Journal of Mathematical Research with Applications Jan., 2015, Vol. 35, No. 1, pp. 56–70 DOI:10.3770/j.issn:2095-2651.2015.01.005 Http://jmre.dlut.edu.cn

Rings with Symmetric Endomorphisms and Their Extensions

Yao WANG¹, Weiliang WANG², Yanli REN^{3,*}

1. School of Mathematics and Statistics, Nanjing University of Information Science and Technology,

Jiangsu 210044, P. R. China;

2. School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, P. R. China;

3. School of Mathematics and Information Technology, Nanjing Xiaozhuang University,

Jiangsu 211171, P. R. China

Abstract Let R be a ring with an endomorphism α and an α -derivation δ . We introduce the notions of symmetric α -rings and weak symmetric α -rings which are generalizations of symmetric rings and weak symmetric rings, respectively, discuss the relations between symmetric α -rings and related rings and investigate their extensions. We prove that if R is a reduced ring and $\alpha(1) = 1$, then R is a symmetric α -ring if and only if $R[x]/(x^n)$ is a symmetric $\bar{\alpha}$ -ring for any positive integer n. Moreover, it is proven that if R is a right Ore ring, α an automorphism of R and Q(R) the classical right quotient ring of R, then R is a symmetric α -ring if and only if Q(R) is a symmetric $\bar{\alpha}$ -ring. Among others we also show that if a ring R is weakly 2-primal and (α, δ) -compatible, then R is a weak symmetric α -ring if and only if the Ore extension $R[x; \alpha, \delta]$ of R is a weak symmetric $\bar{\alpha}$ -ring.

Keywords symmetric α -ring; weak symmetric α -ring; polynomial extension; classical quotient ring extension; Ore extension

MR(2010) Subject Classification 16N80; 16S32; 16U20; 16W20

1. Introduction

Throughout this paper R denotes an associative ring with identity, and α is a nonzero endomorphism of R. Recall that a ring R is called reduced if it has no nonzero nilpotent elements; R is reversible if ab = 0 implies ba = 0 for all $a, b \in R$; R is semicommutative if ab = 0 implies aRb = 0 for all $a, b \in R$; an endomorphism α of a ring R is called rigid if $a\alpha(a) = 0$ implies a = 0 for $a \in R$, and R is called α -rigid if there exists a rigid endomorphism α of R. Baser et al. [3] introduced the concept of α -shifting rings and investigated characterizations of the generalized reversible rings. A ring R is said to be right (left) α -shifting if whenever $a\alpha(b) = 0$ ($\alpha(a)b = 0$) for $a, b \in R$, $b\alpha(a) = 0$ ($\alpha(b)a = 0$). Baser et al. [2] extended the concept of semicommutative rings and called a ring R α -semicommutative if ab = 0 implies $aR\alpha(b) = 0$ for all $a, b \in R$. Recently, we introduced the concept of semicommutative α -rings in [17]. A ring R is called a

Received May 13, 2014; Accepted June 23, 2014

Supported by the National Natural Science Foundation of China (Grant No. 11101217) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20141476).

^{*} Corresponding author

E-mail address: renyanlisx@163.com (Yanli REN)

right (left) semicommutative α -ring if $a\alpha(b) = 0$ ($\alpha(a)b = 0$) implies $\alpha(a)Rb = 0$ ($aR\alpha(b) = 0$) for all $a, b \in R$. According to Lambek [12], a ring R is called symmetric if abc = 0 implies acb = 0for all $a, b, c \in R$. Anderson and Camillo [1] showed that a ring R is symmetric if and only if $r_1r_2\cdots r_n=0$ implies $r_{\sigma_{(1)}}r_{\sigma_{(2)}}\cdots r_{\sigma_{(n)}}=0$ for any permutation σ of the set $\{1,2,\ldots,n\}$ and $r_i \in R$. There are many papers to study symmetric rings and their generalization [5,8,11,14,18]. In Kwak [10], an endomorphism α of a ring R is called right (left) symmetric if whenever abc = 0for $a, b, c \in R$, $ac\alpha(b) = 0$ ($\alpha(b)ac = 0$). A ring R is called right (left) α -symmetric if there exists a right (left) symmetric endomorphism α of R. The notion of an α -symmetric ring is a generalization of α -rigid rings as well as an extension of symmetric rings. Following [15], a ring R is called weak symmetric if $abc \in nil(R)$ implies $acb \in nil(R)$ for all $a, b, c \in R$, where nil(R)is the set of all nilpotent elements of R. Let α be an endomorphism and δ an α -derivation of R. that is, δ is an additive map such that $\delta(ab) = \delta(a)b + \alpha(a)\delta(b)$, for $a, b \in \mathbb{R}$. When $\alpha = id_R$, an α -derivation δ is called a derivation of R. A ring R is said to be weak α -symmetric if $abc \in nil(R)$ implies $ac\alpha(b) \in nil(R)$ for $a, b, c \in R$. Moreover, R is said to be weak δ -symmetric if $abc \in nil(R)$ implies $ac\delta(b) \in nil(R)$ for $a, b, c \in R$. If R is both weak α -symmetric and weak δ -symmetric, then R is called weak (α, δ) -symmetric. Ouyang and Chen [15] studied the related properties of weak symmetric rings and weak (α, δ) -symmetric rings.

Motivated by the above, for an endomorphism α of a ring R, we introduce the notions of symmetric α -rings and weak symmetric α -rings to extend symmetric rings and weak symmetric rings, respectively, discuss the relations between symmetric α -rings and related rings and investigate their extensions.

Let α be an endomorphism and δ an α -derivation of R. We denote by $R[x; \alpha, \delta]$ the Ore extension whose elements are the polynomials over R, the addition is defined as usual, and the multiplication subject to the relation $xr = \alpha(r)x + \delta(r)$ for any $r \in R$. In particular, if $\delta = 0_R$, we denote by $R[x; \alpha]$ the skew polynomial ring; if $\alpha = 1_R$, we denote by $R[x; \delta]$ the differential polynomial ring. For an endomorphism α and an α -derivation δ , a ring R is said to be α -compatible if for each $a, b \in R$, ab = 0 if and only if $a\alpha(b) = 0$. Moreover, R is called δ -compatible if ab = 0 implies $a\delta(b) = 0$ for each $a, b \in R$. If R is both α -compatible and δ -compatible, then R is called (α, δ) -compatible. In the following, for integers i, j with $0 \leq i \leq j$, $f_i^j \in \operatorname{End}(R, +)$ will denote the map which is the sum of all possible words in α, δ built with i letters α and j - i letters δ . For instance, $f_2^4 = \alpha^2 \delta^2 + \delta^2 \alpha^2 + \delta \alpha^2 \delta + \alpha \delta \alpha \delta + \delta \alpha \delta \alpha$. In particular, $f_0^0 = 1$, $f_i^i = \alpha^i$, $f_0^i = \delta^i$, $f_{j-1}^j = \alpha^{j-1}\delta + \alpha^{j-2}\delta\alpha + \cdots + \delta \alpha^{j-1}$. For every $f_i^j \in \operatorname{End}(R, +)$ with $0 \leq i \leq j$, it has C_j^i monomials in α, δ built with i letters α and j - i letters δ . It is well known that for any integer n and $r \in R$, we have $x^n r = \sum_{i=0}^n f_i^n(r) x^i$ in the ring $R[x; \alpha, \delta]$.

2. Symmetric α -rings and related rings

As an extension of symmetric rings, now we give the following

Definition 2.1 Let R be a ring and α a nonzero endomorphism of R. We say that R is a (right)

symmetric α -ring if $ab\alpha(c) = 0$ implies $ac\alpha(b) = 0$ for $a, b, c \in \mathbb{R}$.

Similarly, a ring R is said to be a left symmetric α -ring whenever $\alpha(a)bc = 0$ for $a, b, c \in R$, $\alpha(b)ac = 0$.

Obviously, if $\alpha = id_R$, the identity endomorphism of R, a (left) symmetric α -ring is a symmetric ring. In general, a right α -symmetric ring need not be a symmetric α -ring.

Example 2.2 Let R = F[x] be the polynomial ring over a field F and $\alpha : R \to R$, $\alpha(f(x)) = f(0)$ for $f(x) \in R$. The α is an endomorphism of R but not a monomorphism, and R is an α -symmetric ring by Kwak [10, Example 2.7(2)]. But for any $0 \neq f(x) \in R$ and $g(x) = x + a, h(x) = x \in R$ where $a \neq 0$, we have $f(x)g(x)\alpha(h(x)) = 0$, $f(x)h(x)\alpha(g(x)) \neq 0$. Hence R is not a symmetric α -ring.

