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Abstract Let R be a ring with an endomorphism α and an α-derivation δ. We introduce the

notions of symmetric α-rings and weak symmetric α-rings which are generalizations of sym-

metric rings and weak symmetric rings, respectively, discuss the relations between symmetric

α-rings and related rings and investigate their extensions. We prove that if R is a reduced ring

and α(1) = 1, then R is a symmetric α-ring if and only if R[x]/(xn) is a symmetric ᾱ-ring for

any positive integer n. Moreover, it is proven that if R is a right Ore ring, α an automorphism

of R and Q(R) the classical right quotient ring of R, then R is a symmetric α-ring if and only

if Q(R) is a symmetric ᾱ-ring. Among others we also show that if a ring R is weakly 2-primal

and (α, δ)-compatible, then R is a weak symmetric α-ring if and only if the Ore extension

R[x;α, δ] of R is a weak symmetric ᾱ-ring.

Keywords symmetric α-ring; weak symmetric α-ring; polynomial extension; classical quo-

tient ring extension; Ore extension
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1. Introduction

Throughout this paper R denotes an associative ring with identity, and α is a nonzero

endomorphism of R. Recall that a ring R is called reduced if it has no nonzero nilpotent elements;

R is reversible if ab = 0 implies ba = 0 for all a, b ∈ R; R is semicommutative if ab = 0 implies

aRb = 0 for all a, b ∈ R; an endomorphism α of a ring R is called rigid if aα(a) = 0 implies a = 0

for a ∈ R, and R is called α-rigid if there exists a rigid endomorphism α of R. Baser et al. [3]

introduced the concept of α-shifting rings and investigated characterizations of the generalized

reversible rings. A ring R is said to be right (left) α-shifting if whenever aα(b) = 0 (α(a)b = 0)

for a, b ∈ R, bα(a) = 0 (α(b)a = 0). Baser et al. [2] extended the concept of semicommutative

rings and called a ring R α-semicommutative if ab = 0 implies aRα(b) = 0 for all a, b ∈ R.

Recently, we introduced the concept of semicommutative α-rings in [17]. A ring R is called a
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right (left) semicommutative α-ring if aα(b) = 0 (α(a)b = 0) implies α(a)Rb = 0 (aRα(b) = 0)

for all a, b ∈ R. According to Lambek [12], a ring R is called symmetric if abc = 0 implies acb = 0

for all a, b, c ∈ R. Anderson and Camillo [1] showed that a ring R is symmetric if and only if

r1r2 · · · rn = 0 implies rσ(1)
rσ(2)

· · · rσ(n)
= 0 for any permutation σ of the set {1, 2, . . . , n} and

ri ∈ R. There are many papers to study symmetric rings and their generalization [5,8,11,14,18].

In Kwak [10], an endomorphism α of a ring R is called right (left) symmetric if whenever abc = 0

for a, b, c ∈ R, acα(b) = 0 (α(b)ac = 0). A ring R is called right (left) α-symmetric if there

exists a right (left) symmetric endomorphism α of R. The notion of an α-symmetric ring is a

generalization of α-rigid rings as well as an extension of symmetric rings. Following [15], a ring

R is called weak symmetric if abc ∈ nil(R) implies acb ∈ nil(R) for all a, b, c ∈ R, where nil(R)

is the set of all nilpotent elements of R. Let α be an endomorphism and δ an α-derivation of R,

that is, δ is an additive map such that δ(ab) = δ(a)b+α(a)δ(b), for a, b ∈ R. When α = idR, an

α-derivation δ is called a derivation of R. A ring R is said to be weak α-symmetric if abc ∈ nil(R)

implies acα(b) ∈ nil(R) for a, b, c ∈ R. Moreover, R is said to be weak δ-symmetric if abc ∈ nil(R)

implies acδ(b) ∈ nil(R) for a, b, c ∈ R. If R is both weak α-symmetric and weak δ-symmetric,

then R is called weak (α, δ)-symmetric. Ouyang and Chen [15] studied the related properties of

weak symmetric rings and weak (α, δ)-symmetric rings.

