn = ama™ (by) € nil(R); (1)

Qnin—1 = @@ (by—1) + am—10" "1 (by) + am fri_1(by) € nil(R); (2)

Qmgn—2 = ama™ ) + Z f Z frzn 2(bn) € nil(R); (3)
i=m—1 i=m—2

m

Q= > O aifi(b)) € nil(R); (4)

s+i=k i=s

From Lemma 4.2 and Eq.(1), we have a,,b, € nil(R). Next we show that a;b, € nil(R)

for all 0 < i < m. If we multiply Eq.(2) on the left side by b, then b,a,,_1a™ 1(b,) € nil(R)
since nil(R) is an ideal of R. Thus by Lemma 4.2, we obtain bpam_1b, € nil(R), and so
bpam—1 € nil(R), am-1b, € nil(R). If we multiply Eq.(3) on the left side by by, since nil(R) is

an ideal of R, we obtain
b7zam—2am72(bn) :anm-‘rn—Q - bnamam(bn—Q) - b7bam—10‘m71(bn—1) - bnamf::ll_l(bn—l)_
bntm 1S3 (bn) = buam fi—(bn) € nil(R).

Thus we obtain b,a,,—2 € nil(R) and a,,—2b, € nil(R). Continuing this procedure yields a;b,, €
nil(R) for all 0 < ¢ < m, and so a; fL(b,,) € nil(R) for any 0 < s < t and 0 < 7 < m by Lemma 4.2.
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Thus it is easy to verify that (3°1", aix")(z;:ol bjz?) € nil(R[z; a, d]). Applying the preceding
method repeatedly, we obtain that a;b; € nil(R) foral 0 <i<mand 0 < j < n.

(<) Let a;b; € nil(R) for all i,j. Then a;fi(b;) € nil(R) for all 4,5 and all position integer
0 < s <iby Lemma 4.2. Thus >, (>°" a;ifi(b;)) € nil(R), k =0,1,2,...,m + n. Hence
£ = S (S ok (S, aifi(b)))a* € nil(Rlz; @, 6)) by Lemma 4.3,

(2) (=) We have

g@)e= 3 "baN)e = "bifie) + O b fl(@)a+ -+ (3 b fi(e))a’ + -+ bua™(e)a”
7=0 7=0 j=1 j=s
=Ao+A 1z +- FA25+ -+ A,

where Ag = Z;”:S bjfi(c), 0 < s < n. By (1) we have a;A; = ai(Z?:S bjfi(c)) € nil(R) for
0<i<mand 0<s<n.

For s = n, we have a;A, = a;b,0"(c) € nil(R) for all 0 < i < m. Then by Lemma 4.2, we
obtain a;b,c € nil(R) for all 0 < i < m.

For s = n — 1, we have a;A,,_1 = a;b,_1a"1(c) + a;b, f7_1(c) € nil(R) for all 0 < i < m.
Since a;b,c € nil(R), we have a;b,f? ;(c) € nil(R) by Lemma 4.2. Thus, a;b,_1a" !(c) =
a;Ap—1 — a;bp f7'_1(c) € nil(R), and hence a;b,c € nil(R) for all 0 < i < m.

Now suppose that k is a positive integer such that a;b;c € nil(R) for all 0 < ¢ < m when
j > k. We show that a;bgc € nil(R) for all 0 < i < m.

If s = k, then for all 0 < 7 < m, we have
a;iAg = a;bra®(c) + aibp i (e) + - + aibn fi(c) € nil(R).

Since a;b;c € nil(R) for 0 <7 < m and k < j < n, we have aibjf,f;(c) €nil(R) foral 0 < i < m
and k < j < n by Lemma 4.2. It follows that a;b,a*(c) € nil(R), and hence a;bxc € nil(R) for
all 0 <% < m. Therefore, by induction we obtain a;b;c € nil(R) forall0 <i<mand 0 < j < n.

(<) Suppose a;bjc € nil(R) for all 0 < i < m and 0 < j < n. Then a;b;f7(c) € nil(R)
and so a; Z;L:S(bjfsj(c)) € nil(R) for all 0 < ¢ < mand 0 < j < n. By (1), we obtain
fgc € nil(R[z; «,0]). O

Theorem 4.5 Let R be a weakly 2-primal ring. If R is («,d)-compatible, then R is a weak

symmetric a-ring if and only if the Ore extension R[z;«, ] of R is a weak symmetric a-ring.

Proof Suppose that R[z;a,d] is a weak symmetric @-ring. Since S is a subring of R[z;«, ]
with @(S) C S, and hence is also a weak symmetric a-ring. Thus R is a weak symmetric a-ring.

Conversely, assume that R is a weak symmetric a-ring. Let f(z) = ao + a1z + -+ +
anz",g(z) = by + byx + --- + bpz™, and h(z) = co + 1z + - + ' € R[z;a,d] with
fga(h) € nil(R[z;,d]). Then by Lemma 4.3, we have a;bja(cx) € nil(R) for all 4, j, k, and
hence a;cpa(b;) € nil(R) for all 4,7,k since R is a weak symmetric a-ring. This implies
fha(g) € nil(R[z; o, 6]) by Lemma 4.3, so R[x; a, d] is a weak symmetric @-ring. O

Corollary 4.6 ([15, Theorem 2.12]) Let R be a reversible ring. If R is a-compatible, then R
is a weak symmetric a-ring if and only if the skew polynomial ring R[x; ] is a weak symmetric
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Q-ring.

Corollary 4.7 Let R be a weakly 2-primal ring. If R is a-compatible, then R is a weak sym-

metric a-ring if and only if the skew polynomial ring R[x; «] is a weak symmetric a-ring.

Corollary 4.8 Let R be a weakly 2-primal ring. If R is §-compatible, then R is a weak sym-

metric a-ring if and only if the differential polynomial ring R[x;d] is a weak symmetric a-ring.

Corollary 4.9 Let R be a weakly 2-primal ring. Then R is a weak symmetric a-ring if and

only if the polynomial ring R[z] is a weak symmetric a-ring.

Corollary 4.10 ([15, Corollary 2.13]) Let R be a reversible ring. Then we have the following:
(1) R is weak symmetric if and only if R[] is weak symmetric;
(2) If R is a-compatible, then R is weak symmetric if and only if R[z] is weak symmetric;
(3) If R is 0-compatible, then R is weak symmetric if and only if differential polynomial ring

Rz, ] is weak symmetric.
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