The next example shows that if $\alpha \neq id_R$, a symmetric α -ring need not be symmetric and a left symmetric α -ring also need not be a left symmetric α -ring. Therefore, the classes of symmetric α -rings and left symmetric α -rings are both non-trivial extension of symmetric rings, the symmetric α -property for a ring is not left-right symmetric and the concepts of symmetric α -rings and left symmetric α -rings are independent of each other.

Example 2.3 Consider the ring
$$R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} | a, b, c \in \mathbb{Z} \right\}$$
, where \mathbb{Z} is the ring of integers
and the endomorphism $\alpha : R \to R$, $\alpha \left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \right) = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$. It is easy to verify that
 R is not symmetric. Let $\mathbf{A} = \begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} a_3 & b_3 \\ 0 & c_3 \end{pmatrix} \in R$ with
 $\mathbf{AB}\alpha(\mathbf{C}) = 0$. Then $a_1a_2a_3 = 0$, so we have $a_1a_3a_2 = 0$ and $\mathbf{AC}\alpha(\mathbf{B}) = 0$, concluding that
 R is a symmetric α -ring. For $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in R$, we have
 $\alpha(\mathbf{A})\mathbf{B}\mathbf{C} = 0$, but $\alpha(\mathbf{B})\mathbf{A}\mathbf{C} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq 0$. So R is not a left symmetric α -ring.

In the following, we focus our attention on symmetric α -rings.

Proposition 2.4 For a nonzero endomorphism α of a ring R, the following statements are equivalent:

- (1) R is a symmetric α -ring;
- (2) $l_R(b\alpha(c)) \subseteq l_R(c\alpha(b))$, for any $a, b, c \in R$;
- (3) $AB\alpha(C) = 0$ if and only if $AC\alpha(B) = 0$, for any $A, B, C \subseteq R$;
- (4) $l_R(B\alpha(C)) \subseteq l_R(C\alpha(B))$, for any $A, B, C \subseteq R$.

Proof (1) \iff (3). Suppose that $AC\alpha(B) = 0$ for $A, B, C \subseteq R$. Then $ab\alpha(c) = 0$ for any $a \in A, b \in B, c \in C$, and hence $ac\alpha(b) = 0$. Therefore, $AC\alpha(B) = \{\sum a_i c_i \alpha(b_i) | a_i \in A, b_i \in B, c_i \in C\} = 0$. The converse is obvious.

 $(1) \iff (2)$ and $(3) \iff (4)$ is obvious. \Box

Proposition 2.5 For a nonzero endomorphism α of a ring R, the following statements are equivalent:

- (1) R is an α -rigid ring;
- (2) R is a symmetric α -ring and $aR\alpha(a) = 0$ implies a = 0 for any $a \in R$;
- (3) R is a left symmetric α -ring and $\alpha(a)Ra = 0$ implies a = 0 for any $a \in R$.

Proof (1) \Rightarrow (2). Assume that *R* is α -rigid. Then *R* is reduced and α is a monomorphism by [6]. For $a, b, c \in R$ with $ab\alpha(c) = 0$, we have $0 = ab\alpha(c)c\alpha(a)\alpha(b) = abc\alpha(a)\alpha(b)\alpha(c) = abc\alpha(abc)$ and hence abc = 0, bac = 0 since *R* is an α -rigid ring. It gives that $0 = ac\alpha(bac)\alpha^2(b) = ac\alpha(b)\alpha(a)\alpha(c)\alpha^2(b) = ac\alpha(b)\alpha(ac\alpha(b))$, and hence $ac\alpha(b) = 0$. So *R* is a symmetric α -ring. For $a \in R$ with $aR\alpha(a) = 0$, we have $a\alpha(a) = 0$. This implies that a = 0.

 $(2) \Rightarrow (1)$. Suppose that $a\alpha(a) = 0$ for $a \in R$. Then we have $1 \cdot a\alpha(a)\alpha(r) = 1 \cdot a\alpha(ar) = 0$ for all $r \in R$. Since R is a symmetric α -ring, $1 \cdot ar\alpha(a) = ar\alpha(a) = 0$. Thus, we get a = 0 by the assumption, concluding that R is an α -rigid ring.

Similarly, we can prove $(3) \iff (1)$. \Box

Proposition 2.6 Let α be a nonzero endomorphism of a ring R. Then we have the following:

- (1) The class of symmetric α -rings is closed under α -subrings (not necessarily with identity);
- (2) If R is a (left) symmetric α -ring, then R is a right (left) α -shifting ring.

Proof (1) By Definition 2.1.

(2) Suppose that $a\alpha(b) = 0$ for $a, b \in R$. Then $0 = 1 \cdot a\alpha(b)$ implies that $1 \cdot b\alpha(a) = b\alpha(a) = 0$.

In general, the converses of Proposition 2.6(2) does not hold, and a right α -shifting ring need not be a right semicommutative α -ring.

Example 2.7 Let \mathbb{Z}_2 be the ring of integers module 2, $R = \mathbb{Z}_2 \bigoplus \mathbb{Z}_2$ and $\alpha : R \to R$ be an endomorphism of R defined by $\alpha((a, b)) = (b, a)$ for any $(a, b) \in R$. Suppose $(a, b)\alpha((c, d)) = (ad, bc) = 0$ for $(a, b), (c, d) \in R$. Then we have $(c, d)\alpha((a, b)) = (cb, da) = 0$, concluding that R is a right α -shifting ring. However, R is not a symmetric α -ring. In fact, for A = (1, 0), B = (0, 1), C = (1, 1), we have $AB\alpha(C) = (1, 0)(0, 1)(1, 1) = 0$, but $AC\alpha(B) = (1, 0)(1, 1)(1, 0) = (1, 0) \neq 0$.

Example 2.8 Let *R* and α be as in Example 2.3. It is easy to verify that *R* is a right α -shifting ring. Taking $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \in R$, we have $\mathbf{A}\alpha(\mathbf{B}) = 0$, but $\alpha(\mathbf{A})\mathbf{C}\mathbf{B} = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \neq 0$. So *R* is not a right semicommutative α -ring.

[9, Example 1.5] provides an example which is a right semicommutative α -ring but not a right α -shifting ring.

Let R be a ring and α an endomorphism of R. According to Pourtaherian-Rakhimov [16], a ring R is called satisfying the condition (C_{α}) if whenever $a\alpha(b) = 0$ with $a, b \in R$, then ab = 0. α -rigid rings and α -compatible rings are such rings.

Proposition 2.9 Let α be an endomorphism of a ring *R*. If *R* satisfies the condition (C_{α}) , then the following statements are equivalent:

- (1) R is a symmetric ring;
- (2) R is a right α -symmetric ring;
- (3) R is a (right) symmetric α -ring.

Proof (1) \Leftrightarrow (2). It is a straight corollary of [18, Lemma 3.1 (2)].

(2) \Rightarrow (3). Suppose that R is a right α -symmetric ring and $a, b, c \in R$ with $ab\alpha(c) = 0$. Then we have that abc = 0 by the condition (C_{α}) and $ac\alpha(b) = 0$ since R is right α -symmetric. This shows that R is a symmetric α -ring.

(3) \Rightarrow (2). Assume that R is a symmetric α -ring. Then R is a right α -shifting ring by Proposition 2.6, and hence R is reversible by [18, Lemma 3.1(1)]. Now let abc = 0 for $a, b, c \in R$. Then $\alpha(ab)\alpha(c) = 0$, and hence $\alpha(c)\alpha(ab) = 0$ by the reversibility. So $\alpha(c)ab = 0 = ab\alpha(c)$ by the condition (C_{α}) . It follows that $ac\alpha(b) = 0$ since R is a symmetric α -ring. This shows that Ris a right α -symmetric ring. \Box

Corollary 2.10 Let α be a monomorphism of a ring *R*. If *R* is an α -compatible ring, then the following are equivalent:

- (1) R is a symmetric ring;
- (2) R is a right α -symmetric ring;
- (3) R is a symmetric α -ring.

Proposition 2.11 Let R be a ring with an endomorphism α . If R is a symmetric α -ring, then the following are equivalent:

- (1) α is a monomorphism;
- (2) $\alpha(1) = 1$, where 1 is the identity of R.

Proof (1) \Rightarrow (2). Assume that α is a monomorphism. Then $(1-\alpha(1))\alpha(1) = 1 \cdot (1-\alpha(1))\alpha(1) = 0$ implies $1 \cdot 1 \cdot \alpha(1-\alpha(1)) = \alpha(1-\alpha(1)) = 0$. So we have $1-\alpha(1) = 0, \alpha(1) = 1$.