Motivated by the above, for an endomorphism α of a ring R, we introduce the notions of

symmetric α-rings and weak symmetric α-rings to extend symmetric rings and weak symmet-

ric rings, respectively, discuss the relations between symmetric α-rings and related rings and

investigate their extensions.

Let α be an endomorphism and δ an α-derivation of R. We denote by R[x;α, δ] the Ore

extension whose elements are the polynomials over R, the addition is defined as usual, and

the multiplication subject to the relation xr = α(r)x + δ(r) for any r ∈ R. In particular, if

δ = 0R, we denote by R[x;α] the skew polynomial ring; if α = 1R, we denote by R[x; δ] the

differential polynomial ring. For an endomorphism α and an α-derivation δ, a ring R is said to

be α-compatible if for each a, b ∈ R, ab = 0 if and only if aα(b) = 0. Moreover, R is called

δ-compatible if ab = 0 implies aδ(b) = 0 for each a, b ∈ R. If R is both α-compatible and

δ-compatible, then R is called (α, δ)-compatible. In the following, for integers i, j with 0 6 i 6 j,

f j
i ∈ End(R,+) will denote the map which is the sum of all possible words in α, δ built with

i letters α and j − i letters δ. For instance, f4
2 = α2δ2 + δ2α2 + δα2δ + αδ2α + αδαδ + δαδα.

In particular, f0
0 = 1, f i

i = αi, f i
0 = δi, f j

j−1 = αj−1δ + αj−2δα + · · · + δαj−1. For every

f j
i ∈ End(R,+) with 0 6 i 6 j, it has Ci

j monomials in α, δ built with i letters α and j− i letters

δ. It is well known that for any integer n and r ∈ R, we have xnr =
∑n

i=0 f
n
i (r)x

i in the ring

R[x;α, δ].

2. Symmetric α-rings and related rings

As an extension of symmetric rings, now we give the following

Definition 2.1 Let R be a ring and α a nonzero endomorphism of R. We say that R is a (right)
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symmetric α-ring if abα(c) = 0 implies acα(b) = 0 for a, b, c ∈ R.

Similarly, a ring R is said to be a left symmetric α-ring whenever α(a)bc = 0 for a, b, c ∈ R,

α(b)ac = 0.

Obviously, if α = idR, the identity endomorphism of R, a (left) symmetric α-ring is a

symmetric ring. In general, a right α-symmetric ring need not be a symmetric α-ring.

Example 2.2 Let R = F [x] be the polynomial ring over a field F and α : R → R, α(f(x)) = f(0)

for f(x) ∈ R. The α is an endomorphism of R but not a monomorphism, and R is an α-symmetric

ring by Kwak [10, Example 2.7 (2)]. But for any 0 ̸= f(x) ∈ R and g(x) = x + a, h(x) = x ∈ R

where a ̸= 0, we have f(x)g(x)α(h(x)) = 0, f(x)h(x)α(g(x)) ̸= 0. Hence R is not a symmetric

α-ring.

The next example shows that if α ̸= idR, a symmetric α-ring need not be symmetric and

a left symmetric α-ring also need not be a left symmetric α-ring. Therefore, the classes of

symmetric α-rings and left symmetric α-rings are both non-trivial extension of symmetric rings,

the symmetric α-property for a ring is not left-right symmetric and the concepts of symmetric

α-rings and left symmetric α-rings are independent of each other.

Example 2.3 Consider the ring R =

{(
a b

0 c

)
|a, b, c ∈ Z

}
, where Z is the ring of integers

and the endomorphism α : R → R, α

((
a b

0 c

))
=

(
a 0

0 0

)
. It is easy to verify that

R is not symmetric. Let A =

(
a1 b1

0 c1

)
,B =

(
a2 b2

0 c2

)
,C =

(
a3 b3

0 c3

)
∈ R with

ABα(C) = 0. Then a1a2a3 = 0, so we have a1a3a2 = 0 and ACα(B) = 0, concluding that

R is a symmetric α-ring. For A =

(
0 1

0 1

)
,B =

(
1 1

0 0

)
,C =

(
1 1

0 1

)
∈ R, we have

α(A)BC = 0, but α(B)AC =

(
0 1

0 0

)
̸= 0. So R is not a left symmetric α-ring.

In the following, we focus our attention on symmetric α-rings.

Proposition 2.4 For a nonzero endomorphism α of a ring R, the following statements are

equivalent:

(1) R is a symmtric α-ring;

(2) lR(bα(c)) ⊆ lR(cα(b)), for any a, b, c ∈ R;

(3) ABα(C) = 0 if and only if ACα(B) = 0, for any A,B,C ⊆ R;

(4) lR(Bα(C)) ⊆ lR(Cα(B)), for any A,B,C ⊆ R.

Proof (1) ⇐⇒ (3). Suppose that ACα(B) = 0 for A,B,C ⊆ R. Then abα(c) = 0 for any

a ∈ A, b ∈ B, c ∈ C, and hence acα(b) = 0. Therefore, ACα(B) = {
∑

aiciα(bi)|ai ∈ A, bi ∈
B, ci ∈ C} = 0. The converse is obvious.

(1) ⇐⇒ (2) and (3) ⇐⇒ (4) is obvious. �
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Proposition 2.5 For a nonzero endomorphism α of a ring R, the following statements are

equivalent:

(1) R is an α-rigid ring;

(2) R is a symmetric α-ring and aRα(a) = 0 implies a = 0 for any a ∈ R;

(3) R is a left symmetric α-ring and α(a)Ra = 0 implies a = 0 for any a ∈ R.

Proof (1) ⇒ (2). Assume that R is α-rigid. Then R is reduced and α is a monomorphism by [6].

For a, b, c ∈ R with abα(c) = 0, we have 0 = abα(c)cα(a)α(b) = abcα(a)α(b)α(c) = abcα(abc)

and hence abc = 0, bac = 0 since R is an α-rigid ring. It gives that 0 = acα(bac)α2(b) =

acα(b)α(a)α(c)α2(b) = acα(b)α(acα(b)), and hence acα(b) = 0. So R is a symmetric α-ring. For

a ∈ R with aRα(a) = 0, we have aα(a) = 0. This implies that a = 0.

(2) ⇒ (1). Suppose that aα(a) = 0 for a ∈ R. Then we have 1 · aα(a)α(r) = 1 · aα(ar) = 0

for all r ∈ R. Since R is a symmetric α-ring, 1 · arα(a) = arα(a) = 0. Thus, we get a = 0 by the

assumption, concluding that R is an α-rigid ring.

Similarly, we can prove (3) ⇐⇒ (1). �

Proposition 2.6 Let α be a nonzero endomorphism of a ring R. Then we have the following:

(1) The class of symmtric α-rings is closed under α-subrings (not necessarily with identity);

(2) If R is a (left) symmetric α-ring, then R is a right (left) α-shifting ring.

Proof (1) By Definition 2.1.

(2) Suppose that aα(b) = 0 for a, b ∈ R. Then 0 = 1·aα(b) implies that 1·bα(a) = bα(a) = 0.

�
In general, the converses of Proposition 2.6(2) does not hold, and a right α-shifting ring

need not be a right semicommutative α-ring.