(2) \Rightarrow (1). Suppose that $\alpha(1) = 1$. Let $\alpha(a) = \alpha(b)$ for $a, b \in R$. Then we have $\alpha(a - b) = 1 \cdot 1 \cdot \alpha(a - b) = 0$ and $(a - b)\alpha(1) = a - b = 0$ since R is a symmetric α -ring. Hence α is a monomorphism. \Box

A ring R is called Armendariz if whenever polynomials $f(x) = \sum_{i=0}^{m} a_i x^i, g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$ satisfy f(x)g(x) = 0, then $a_ib_j = 0$ for all i, j. For an endomorphism α of a ring R, R is called α -Armendariz if for $f(x) = a_0 + a_1 x + \dots + a_n x^n$ and $g(x) = b_0 + b_1 x + \dots + b_m x^m \in R[x; \alpha], fg = 0$ implies $a_ib_j = 0$ for all $0 \le i \le m$ and $0 \le j \le n$.

Proposition 2.12 Let R be an α -Armendariz ring with an endomorphism α . Then following statements are equivalent:

(1) $R[x;\alpha]$ is symmetric;

- (2) R is α -symmetric;
- (3) R is right α -symmetric;
- (4) R is symmetric;
- (5) R is a (left) symmetric α -ring.

Proof By Kwak [10, Theorem 2.10], we can see that $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$.

Now, we show $(2) \Rightarrow (5)$. Assume that R is α -symmetric. Then R is symmetric by (4). Let $ab\alpha(c) = 0$ for $a, b, c \in R$. Since R is an α -Armendariz ring, we get abc = 0 by [7, Proposition 1.3 (2)]. This implies that $ac\alpha(b) = 0$ since R is right α -symmetric, and hence R is a symmetric α -ring. On the other hand, suppose that $a, b, c \in R$ with $\alpha(a)bc = 0$. We have $bc\alpha(a) = 0$ by the symmetry. Since R is an α -Armendariz ring, this implies bca = 0, and hence abc = 0. So $\alpha(b)ac = 0$ since R is a left α -symmetric ring. Therefore, R is a left symmetric α -ring.

Next, we show $(5) \Rightarrow (2)$. Assume that R is a left symmetric α -ring. If abc = 0 for $a, b, c \in R$, then $\alpha(a)bc = 0$ by [7, Proposition 1.3(1)]. It follows that $\alpha(b)ac = 0$ since R is a left symmetric α -ring. Hence R is left α -symmetric. On the other hand, assume that R is a symmetric α -ring. If abc = 0 for $a, b, c \in R$, then cab = 0 since R is symmetric, and hence $\alpha(c)ab = 0$ by [7, Proposition 1.3(1)]. Thus, we get $ab\alpha(c) = 0$. It implies $ac\alpha(b) = 0$ since R is a symmetric α -ring, concluding that R is right α -symmetric. \Box

3. Extensions of symmetric α -rings

For an endomorphism α of a ring R, an ideal I of R is called α -ideal if $\alpha(I) \subseteq I$. For an α -ideal I of R, the map $\bar{\alpha} : R/I \longrightarrow R/I$ defined by $\bar{\alpha}(\bar{a}) = \overline{\alpha(a)}$ is an endomorphism of the factor ring R/I. Recall that if α is an endomorphism of a ring R, then the map $\bar{\alpha} : R[x] \longrightarrow R[x]$ defined by $\bar{\alpha}(\sum_{i=0}^{m} a_i x^i) = \sum_{i=0}^{m} \alpha(a_i) x^i$ is an endomorphism of the polynomial ring R[x] and clearly this map extends α .

Theorem 3.1 Let R be a reduced ring and $\alpha(1) = 1$. Then R is a symmetric α -ring if and only if $R[x]/(x^n)$ is a symmetric $\bar{\alpha}$ -ring, where (x^n) is the ideal generated by x^n , for any positive integer n.

Proof (1) Suppose that R is a symmetric α -ring and set $S = R[x]/(x^n)$. If n = 1, then $S \cong R$. Now we assume $n \ge 2$. Let $A = \sum_{i=0}^{n-1} a_i \mu^i$, $B = \sum_{j=0}^{n-1} b_j \mu^j$, $C = \sum_{k=0}^{n-1} c_k \mu^k \in S$ with $AB\bar{\alpha}(C) = 0$, where $\mu = x + (x^n)$. Note that if $i + j + k \ge n$, then $a_i b_j \alpha(c_k) \mu^{i+j+k} = 0$. Hence it suffices to show the cases $i + j + k \le n - 1$. We proceed by induction on i + j + k. From $AB\bar{\alpha}(C) = 0$, we have the following equations:

. . .

$$a_0 b_0 \alpha(c_0) = 0, \tag{1}$$

$$a_0 b_0 \alpha(c_1) + a_0 b_1 \alpha(c_0) + a_1 b_0 \alpha(c_0) = 0, \qquad (2)$$

$$a_0 b_0 \alpha(c_2) + a_0 b_1 \alpha(c_1) + a_0 b_2 \alpha(c_0) + a_1 b_1 \alpha(c_0) + a_2 b_0 \alpha(c_0) + a_1 b_0 \alpha(c_1) = 0,$$
(3)

Yao WANG, Weiliang WANG and Yanli REN

$$a_0b_0\alpha(c_{n-2}) + \dots + a_0b_{n-2}\alpha(c_0) + \dots + a_{n-2}b_0\alpha(c_0) + \dots + a_1b_0\alpha(c_{n-3}) = 0,$$
(n-1)

$$a_0 b_0 \alpha(c_{n-1}) + \dots + a_0 b_{n-1} \alpha(c_0) + \dots + a_{n-1} b_0 \alpha(c_0) + \dots + a_1 b_0 \alpha(c_{n-2}) = 0.$$
(n)

Note that reduced ring R is semicommutative, and hence if ab = 0 for $a, b \in R$, then arb = 0 for any $r \in R$. In the following computations, we use freely this fact.

Multiplying Eq. (2) by a_0b_0 on the left side gives $a_0b_0a_0b_0\alpha(c_1) + a_0b_0a_0b_1\alpha(c_0) + a_0b_0a_1b_0\alpha(c_0)$ = 0, then $0 = a_0b_0a_0b_0\alpha(c_1) = (a_0b_0\alpha(c_1))^2$, so $a_0b_0\alpha(c_1) = 0$. Thus we have

$$a_0 b_1 \alpha(c_0) + a_1 b_0 \alpha(c_0) = 0. \tag{2'}$$

Multiplying Eq. (2') by a_0 on the left side gives $0 = a_0 a_0 b_1 \alpha(c_0) = (a_0 b_1 \alpha(c_0))^2$, then we obtain $a_1 b_0 \alpha(c_0) = 0$ and $a_0 b_1 \alpha(c_0) = 0$.

Thus we obtain $a_1b_0\alpha(c_1) = 0$, $a_0b_1\alpha(c_1) = 0$ and $a_1b_1\alpha(c_0) = 0$ in turn, and hence $a_ic_k\alpha(b_j) = 0$ for i + j + k = 1 since R is a symmetric α -ring, so $AC\bar{\alpha}(B) = 0$.

Inductively we assume that $a_i b_j \alpha(c_k) = 0$ for $i + j + k \le n - 2$. Now for i + j + k = n - 1, multiplying Eq. (n) by $a_0 b_0$ on the right side gives $a_0 b_0 \alpha(c_{n-1}) a_0 b_0 = 0$ and $a_0 b_0 \alpha(c_{n-1}) = 0$, so we get

$$a_0b_1\alpha(c_{n-2}) + \dots + a_0b_{n-1}\alpha(c_0) + \dots + a_{n-1}b_0\alpha(c_0) + \dots + a_1b_0\alpha(c_{n-2}) = 0.$$
 (n')

If we multiply Eq. (n)' by a_0 on the left side and by $\alpha(c_0)$ on the right side, then we get $a_0 a_0 b_{n-1} \alpha(c_0) \alpha(c_0) = 0$, $a_0 b_{n-1} \alpha(c_0) = 0$. Thus we have

$$a_0b_1\alpha(c_{n-2}) + \dots + a_0b_{n-2}\alpha(c_1) + \dots + a_{n-1}b_0\alpha(c_0) + \dots + a_1b_0\alpha(c_{n-2}) = 0.$$
 (n'')

Multiplying Eq. (n)" by $b_0\alpha(c_0)$ on the right side, we get $a_{n-1}b_0\alpha(c_0)b_0\alpha(c_0) = 0$, then $a_{n-1}b_0\alpha(c_0) = 0$. So we have

$$a_0b_1\alpha(c_{n-2}) + \dots + a_0b_{n-2}\alpha(c_1) + \dots + a_{n-2}b_1\alpha(c_0) + \dots + a_1b_0\alpha(c_{n-2}) = 0.$$
 (n''')

If we multiply Eq. (n)^{'''} on the right side by $b_1\alpha(c_0), b_0\alpha(c_1), \ldots$, and $b_0\alpha(c_{n-2})$, respectively, then we obtain $a_{n-2}b_1\alpha(c_0) = 0, a_{n-2}b_0\alpha(c_1) = 0, \ldots$, and $a_1b_0\alpha(c_{n-2}) = 0$ in turn. This shows that $a_ib_j\alpha(c_k) = 0$, and then $a_ic_k\alpha(b_j) = 0$ for all i, j and k with i + j + k = n - 1. It follows that $AC\bar{\alpha}(B) = 0$. Therefore, S is a symmetric $\bar{\alpha}$ -ring.