Example 2.7 Let Z2 be the ring of integers module 2, R = Z2

⊕
Z2 and α : R → R be an endo-

morphism of R defined by α((a, b)) = (b, a) for any (a, b) ∈ R. Suppose (a, b)α((c, d)) = (ad, bc) =

0 for (a, b), (c, d) ∈ R. Then we have (c, d)α((a, b)) = (cb, da) = 0, concluding that R is a right α-

shifting ring. However, R is not a symmetric α-ring. In fact, for A = (1, 0), B = (0, 1), C = (1, 1),

we have ABα(C) = (1, 0)(0, 1)(1, 1) = 0, but ACα(B) = (1, 0)(1, 1)(1, 0) = (1, 0) ̸= 0.

Example 2.8 Let R and α be as in Example 2.3. It is easy to verify that R is a right α-shifting

ring. Taking A =

(
1 1

0 1

)
, B =

(
0 1

0 1

)
and C =

(
1 1

0 2

)
∈ R, we have Aα(B) = 0,

but α(A)CB =

(
0 2

0 0

)
̸= 0. So R is not a right semicommutative α-ring.

[9, Example 1.5] provides an example which is a right semicommutative α-ring but not a

right α-shifting ring.

Let R be a ring and α an endomorphism of R. According to Pourtaherian-Rakhimov [16],

a ring R is called satisfying the condition (Cα) if whenever aα(b) = 0 with a, b ∈ R, then ab = 0.
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α-rigid rings and α-compatible rings are such rings.

Proposition 2.9 Let α be an endomorphism of a ring R. If R satisfies the condition (Cα), then

the following statements are equivalent:

(1) R is a symmetric ring;

(2) R is a right α-symmetric ring;

(3) R is a (right) symmetric α-ring.

Proof (1) ⇔ (2). It is a straight corollary of [18, Lemma 3.1 (2)].

(2) ⇒ (3). Suppose that R is a right α-symmetric ring and a, b, c ∈ R with abα(c) = 0.

Then we have that abc = 0 by the condition (Cα) and acα(b) = 0 since R is right α-symmetric.

This shows that R is a symmetric α-ring.

(3) ⇒ (2). Assume that R is a symmetric α-ring. Then R is a right α-shifting ring by

Proposition 2.6, and hence R is reversible by [18, Lemma 3.1(1)]. Now let abc = 0 for a, b, c ∈ R.

Then α(ab)α(c) = 0, and hence α(c)α(ab) = 0 by the reversibility. So α(c)ab = 0 = abα(c) by

the condition (Cα). It follows that acα(b) = 0 since R is a symmetric α-ring. This shows that R

is a right α-symmetric ring. �

Corollary 2.10 Let α be a monomorphism of a ring R. If R is an α-compatible ring, then the

following are equivalent:

(1) R is a symmetric ring;

(2) R is a right α-symmetric ring;

(3) R is a symmetric α-ring.

Proposition 2.11 Let R be a ring with an endomorphism α. If R is a symmetric α-ring, then

the following are equivalent:

(1) α is a monomorphism;

(2) α(1) = 1, where 1 is the identity of R.

Proof (1) ⇒ (2). Assume that α is a monomorphism. Then (1−α(1))α(1) = 1·(1−α(1))α(1) = 0

implies 1 · 1 · α(1− α(1)) = α(1− α(1)) = 0. So we have 1− α(1) = 0, α(1) = 1.

(2) ⇒ (1). Suppose that α(1) = 1. Let α(a) = α(b) for a, b ∈ R. Then we have α(a− b) =

1 · 1 · α(a − b) = 0 and (a − b)α(1) = a − b = 0 since R is a symmetric α-ring. Hence α is a

monomorphism. �
A ringR is called Armendariz if whenever polynomials f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ∈

R[x] satisfy f(x)g(x) = 0, then aibj = 0 for all i, j. For an endomorphism α of a ring R, R

is called α-Armendariz if for f(x) = a0 + a1x + · · · + anx
n and g(x) = b0 + b1x + · · · + bmxm

∈ R[x;α], fg = 0 implies aibj = 0 for all 0 ≤ i ≤ m and 0 ≤ j ≤ n.