Conversely, since R is a $\bar{\alpha}$ -subring of $R[x]/(x^n)$, it is obvious by Proposition 2.6. \Box

Corollary 3.2 ([8, Theorem 2.3]) Let R be a reduced ring. Then $R[x]/(x^n)$ is a symmetric ring, where (x^n) is the ideal generated by x^n and n is any positive integer.

Recall that an element μ of a ring R is right regular if $\mu r = 0$ implies r = 0 for $r \in R$. Similarly, left regular is defined, and regular means if it is both left and right regular. Let Δ be a multiplicatively closed subset of R consisting of central regular elements. For an automorphism α of R with $\alpha(\Delta) \subseteq \Delta$, the induced map $\bar{\alpha} : \Delta^{-1} \to \Delta^{-1}$ defined by $\bar{\alpha}(\mu^{-1}a) = \alpha(\mu)^{-1}\alpha(a)$ is also an automorphism.

Proposition 3.3 Let α be an automorphism of R and Δ be a multiplicatively closed subset of R consisting of central regular elements with $\alpha(\Delta) \subseteq \Delta$. Then R is a symmetric α -ring if and

62

only if $\Delta^{-1}R$ is a symmetric $\bar{\alpha}$ -ring.

Proof It is enough to show the necessity by Proposition 2.6(1).

Assume that R is a symmetric α -ring. Let $AB\bar{\alpha}(C) = 0$ for $A = \mu^{-1}a, B = \nu^{-1}b, C = \omega^{-1}c \in \Delta^{-1}R$, where $a, b, c, \mu, \nu, \omega \in R$ with μ, ν, ω regular. Since Δ is contained in the central of R, we have $AB\bar{\alpha}(C) = \mu^{-1}a\nu^{-1}b\alpha(\omega)^{-1}\alpha(c) = (\mu^{-1}\nu^{-1}\alpha(\omega)^{-1})(ab\alpha(c)) = (\mu\nu\alpha(\omega))^{-1}(ab\alpha(c)) = 0$. This implies $ab\alpha(c) = 0$, and hence $ac\alpha(b) = 0$ since R is a symmetric α -ring. Thus, we have $AC\bar{\alpha}(B) = \mu^{-1}a\omega^{-1}c\alpha(\nu)^{-1}\alpha(b) = (\mu^{-1}\omega^{-1}\alpha(\nu)^{-1})(ac\alpha(b)) = (\mu\omega\alpha(\nu))^{-1}(ac\alpha(b)) = 0$, proving that $\Delta^{-1}R$ is a symmetric $\bar{\alpha}$ -ring. \Box

Corollary 3.4 ([8, Lemma 3.2(1)]) Let R be a ring and Δ a multiplicatively closed subset of R consisting of central regular elements. Then R is symmetric if and only if so is $\Delta^{-1}R$.

The ring of Laurent polynomials in x, coefficients in a ring R, consists of all formal sums $\sum_{i=k}^{n} m_i x^i$ with obvious addition and multiplication, where $m_i \in R$ and k, n are (possibly negative) integers, denote it by $R[x; x^{-1}]$. If α is an endomorphism R, then the map $\bar{\alpha} : R[x; x^{-1}] \to R[x; x^{-1}]$ defined by $\bar{\alpha}(\sum_{i=k}^{n} a_i x^i) = \sum_{i=k}^{n} \alpha(a_i) x^i$ extends α and also is an endomorphism of $R[x; x^{-1}]$.

Proposition 3.5 Let R be a ring with an endomorphism α . Then R[x] is a symmetric $\bar{\alpha}$ -ring if and only if $R[x; x^{-1}]$ is a symmetric $\bar{\alpha}$ -ring.

Proof Let $\Delta = \{1, x, x^2, \ldots\}$. Clearly, Δ is a multiplicatively closed subset of R[x] consisting of central regular elements and $R[x; x^{-1}] = \Delta^{-1}R[x]$. It follows that $R[x; x^{-1}]$ is a symmetric $\bar{\alpha}$ -ring by Proposition 3.3. \Box

Corollary 3.6 ([8, Lemma 3.2(2)]) Let R be a ring and Δ a multiplicatively closed subset of R consisting of central regular elements. Then R is symmetric if and only if so is $\Delta^{-1}R$.

Proposition 3.7 Let R be a ring with an endomorphism α . If R is an Armendariz ring, then the following are equivalent:

- (1) R is a symmetric α -ring;
- (2) R[x] is a symmetric $\bar{\alpha}$ -ring;
- (3) $R[x; x^{-1}]$ is a symmetric $\bar{\alpha}$ -ring.

Proof (1) \Rightarrow (2). Assume that R is a symmetric α -ring and $f(x) = \sum_{i=0}^{l} a_i x^i, g(x) = \sum_{j=0}^{m} b_j x^j, h(x) = \sum_{k=0}^{n} c_k x^k \in R[x]$ with $f(x)g(x)\bar{\alpha}(h(x)) = 0$. By [7, Lemma 3.5], we have $a_i b_j \alpha(c_k) = 0$ for all i, j, k since R is Armendariz. So $a_i c_k \alpha(b_j) = 0$ by (1), and hence $f(x)h(x)\bar{\alpha}(g(x)) = 0$. Therefore, R[x] is a symmetric $\bar{\alpha}$ -ring.

(2) \Rightarrow (3). Assume that R[x] is a symmetric $\bar{\alpha}$ -ring. For $f(x), g(x), h(x) \in R[x; x^{-1}]$ with $f(x)g(x)\bar{\alpha}(h(x)) = 0$, there exists a positive integer n such that $f_1(x) = f(x)x^n, g_1(x) = g(x)x^n, h_1(x) = h(x)x^n \in R[x]$ and $f_1(x)g_1(x)\bar{\alpha}(h_1(x)) = 0$. Since R[x] is a symmetric $\bar{\alpha}$ -ring, $f_1(x)h_1(x)\bar{\alpha}(g_1(x)) = 0$, then $f(x)h(x))\bar{\alpha}(g(x)) = x^{-3n}f_1(x)h_1(x)\bar{\alpha}(g_1(x)) = 0$. This proves that $R[x; x^{-1}]$ is a symmetric $\bar{\alpha}$ -ring. (3) \Rightarrow (1). It follows from the fact that R is a $\bar{\alpha}$ -subring of $R[x; x^{-1}]$. \Box

Corollary 3.8 ([8, Proposition 3.4]) Let R be an Armendariz ring. Then the following are equivalent:

- (1) R is a symmetric ring;
- (2) R[x] is a symmetric ring;
- (3) $R[x; x^{-1}]$ is a symmetric ring.

A ring R is called right Ore if given $a, b \in R$ with b regular, then there exist $a_1, b_1 \in R$ with b_1 regular such that $ab_1 = ba_1$. It is a well-known fact that R is a right Ore ring if and only if the classical right quotient ring of R exists.

Suppose that the classical right quotient ring Q(R) of R exists. Then for an automorphism α of R and any $ab^{-1} \in Q(R)$ where $a, b \in R$ with b regular, the induced map $\bar{\alpha} : Q(R) \to Q(R)$ defined by $\bar{\alpha}(ab^{-1}) = \alpha(a)\alpha(b)^{-1}$ is an automorphism of Q(R).

Theorem 3.9 Let R be a right Ore ring, α an automorphism of R and Q(R) the classical right quotient ring of R. Then R is a symmetric α -ring if and only if Q(R) is a symmetric $\bar{\alpha}$ -ring.

Proof It suffices to establish the necessity by Proposition 2.6(1).

Assume that R is a symmetric α -ring. Let $A = a\mu^{-1}, B = b\nu^{-1}, C = c\omega^{-1} \in Q(R)$ with $AB\bar{\alpha}(C) = a\mu^{-1}b\nu^{-1}\alpha(c)\alpha(\omega)^{-1} = 0$, where $a, b, c, \mu, \nu, \omega \in R$ with μ, ν, ω regular. Now, there exist $b_1, \mu_1 \in R$ with μ_1 regular such that $b\mu_1 = \mu b_1, \mu^{-1}b = b_1\mu_1^{-1}$. Hence, $AB\bar{\alpha}(C) = ab_1\mu_1^{-1}\nu^{-1}\alpha(c)\alpha(\omega)^{-1} = 0$. Next, for $\alpha(c), v \in R$ there exist $c_1, \nu_1 \in R$ with ν_1 regular such that $\alpha(c)\nu_1 = \nu c_1, \nu^{-1}\alpha(c) = c_1\nu_1^{-1}$, so $AB\bar{\alpha}(C) = ab_1\mu_1^{-1}c_1\nu_1^{-1}\alpha(\omega)^{-1} = 0$. Similarly, also there exist $c_2, \mu_2 \in R$ with μ_2 regular such that $c_1\mu_2 = \mu_1c_2, \mu_1^{-1}c_1 = c_2\mu_2^{-1}$. Thus, we obtain that $AB\bar{\alpha}(C) = ab_1c_2\mu_2^{-1}\nu_1^{-1}\alpha(\omega)^{-1} = 0$ and hence $ab_1c_2 = 0$. This implies $0 = ab_1c_2\mu = a\mu b_1c_2 = ab\mu_1c_2 = abc_1\mu_1$. It follows that $ab\alpha(c) = 0$, and hence $ac\alpha(b) = 0$ since R is a symmetric α -ring.

Similarly, there exist $c_3, \mu_3, b_2, \omega_2, b_4, \mu_4 \in R$ with μ_3, ω_2, μ_4 regular such that $c\mu_3 = \mu c_3, \alpha(b)\omega_2 = \omega b_2, b_2\mu_4 = \mu_3 b_4$, and

 $AC\bar{\alpha}(B) = ac_3\mu_3^{-1}\omega^{-1}\alpha(b)\alpha(\nu)^{-1} = ac_3\mu_3^{-1}b_2\omega_2^{-1}\alpha(\nu)^{-1} = ac_3b_4\mu_4^{-1}\omega_2^{-1}\alpha(\nu)^{-1}.$

From $ac\alpha(b) = 0$, we have $0 = ac\alpha(b)\omega_2 = ac\omega b_2 = acb_2\omega$, and hence $0 = acb_2 = acb_2\mu_4 = ac\mu_3b_4 = acb_4\mu_3$. It follows that $0 = acb_4 = acb_4\mu_3 = ac\mu_3b_4 = a\mu c_3b_4 = ac_3b_4\mu$, and hence $ac_3b_4 = 0$. Now we have $AC\bar{\alpha}(B) = 0$, proving that Q(R) is a symmetric $\bar{\alpha}$ -ring. \Box

Corollary 3.10 ([8, Theorem 4.1]) Let R be a ring and Δ a multiplicatively closed subset of R consisting of central regular elements. Then R is symmetric if and only if so is $\Delta^{-1}R$.

Theorem 3.11 Let R be a right Ore ring, α an automorphism of R and Q(R) the classical right quotient ring of R. Assume that $aR\alpha(a) = 0$ implies a = 0 for any $a \in R$. Then the following statements are equivalent:

(1) R is a symmetric ring;

- (2) R is a right α -symmetric ring;
- (3) R is a symmetric α -ring;
- (4) Q is a symmetric ring;
- (5) Q is an $\bar{\alpha}$ -symmetric ring;
- (6) Q is a symmetric $\bar{\alpha}$ -ring.

Proof We claim that if R satisfies that $aR\alpha(a) = 0$ implies a = 0 for any $a \in R$, then Q(R) satisfies that $AQ(R)\bar{\alpha}(A) = 0$ implies A = 0 for any $A \in Q(R)$. Let $A = a\mu^{-1} \in Q(R)$ with $AQ(R)\bar{\alpha}(A) = 0$. Then $0 = a\mu^{-1}Q(R)\bar{\alpha}(a\mu^{-1}) = aQ(R)\alpha(a)\alpha(\mu^{-1}) = 0$, since $\mu^{-1}Q(R) = Q(R)$. This implies $aQ(R)\alpha(a) = 0$, and so $aR\alpha(a) = 0$. By assumption, we get a = 0 and hence A = 0, completing the claim. Thus the proof is done by Proposition 2.5, Proposition 2.9, Theorem 3.9 and the claim. \Box

For an algebra R over a nonzero commutative ring S, the Dorroh extension of R by S is the ring $D = R \times S$ with operations $(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2)$ and $(r_1, s_1)(r_2, s_2) = (r_1r_2 + s_1r_2 + s_2r_1, s_1s_2)$, where $r_i \in R, s_i \in S$. For an endomorphism α of R and the Dorroh extension of R by S, the nonzero map $\bar{\alpha} : D \to D$ defined by $\bar{\alpha}(r, s) = (\alpha(r), s)$ is an endomorphism of D.

Theorem 3.12 Let S be a commutative domain, α be a monomorphism of a ring R and D be the Dorroh extension of R by S. If R is a symmetric α -ring, then D is a symmetric $\bar{\alpha}$ -ring.

Proof Assume that *R* is a symmetric α-ring. Let $D_1 = (r_1, s_1), D_2 = (r_2, s_2), D_3 = (r_3, s_3) \in D$ with $D_1 D_2 \bar{\alpha}(D_3) = 0$. Then we have $s_1 s_2 s_3 = 0$ and $r_1 r_2 \alpha(r_3) + s_1 r_2 \alpha(r_3) + s_2 r_1 \alpha(r_3) + s_1 s_2 \alpha(r_3) + s_3 r_1 r_2 + s_3 s_2 r_1 = 0$. Since *S* is a domain, $s_1 = 0$ or $s_2 = 0$ or $s_3 = 0$. If $s_1 = 0$, then $r_1 r_2 \alpha(r_3) + s_2 r_1 \alpha(r_3) + s_3 r_1 r_2 + s_3 s_2 r_1 = 0$. Since *R* is a symmetric α-ring with a monomorphism α, we have $\alpha(1) = 1$ by Proposition 2.10. It follows that $r_1(r_2 \alpha(r_3) + s_2 \alpha(r_3) + s_3 r_2 + s_3 s_2) = r_1(r_2 + s_2 \cdot 1)(\alpha(r_3) + s_3 \alpha(1)) = r_1(r_2 + s_2)\alpha(r_3 + s_3 \cdot 1) = 0$. Then $r_1(r_3 + s_3)\alpha(r_2 + s_2) = 0$, and hence $r_1 r_3 \alpha(r_2) + r_1 r_3 s_2 + r_1 s_3 \alpha(r_2) + r_1 s_3 s_2 = 0$. So $D_1 D_3 \bar{\alpha}(D_2) = (r_1 r_3 \alpha(r_2) + s_2 r_1 r_3 + s_2 s_3 r_1, s_1 s_3 s_2) = (r_1 r_3 \alpha(r_2) + s_3 r_1 \alpha(r_2) + s_1 r_3 \alpha(r_2) + r_1 r_3 s_2 + r_1 s_3 \alpha(r_2) + r_1 s_3 s_2, 0) = 0$. If $s_2 = 0$ or $s_3 = 0$, we also have $D_1 D_3 \bar{\alpha}(D_2) = 0$, including that the Dorroh extension *D* of *R* by *S* is a symmetric $\bar{\alpha}$ -ring. □

Corollary 3.13 ([8, Proposition 4.2(1)]) Let R be an algebra over a commutative ring S and D be the Dorroh extension of R by S. If R is symmetric and S is a domain, then D is also symmetric.

4. Weak symmetric α -rings

For a ring R, we denote by Nil_{*}(R) its lower nil-radical, Nil^{*}(R) its upper nil-radical and L-rad(R) its Levitzki radical. For a nonempty subset M of a ring R, the symbol $\langle M \rangle$ denotes the subring (may not with 1) generated by M. A ring R is called NI if nil(R) = Nil^{*}(R), and a ring R is called 2-primal if nil(R) = Nil_{*}(R). According to Chen et al.[4], a ring R is called

weakly 2-primal if $\operatorname{nil}(R) = L\operatorname{-rad}(R)$, and following Hong et al. [5], a ring R is called locally 2-primal if each finite subset generates a 2-primal ring. The following implications hold: reduced \Rightarrow symmetric \Rightarrow semicommutative \Rightarrow 2-primal \Rightarrow locally 2-primal \Rightarrow weakly 2-primal \Rightarrow NI-ring.