Proposition 2.12 Let R be an α-Armendariz ring with an endomorphism α. Then following

statements are equivalent:

(1) R[x;α] is symmetric;
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(2) R is α-symmetric;

(3) R is right α-symmetric;

(4) R is symmetric;

(5) R is a (left) symmetric α-ring.

Proof By Kwak [10, Theorem 2.10], we can see that (1) ⇔ (2) ⇔ (3) ⇔ (4).

Now, we show (2) ⇒ (5). Assume that R is α-symmetric. Then R is symmetric by (4). Let

abα(c) = 0 for a, b, c ∈ R. Since R is an α-Armendariz ring, we get abc = 0 by [7, Proposition

1.3 (2)]. This implies that acα(b) = 0 since R is right α-symmetric, and hence R is a symmetric

α-ring. On the other hand, suppose that a, b, c ∈ R with α(a)bc = 0. We have bcα(a) = 0 by

the symmetry. Since R is an α-Armendariz ring, this implies bca = 0, and hence abc = 0. So

α(b)ac = 0 since R is a left α-symmetric ring. Therefore, R is a left symmetric α-ring.

Next, we show (5) ⇒ (2). Assume that R is a left symmetric α-ring. If abc = 0 for

a, b, c ∈ R, then α(a)bc = 0 by [7, Proposition 1.3 (1)]. It follows that α(b)ac = 0 since R is

a left symmetric α-ring. Hence R is left α-symmetric. On the other hand, assume that R is

a symmetric α-ring. If abc = 0 for a, b, c ∈ R, then cab = 0 since R is symmetric, and hence

α(c)ab = 0 by [7, Proposition 1.3 (1)]. Thus, we get abα(c) = 0. It implies acα(b) = 0 since R is

a symmetric α-ring, concluding that R is right α-symmetric. �

3. Extensions of symmetric α-rings

For an endomorphism α of a ring R, an ideal I of R is called α-ideal if α(I) ⊆ I. For an

α-ideal I of R, the map ᾱ : R/I −→ R/I defined by ᾱ(ā) = α(a) is an endomorphism of the

factor ring R/I. Recall that if α is an endomorphism of a ring R, then the map ᾱ: R[x] −→ R[x]

defined by ᾱ(
∑m

i=0 aix
i) =

∑m
i=0 α(ai)x

i is an endomorphism of the polynomial ring R[x] and

clearly this map extends α.

Theorem 3.1 Let R be a reduced ring and α(1) = 1. Then R is a symmetric α-ring if and

only if R[x]/(xn) is a symmetric ᾱ-ring, where (xn) is the ideal generated by xn, for any positive

integer n.

Proof (1) Suppose that R is a symmetric α-ring and set S = R[x]/(xn). If n = 1, then

S ∼= R. Now we assume n ≥ 2. Let A =
∑n−1

i=0 aiµ
i, B =

∑n−1
j=0 bjµ

j , C =
∑n−1

k=0 ckµ
k ∈ S with

ABᾱ(C) = 0, where µ = x+ (xn). Note that if i+ j + k ≥ n, then aibjα(ck)µ
i+j+k = 0. Hence

it suffices to show the cases i + j + k ≤ n − 1. We proceed by induction on i + j + k. From

ABᾱ(C) = 0, we have the following equations:

a0b0α(c0) = 0, (1)

a0b0α(c1) + a0b1α(c0) + a1b0α(c0) = 0, (2)

a0b0α(c2) + a0b1α(c1) + a0b2α(c0) + a1b1α(c0) + a2b0α(c0) + a1b0α(c1) = 0, (3)

· · ·
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a0b0α(cn−2) + · · ·+ a0bn−2α(c0) + · · ·+ an−2b0α(c0) + · · ·+ a1b0α(cn−3) = 0, (n-1)

a0b0α(cn−1) + · · ·+ a0bn−1α(c0) + · · ·+ an−1b0α(c0) + · · ·+ a1b0α(cn−2) = 0. (n)

Note that reduced ring R is semicommutative, and hence if ab = 0 for a, b ∈ R, then arb = 0

for any r ∈ R. In the following computations, we use freely this fact.