As an extension of weak symmetric rings, we now introduce the notion of a weak symmetric α -ring.

Definition 4.1 Let α be an endomorphism of a ring R. A ring R is called (right) weak symmetric α -ring if $ab\alpha(c) \in nil(R)$ implies $ac\alpha(b) \in nil(R)$ for $a, b, c \in R$.

Similarly, a ring R is said to be a left weak symmetric α -ring if $\alpha(a)bc \in \operatorname{nil}(R)$, then $\alpha(b)ac \in \operatorname{nil}(R)$ for $a, b, c \in R$.

It is easy to see that every subring S with $\alpha(S) \subseteq S$ of a (left) weak symmetric α -ring is also a (left) weak symmetric α -ring.

Obviously, if $\alpha = id_R$, then a (left) weak symmetric α -ring is a weak symmetric ring. Example 2.3 provides that if $\alpha \neq id_R$, there exists a weak symmetric ring which is not a weak symmetric α -ring.

Lemma 4.2 Let R be an (α, δ) -compatible ring. Then we have the following:

(1) If ab = 0, then $af_i^j(b) = 0$ for all $0 \leq i \leq j$ and $a, b \in R$;

(2) If abc = 0, then $a\delta(b)c = 0$, $a\delta^n \alpha^m(b)c = 0$, $af_i^j(b)c = 0$ for all $0 \leq i \leq j$, any non-negative integer m, n and $a, b, c \in R$;

(3) For $a, b \in R$ and any positive integer $m, ab \in nil(R)$ if and only if $a\alpha^m(b) \in nil(R)$;

(4) If $ab \in nil(R)$, then $a\delta^m(b) \in nil(R)$ for any $a, b \in R$ and any positive integer m;

(5) If R is an NI ring, then $ab \in \operatorname{nil}(R)$ implies $af_i^j(b) \in \operatorname{nil}(R)$ for all $0 \leq i \leq j$ and $a, b \in R$;

(6) If R is a weak symmetric α -ring, then $ab\alpha(c) \in nil(R)$ implies $ac\alpha^n(b) \in nil(R)$ for any positive integer n and $a, b, c \in R$.

Proof (1) Since R is (α, δ) -compatible, $ab = 0 \Longrightarrow a\alpha(b) = 0, a\delta(b) = 0 \Longrightarrow a\alpha^i(b) = 0, a\delta^j(b) = 0$ for all positive integer i, j. This implies that $af_i^j(b) = 0$ for all $0 \le i \le j$ and $a, b \in R$.

(2) First, we have $abc = 0 \implies \alpha(ab)c = 0 \implies \alpha(ab)\delta(c) = 0 \implies \alpha(a)\alpha(b)\delta(c) = 0 \implies 1.\alpha(a)\alpha(\alpha(b)\delta(c)) = 0 \implies a\alpha(b)\delta(c) = 0$ and $abc = 0 \implies a\delta(bc) = 0 \implies a\delta(b)c = 0$. On the other hand, $abc = 0 \implies a\alpha(bc) = 0 \implies a\alpha(b)c = 0 \implies a\alpha(b)c = 0 \implies a\alpha^m(b)c = 0 \implies a\delta^n\alpha^m(b)c = 0$ for any positive integer m, n. Thus we obtain that $a\alpha^i\delta^j(b)c = 0$, and hence $af_i^j(b)c = 0$ for all $0 \le i \le j$.

(3) It is an immediate consequence of [13, Lemma 3.1] and [15, Lemma 2.8].

(4) Since $ab \in nil(R)$, there exists some positive integer k such that $(ab)^k = 0$. In the following computations, we use freely (2):

$$\begin{aligned} (ab)^k &= ab(ab\cdots ab) = 0 \Rightarrow a\delta(b)(ab\cdots ab) = (a\delta(b)a)b(ab\cdots ab) = 0 \\ &\Rightarrow (a\delta(b)a)\delta(b)(ab\cdots ab) = 0 \Rightarrow \cdots \\ &\Rightarrow (a\delta(b))^{k-1}ab1 = 0 \Rightarrow (a\delta(b))^k = 0. \end{aligned}$$

This implies that $a\delta(b) \in \operatorname{nil}(R)$, and hence $a\delta^m(b) \in \operatorname{nil}(R)$ for any $a, b \in R$ and any positive

integer m.

(5) $ab \in \operatorname{nil}(R) \Longrightarrow a\alpha^i(b), a\delta^j(b) \in \operatorname{nil}(R) \Longrightarrow a\delta^j\alpha^i(b), a\alpha^i\delta^j(b) \in \operatorname{nil}(R)$ for all $i \ge 0$ and $j \ge 0$ by (3) and (4). Since R is NI, we have $af_i^j(b) \in \operatorname{nil}(R)$ for all $0 \le i \le j$.

(6) Since R is a weak symmetric α -ring, $ab\alpha(c) \in \operatorname{nil}(R) \Longrightarrow ac\alpha(b) \in \operatorname{nil}(R) \Longrightarrow ac\alpha^n(b) \in \operatorname{nil}(R)$ by (4), for $a, b, c \in R$ and any positive integer n. \Box

Lemma 4.3 Let R be a weakly 2-primal ring. If R is (α, δ) -compatible, and $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x; \alpha, \delta]$, then $f(x) \in \operatorname{nil}(R[x; \alpha, \delta])$ if and only if $a_i \in \operatorname{nil}(R)$ for each $0 \leq i \leq n$, that is, we have, $\operatorname{nil}(R[x; \alpha, \delta]) = \operatorname{nil}(R)[x; \alpha, \delta]$.

Proof Let $f(x) = \sum_{i=0}^{n} a_i x^i \in \operatorname{nil}(R[x; \alpha, \delta])$. Then there exists some positive integer k such that $0 = f(x)^k = (a_0 + a_1 x + \dots + a_n x^n)^k =$ "lower terms" $+ a_n \alpha^n(a_n) \alpha^{2n}(a_n) \cdots \alpha^{(k-1)n}(a_n) x^{nk}$. Thus, we have that

$$a_n \alpha^n (a_n) \alpha^{2n} (a_n) \cdots \alpha^{(k-1)n} (a_n) = 0$$

$$\Rightarrow a_n \alpha^n ((a_n) \alpha^n (a_n) \cdots \alpha^{(k-2)n} (a_n)) = 0$$

$$\Rightarrow a_n^2 \alpha^n (a_n) \cdots \alpha^{(k-3)n} (a_n) \alpha^{(k-2)n} (a_n) = 0$$

$$\Rightarrow a_n^3 \alpha^n (a_n) \cdots \alpha^{(k-3)n} (a_n) = 0$$

$$\Rightarrow \cdots \Rightarrow a_n^k = 0 \Rightarrow a_n \in \operatorname{nil}(R).$$

By Lemma 4.2, $a_n = 1 \cdot a_n \in \operatorname{nil}(R)$ implies $1 \cdot f_s^t(a_n) = f_s^t(a_n) \in \operatorname{nil}(R)$ for all $0 \leq s \leq t$. Let $Q = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$. Then we have

$$0 = (Q + a_n x^n)^k = (Q + a_n x^n)(Q + a_n x^n) \cdots (Q + a_n x^n)$$

= $(Q^2 + Q \cdot a_n x^n + a_n x^n \cdot Q + a_n x^n \cdot a_n x^n)(Q + a_n x^n) \cdots (Q + a_n x^n)$
= $\cdots = Q^k + \Delta$,

where $\Delta \in R[x; \alpha, \delta]$. Notice that the coefficients of Δ can be written as sums of monomials in a_i and $f_u^v(a_j)$ where $a_i, a_j \in \{a_0, a_1, \ldots, a_n\}$ and $0 \leq u \leq v$ are positive integers, and each monomial has a_n or $f_s^t(a_n)$. Since $\operatorname{nil}(R)$ is an ideal of R, we obtain that each monomial is in $\operatorname{nil}(R)$, and then $\Delta \in \operatorname{nil}(R)[x; \alpha, \delta]$. Thus we obtain $(a_0 + a_1x + \cdots + a_{n-1}x^{n-1})^k =$ "lower terms" $+a_{n-1}\alpha^{n-1}(a_{n-1})\cdots\alpha^{(n-1)(k-1)}(a_{n-1})x^{(n-1)k} \in \operatorname{nil}(R)[x; \alpha, \delta]$. By Lemma 4.2, we have

$$a_{n-1}\alpha^{n-1}(a_{n-1})\cdots\alpha^{(n-1)(k-1)}(a_{n-1}) \in \operatorname{nil}(R)$$

$$\Rightarrow a_{n-1}\alpha^{n-1}(a_{n-1}\alpha^{n-1}(a_{n-1})\cdots\alpha^{(n-1)(k-2)}(a_{n-1})) \in \operatorname{nil}(R)$$

$$\Rightarrow a_{n-1}^{2}\alpha^{n-1}(a_{n-1})\cdots\alpha^{(n-1)(k-2)}(a_{n-1}) \in \operatorname{nil}(R)$$

$$\Rightarrow a_{n-1}^{3}\alpha^{n-1}(a_{n-1})\cdots\alpha^{(n-1)(k-3)}(a_{n-1}) \in \operatorname{nil}(R)$$

$$\Rightarrow \cdots \Rightarrow a_{n-1}^{k-1} \in \operatorname{nil}(R) \Rightarrow a_{n-1} \in \operatorname{nil}(R).$$

Using induction on n, we have $a_i \in \operatorname{nil}(R)$ for all $0 \leq i \leq n$.

Conversely, consider the finite subset $\{a_0, a_1, \ldots, a_n\}$. Since R is weakly 2-primal, $\operatorname{nil}(R) = L - rad(R)$ and $\langle a_0, a_1, \ldots, a_n \rangle$ is nilpotent subring of R. So, there exists a positive integer k such that any product of k elements $a_{i1}a_{i2}\cdots a_{ik}$ from $\{a_0, a_1, \ldots, a_n\}$ is zero. Note that the

coefficients of $f(x)^{k+1} = (\sum_{i=0}^{n} a_i x^i)^{k+1}$ in $R[x; \alpha, \delta]$ can be written as sums of monomials of length k+1 in a_i and $f_u^v(a_j)$, where $a_i, a_j \in \{a_0, a_1, \ldots, a_n\}$ and $0 \leq u \leq v$ are positive integers. For each monomial $a_{i_1} f_{s_2}^{t_2}(a_{i_2}) \cdots f_{s_{k+1}}^{t_{k+1}}(a_{i_{k+1}})$, where $a_{i_1}, a_{i_2}, \ldots, a_{i_{k+1}} \in \{a_0, a_1, \ldots, a_n\}$ and t_j, s_j $(t_j \geq s_j, 2 \leq j \leq k+1)$ are nonnegative integers, we obtain $a_{i_1} f_{s_2}^{t_2}(a_{i_2}) \cdots f_{s_{k+1}}^{t_{k+1}}(a_{i_{k+1}}) = 0$ by Lemma 4.2. Thus, we have $f(x)^{k+1} = 0$ and hence $f(x) \in \operatorname{nil}(R[x; \alpha, \delta])$. \Box

Proposition 4.4 Let R be an (α, δ) -compatible weakly 2-primal ring. Then for $f(x) = \sum_{i=0}^{m} a_i x^i$, $g(x) = \sum_{j=0}^{n} b_j x^j$, $h(x) = \sum_{k=0}^{p} c_k x^k \in R[x; \alpha, \delta]$, and $c \in R$, we have the following: (1) $fg \in \operatorname{nil}(R[x; \alpha, \delta]) \Leftrightarrow a_i b_j \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$, $0 \leq j \leq n$;

- (0) f = (1) [D = (1
- (2) $fgc \in \operatorname{nil}(R[x;\alpha,\delta]) \Leftrightarrow a_i b_j c \in \operatorname{nil}(R) \text{ for all } 0 \leq i \leq m, \ 0 \leq j \leq n;$
- (3) $fgh \in \operatorname{nil}(R[x;\alpha,\delta]) \Leftrightarrow a_i b_j c_k \in \operatorname{nil}(R)$ for all $0 \leq i \leq m, 0 \leq j \leq n$ and $0 \leq k \leq p$.

Proof We refer to the proof of [15, Theorem 2.11] to show the proposition.

(1) (\Rightarrow) Let $f(x) = \sum_{i=0}^{m} a_i x^i$, $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x; \alpha, \delta]$ such that $fg \in \operatorname{nil}(R[x; \alpha, \delta])$. Then

$$f(x)g(x) = (\sum_{i=0}^{m} a_i x^i)(\sum_{j=0}^{n} b_j x^j)$$

= $\sum_{i=0}^{m} a_i f_0^i(b_0) + (\sum_{i=1}^{m} a_i f_1^i(b_0) + \sum_{i=0}^{m} a_i f_0^i(b_1))x + \dots + (\sum_{s+t=k}^{m} (\sum_{i=s}^{m} a_i f_s^i(b_t)))x^k + \dots + a_m \alpha^m(b_n)x^{m+n} \in \operatorname{nil}(R[x; \alpha, \delta]).$

Thus, we have the following system of equations by Lemma 4.3:

$$\Omega_{m+n} = a_m \alpha^m(b_n) \in \operatorname{nil}(R); \tag{1}$$

$$\Omega_{m+n-1} = a_m \alpha^m(b_{n-1}) + a_{m-1} \alpha^{m-1}(b_n) + a_m f_{m-1}^m(b_n) \in \operatorname{nil}(R);$$
(2)

$$\Omega_{m+n-2} = a_m \alpha^m(b_{n-2}) + \sum_{i=m-1}^m f_{m-1}^i(b_{n-1}) + \sum_{i=m-2}^m f_{m-2}^i(b_n) \in \operatorname{nil}(R);$$
(3)

$$\Omega_k = \sum_{s+t=k} \left(\sum_{i=s}^m a_i f_s^i(b_t) \right) \in \operatorname{nil}(R);$$
(4)

From Lemma 4.2 and Eq.(1), we have $a_m b_n \in \operatorname{nil}(R)$. Next we show that $a_i b_n \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$. If we multiply Eq.(2) on the left side by b_n , then $b_n a_{m-1} \alpha^{m-1}(b_n) \in \operatorname{nil}(R)$ since $\operatorname{nil}(R)$ is an ideal of R. Thus by Lemma 4.2, we obtain $b_n a_{m-1} b_n \in \operatorname{nil}(R)$, and so $b_n a_{m-1} \in \operatorname{nil}(R)$, $a_{m-1} b_n \in \operatorname{nil}(R)$. If we multiply Eq.(3) on the left side by b_n , since $\operatorname{nil}(R)$ is an ideal of R, we obtain

:

$$b_n a_{m-2} \alpha^{m-2}(b_n) = b_n \Omega_{m+n-2} - b_n a_m \alpha^m(b_{n-2}) - b_n a_{m-1} \alpha^{m-1}(b_{n-1}) - b_n a_m f_{m-1}^m(b_{n-1}) - b_n a_m f_{m-2}^m(b_n) - b_n a_m f_{m-2}^m(b_n) \in \operatorname{nil}(R).$$

Thus we obtain $b_n a_{m-2} \in \operatorname{nil}(R)$ and $a_{m-2}b_n \in \operatorname{nil}(R)$. Continuing this procedure yields $a_i b_n \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$, and so $a_i f_s^t(b_n) \in \operatorname{nil}(R)$ for any $0 \leq s \leq t$ and $0 \leq i \leq m$ by Lemma 4.2.

Thus it is easy to verify that $(\sum_{i=0}^{m} a_i x^i)(\sum_{j=0}^{n-1} b_j x^j) \in \operatorname{nil}(R[x; \alpha, \delta])$. Applying the preceding method repeatedly, we obtain that $a_i b_j \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$.

 $(\Leftarrow) \text{ Let } a_i b_j \in \text{nil}(R) \text{ for all } i, j. \text{ Then } a_i f_s^i(b_j) \in \text{nil}(R) \text{ for all } i, j \text{ and all position integer} \\ 0 \leqslant s \leqslant i \text{ by Lemma 4.2. Thus } \sum_{s+t=k} (\sum_{i=s}^m a_i f_s^i(b_t)) \in \text{nil}(R), \ k = 0, 1, 2, \dots, m+n. \text{ Hence} \\ fg = \sum_{k=0}^m (\sum_{s+t=k} (\sum_{i=s}^m a_i f_s^i(b_t))) x^k \in \text{nil}(R[x; \alpha, \delta]) \text{ by Lemma 4.3.} \\ (2) (\Rightarrow) \text{ We have}$

$$g(x)c = (\sum_{j=0}^{n} b_j x^j)c = \sum_{j=0}^{n} b_j f_0^j(c) + (\sum_{j=1}^{n} b_j f_1^j(c))x + \dots + (\sum_{j=s}^{n} b_j f_s^j(c))x^s + \dots + b_n \alpha^n(c)x^n$$

= $\Delta_0 + \Delta_1 x + \dots + \Delta_s x^s + \dots + \Delta_n x^n$,

where $\Delta_s = \sum_{j=s}^n b_j f_s^j(c), \ 0 \leq s \leq n$. By (1) we have $a_i \Delta_s = a_i (\sum_{j=s}^n b_j f_s^j(c)) \in \operatorname{nil}(R)$ for $0 \leq i \leq m$ and $0 \leq s \leq n$.