Multiplying Eq. (2) by a0b0 on the left side gives a0b0a0b0α(c1)+a0b0a0b1α(c0)+a0b0a1b0α(c0)

= 0, then 0 = a0b0a0b0α(c1) = (a0b0α(c1))
2, so a0b0α(c1) = 0. Thus we have

a0b1α(c0) + a1b0α(c0) = 0. (2′)

Multiplying Eq. (2′) by a0 on the left side gives 0 = a0a0b1α(c0) = (a0b1α(c0))
2, then we obtain

a1b0α(c0) = 0 and a0b1α(c0) = 0.

Thus we obtain a1b0α(c1) = 0, a0b1α(c1) = 0 and a1b1α(c0) = 0 in turn, and hence

aickα(bj) = 0 for i+ j + k = 1 since R is a symmetric α-ring, so ACᾱ(B) = 0.

Inductively we assume that aibjα(ck) = 0 for i+ j + k ≤ n− 2. Now for i+ j + k = n− 1,

multiplying Eq. (n) by a0b0 on the right side gives a0b0α(cn−1)a0b0 = 0 and a0b0α(cn−1) = 0, so

we get

a0b1α(cn−2) + · · ·+ a0bn−1α(c0) + · · ·+ an−1b0α(c0) + · · ·+ a1b0α(cn−2) = 0. (n′)

If we multiply Eq. (n)′ by a0 on the left side and by α(c0) on the right side, then we get

a0a0bn−1α(c0)α(c0) = 0, a0bn−1α(c0) = 0. Thus we have

a0b1α(cn−2) + · · ·+ a0bn−2α(c1) + · · ·+ an−1b0α(c0) + · · ·+ a1b0α(cn−2) = 0. (n′′)

Multiplying Eq. (n)′′ by b0α(c0) on the right side, we get an−1b0α(c0)b0α(c0) = 0, then an−1b0α(c0)

= 0. So we have

a0b1α(cn−2) + · · ·+ a0bn−2α(c1) + · · ·+ an−2b1α(c0) + · · ·+ a1b0α(cn−2) = 0. (n′′′)

If we multiply Eq. (n)′′′ on the right side by b1α(c0), b0α(c1), . . ., and b0α(cn−2), respectively,

then we obtain an−2b1α(c0) = 0, an−2b0α(c1) = 0, . . ., and a1b0α(cn−2) = 0 in turn. This shows

that aibjα(ck) = 0, and then aickα(bj) = 0 for all i, j and k with i + j + k = n − 1. It follows

that ACᾱ(B) = 0. Therefore, S is a symmetric ᾱ-ring.

Conversely, since R is a ᾱ-subring of R[x]/(xn), it is obvious by Proposition 2.6. �

Corollary 3.2 ([8, Theorem 2.3]) Let R be a reduced ring. Then R[x]/(xn) is a symmetric

ring, where (xn) is the ideal generated by xn and n is any positive integer.

Recall that an element µ of a ring R is right regular if µr = 0 implies r = 0 for r ∈ R.

Similarly, left regular is defined, and regular means if it is both left and right regular. Let ∆ be a

multiplicatively closed subset of R consisting of central regular elements. For an automorphism

α of R with α(∆) ⊆ ∆, the induced map ᾱ : ∆−1 → ∆−1 defined by ᾱ(µ−1a) = α(µ)−1α(a) is

also an automorphism.

Proposition 3.3 Let α be an automorphism of R and ∆ be a multiplicatively closed subset of

R consisting of central regular elements with α(∆) ⊆ ∆. Then R is a symmetric α-ring if and
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only if ∆−1R is a symmetric ᾱ-ring.

Proof It is enough to show the necessity by Proposition 2.6 (1).