For s = n, we have $a_i \Delta_n = a_i b_n \alpha^n(c) \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$. Then by Lemma 4.2, we obtain $a_i b_n c \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$.

For s = n - 1, we have $a_i \Delta_{n-1} = a_i b_{n-1} \alpha^{n-1}(c) + a_i b_n f_{n-1}^n(c) \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$. Since $a_i b_n c \in \operatorname{nil}(R)$, we have $a_i b_n f_{n-1}^n(c) \in \operatorname{nil}(R)$ by Lemma 4.2. Thus, $a_i b_{n-1} \alpha^{n-1}(c) = a_i \Delta_{n-1} - a_i b_n f_{n-1}^n(c) \in \operatorname{nil}(R)$, and hence $a_i b_n c \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$.

Now suppose that k is a positive integer such that $a_i b_j c \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$ when j > k. We show that $a_i b_k c \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$.

If s = k, then for all $0 \leq i \leq m$, we have

$$a_i \Delta_k = a_i b_k \alpha^k(c) + a_i b_{k+1} f_k^{k+1}(c) + \dots + a_i b_n f_k^n(c) \in \operatorname{nil}(R).$$

Since $a_i b_j c \in \operatorname{nil}(R)$ for $0 \leq i \leq m$ and $k < j \leq n$, we have $a_i b_j f_k^j(c) \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$ and $k < j \leq n$ by Lemma 4.2. It follows that $a_i b_k \alpha^k(c) \in \operatorname{nil}(R)$, and hence $a_i b_k c \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$. Therefore, by induction we obtain $a_i b_j c \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$.

 (\Leftarrow) Suppose $a_i b_j c \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$. Then $a_i b_j f_s^j(c) \in \operatorname{nil}(R)$ and so $a_i \sum_{j=s}^n (b_j f_s^j(c)) \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$. By (1), we obtain $fgc \in \operatorname{nil}(R[x; \alpha, \delta])$. \Box

Theorem 4.5 Let R be a weakly 2-primal ring. If R is (α, δ) -compatible, then R is a weak symmetric α -ring if and only if the Ore extension $R[x; \alpha, \delta]$ of R is a weak symmetric $\bar{\alpha}$ -ring.

Proof Suppose that $R[x; \alpha, \delta]$ is a weak symmetric $\bar{\alpha}$ -ring. Since S is a subring of $R[x; \alpha, \delta]$ with $\bar{\alpha}(S) \subseteq S$, and hence is also a weak symmetric $\bar{\alpha}$ -ring. Thus R is a weak symmetric α -ring.

Conversely, assume that R is a weak symmetric α -ring. Let $f(x) = a_0 + a_1x + \cdots + a_nx^n, g(x) = b_0 + b_1x + \cdots + b_mx^m$, and $h(x) = c_0 + c_1x + \cdots + c_lx^l \in R[x; \alpha, \delta]$ with $fg\bar{\alpha}(h) \in \operatorname{nil}(R[x; \alpha, \delta])$. Then by Lemma 4.3, we have $a_ib_j\alpha(c_k) \in \operatorname{nil}(R)$ for all i, j, k, and hence $a_ic_k\alpha(b_j) \in \operatorname{nil}(R)$ for all i, j, k since R is a weak symmetric α -ring. This implies $fh\bar{\alpha}(g) \in \operatorname{nil}(R[x; \alpha, \delta])$ by Lemma 4.3, so $R[x; \alpha, \delta]$ is a weak symmetric $\bar{\alpha}$ -ring. \Box

Corollary 4.6 ([15, Theorem 2.12]) Let R be a reversible ring. If R is α -compatible, then R is a weak symmetric α -ring if and only if the skew polynomial ring $R[x; \alpha]$ is a weak symmetric

 $\bar{\alpha}$ -ring.

Corollary 4.7 Let R be a weakly 2-primal ring. If R is α -compatible, then R is a weak symmetric α -ring if and only if the skew polynomial ring $R[x; \alpha]$ is a weak symmetric $\bar{\alpha}$ -ring.

Corollary 4.8 Let R be a weakly 2-primal ring. If R is δ -compatible, then R is a weak symmetric α -ring if and only if the differential polynomial ring $R[x; \delta]$ is a weak symmetric $\bar{\alpha}$ -ring.

Corollary 4.9 Let R be a weakly 2-primal ring. Then R is a weak symmetric α -ring if and only if the polynomial ring R[x] is a weak symmetric $\bar{\alpha}$ -ring.

Corollary 4.10 ([15, Corollary 2.13]) Let R be a reversible ring. Then we have the following:

- (1) R is weak symmetric if and only if R[x] is weak symmetric;
- (2) If R is α -compatible, then R is weak symmetric if and only if R[x] is weak symmetric;

(3) If R is δ -compatible, then R is weak symmetric if and only if differential polynomial ring $R[x, \delta]$ is weak symmetric.

References

- D. D. ANDERSON, V. CAMILLO. Semigroups and rings whose zero products commute. Comm. Algebra, 1999, 27(6): 2847–2852.
- [2] M. BASER, A. HARMANCI, T. K. KWAK. Generalized semicommutative rings and their extensions. Bull. Korean Math. Soc., 2008, 45(2): 285–297.
- [3] M. BASER, F. KAYNARCA, T. K. KWAK. Ring endomorphisms with the reversible condition. Comm. Korean Math. Soc., 2010, 25(3): 349–364.
- [4] Weixin CHEN, Shuying CUI. On weakly semicommutative rings. Comm. Math. Res., 2011, 27(2): 179–192.
 [5] C. Y. HONG, H. K. KIM, N. K. KIM, et al. Rings whose nilpotent elements form a Levitzki radical ring. Comm. Algebra, 2007, 35(4): 1379–1390.
- [6] C. Y. HONG, N. K. KIM, T. K. KWAK. Ore extensions of Baer and p.p.-rings. J. Pure Appl. Algebra, 2000, 151(3): 215–226.
- [7] C. Y. HONG, T. K. KWAK, S. T. RIZVI. Extensions of generalized Armendariz rings. Algebra Colloq., 2006, 13(2): 253–266.
- [8] C. HUH, H. K. KIM, N. K. KIM, et al. Basic examples and extensions of symmetric rings. J. Pure Appl. Algebra, 2005, 202(1-3): 154–167.
- [9] N. K. KIM, Y. LEE. extensions of reverseble rings. J. Pure Appl. Algebra, 2003, 185: 207–223.
- [10] T. K. KWAK. Extensions of extended symmetric ring. Bull. Korean Math. Soc., 2007, 44(4): 777–788.
- [11] G. KAFKAS, B. UNGOR, S. HALICIOGLU, et al. Generalized symmetric rings. Algebra Discrete Math., 2011, 12(2): 72–84.
- [12] J. LAMBEK. On the representation of modules by sheaves of factor modules. Canad. Math. Bull., 1971, 14(3): 359–368.
- [13] Li LIANG, Limin WANG, Zhongkui LIU. On a generalization of semicommutative rings. Taiwanese J. Math., 2007, 11(5): 1359–1368.
- [14] G. MARKS. Reversible and symmetric rings. J. Pure Appli. Algebra, 2002, 174: 311–318.
- [15] Lunqun OUYANG, Huanyin CHEN. On weak symmetric rings. Comm. Algebra, 2010, 38(2): 697–713.
- [16] H. POURTAHERIAN, I. S. RAKHIMOV. On skew version of reversible rings. Int. J. Pure Appl. Math., 2011, 73(3): 267–280.
- [17] Yao WANG, Qing SHEN, Yanli REN. Rings with the semicommutative endomorphisms. J. Jilin Univ. (Science Edition), 2013, 51(6): 997–1003 (in Chinese).
- [18] L. B. YAKOUB, M. LOUZARI. Ore extensions of extended symmetric and reversible rings. Int. J. Algebra, 2009, 3(9-12): 423–433.