Assume that R is a symmetric α-ring. Let ABᾱ(C) = 0 for A = µ−1a,B = ν−1b, C =

ω−1c ∈ ∆−1R, where a, b, c, µ, ν, ω ∈ R with µ, ν, ω regular. Since ∆ is contained in the central of

R, we haveABᾱ(C) = µ−1aν−1bα(ω)−1α(c) = (µ−1ν−1α(ω)−1)(abα(c)) = (µνα(ω))−1(abα(c)) =

0. This implies abα(c) = 0, and hence acα(b) = 0 since R is a symmetric α-ring. Thus, we have

ACᾱ(B) = µ−1aω−1cα(ν)−1α(b) = (µ−1ω−1α(ν)−1)(acα(b)) = (µωα(ν))−1(acα(b)) = 0, prov-

ing that ∆−1R is a symmetric ᾱ-ring. �

Corollary 3.4 ([8, Lemma 3.2 (1)]) Let R be a ring and ∆ a multiplicatively closed subset of

R consisting of central regular elements. Then R is symmetric if and only if so is ∆−1R.

The ring of Laurent polynomials in x, coefficients in a ring R, consists of all formal sum-

s
∑n

i=k mix
i with obvious addition and multiplication, where mi ∈ R and k, n are (possi-

bly negative) integers, denote it by R[x;x−1]. If α is an endomorphism R, then the map

ᾱ : R[x;x−1] → R[x;x−1] defined by ᾱ(
∑n

i=k aix
i) =

∑n
i=k α(ai)x

i extends α and also is an

endomorphism of R[x;x−1].

Proposition 3.5 Let R be a ring with an endomorphism α. Then R[x] is a symmetric ᾱ-ring

if and only if R[x;x−1] is a symmetric ᾱ-ring.

Proof Let ∆ = {1, x, x2, . . .}. Clearly, ∆ is a multiplicatively closed subset of R[x] consisting

of central regular elements and R[x;x−1] = ∆−1R[x]. It follows that R[x;x−1] is a symmetric

ᾱ-ring by Proposition 3.3. �

Corollary 3.6 ([8, Lemma 3.2 (2)]) Let R be a ring and ∆ a multiplicatively closed subset of

R consisting of central regular elements. Then R is symmetric if and only if so is ∆−1R.

Proposition 3.7 Let R be a ring with an endomorphism α. If R is an Armendariz ring, then

the following are equivalent:

(1) R is a symmetric α-ring;

(2) R[x] is a symmetric ᾱ-ring;

(3) R[x;x−1] is a symmetric ᾱ-ring.

Proof (1) ⇒ (2). Assume that R is a symmetric α-ring and f(x) =
∑l

i=0 aix
i, g(x) =∑m

j=0 bjx
j , h(x) =

∑n
k=0 ckx

k ∈ R[x] with f(x)g(x)ᾱ(h(x)) = 0. By [7, Lemma 3.5], we

have aibjα(ck) = 0 for all i, j, k since R is Armendariz. So aickα(bj) = 0 by (1), and hence

f(x)h(x)ᾱ(g(x)) = 0. Therefore, R[x] is a symmetric ᾱ-ring.

(2) ⇒ (3). Assume that R[x] is a symmetric ᾱ-ring. For f(x), g(x), h(x) ∈ R[x;x−1]

with f(x)g(x)ᾱ(h(x)) = 0, there exists a positive integer n such that f1(x) = f(x)xn, g1(x) =

g(x)xn, h1(x) = h(x)xn ∈ R[x] and f1(x)g1(x)ᾱ(h1(x)) = 0. Since R[x] is a symmetric ᾱ-ring,

f1(x)h1(x)ᾱ(g1(x)) = 0, then f(x)h(x))ᾱ(g(x)) = x−3nf1(x)h1(x)ᾱ(g1(x)) = 0. This proves

that R[x;x−1] is a symmetric ᾱ-ring.
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(3) ⇒ (1). It follows from the fact that R is a ᾱ-subring of R[x;x−1]. �

Corollary 3.8 ([8, Proposition 3.4]) Let R be an Armendariz ring. Then the following are

equivalent:

(1) R is a symmetric ring;

(2) R[x] is a symmetric ring;

(3) R[x;x−1] is a symmetric ring.

A ring R is called right Ore if given a, b ∈ R with b regular, then there exist a1, b1 ∈ R with

b1 regular such that ab1 = ba1. It is a well-known fact that R is a right Ore ring if and only if

the classical right quotient ring of R exists.

Suppose that the classical right quotient ring Q(R) of R exists. Then for an automorphism

α of R and any ab−1 ∈ Q(R) where a, b ∈ R with b regular, the induced map ᾱ : Q(R) → Q(R)

defined by ᾱ(ab−1) = α(a)α(b)−1 is an automorphism of Q(R).

Theorem 3.9 Let R be a right Ore ring, α an automorphism of R and Q(R) the classical right

quotient ring of R. Then R is a symmetric α-ring if and only if Q(R) is a symmetric ᾱ-ring.

Proof It suffices to establish the necessity by Proposition 2.6 (1).

Assume that R is a symmetric α-ring. Let A = aµ−1, B = bν−1, C = cω−1 ∈ Q(R)

with ABᾱ(C) = aµ−1bν−1α(c)α(ω)−1 = 0, where a, b, c, µ, ν, ω ∈ R with µ, ν, ω regular. Now,

there exist b1, µ1 ∈ R with µ1 regular such that bµ1 = µb1, µ
−1b = b1µ

−1
1 . Hence, ABᾱ(C) =

ab1µ
−1
1 ν−1α(c)α(ω)−1 = 0. Next, for α(c), v ∈ R there exist c1, ν1 ∈ R with ν1 regular such that

α(c)ν1 = νc1, ν
−1α(c) = c1ν

−1
1 , so ABᾱ(C) = ab1µ

−1
1 c1ν

−1
1 α(ω)−1 = 0. Similarly, also there

exist c2, µ2 ∈ R with µ2 regular such that c1µ2 = µ1c2, µ
−1
1 c1 = c2µ

−1
2 . Thus, we obtain that

ABᾱ(C) = ab1c2µ
−1
2 ν−1

1 α(ω)−1 = 0 and hence ab1c2 = 0. This implies 0 = ab1c2µ = aµb1c2 =

abµ1c2 = abc2µ1, and 0 = abc2 = abc2µ1 = abµ1c2 = abc1µ2. So we have 0 = abc1 = abc1ν =

abνc1 = abα(c)ν1. It follows that abα(c) = 0, and hence acα(b) = 0 since R is a symmetric

α-ring.

Similarly, there exist c3, µ3, b2, ω2, b4, µ4 ∈ R with µ3, ω2, µ4 regular such that cµ3 =

µc3, α(b)ω2 = ωb2, b2µ4 = µ3b4, and

ACᾱ(B) = ac3µ
−1
3 ω−1α(b)α(ν)−1 = ac3µ

−1
3 b2ω

−1
2 α(ν)−1 = ac3b4µ

−1
4 ω−1

2 α(ν)−1.

From acα(b) = 0, we have 0 = acα(b)ω2 = acωb2 = acb2ω, and hence 0 = acb2 = acb2µ4 =

acµ3b4 = acb4µ3. It follows that 0 = acb4 = acb4µ3 = acµ3b4 = aµc3b4 = ac3b4µ, and hence

ac3b4 = 0. Now we have ACᾱ(B) = 0, proving that Q(R) is a symmetric ᾱ-ring. �

Corollary 3.10 ([8, Theorem 4.1]) Let R be a ring and ∆ a multiplicatively closed subset of R

consisting of central regular elements. Then R is symmetric if and only if so is ∆−1R.

Theorem 3.11 Let R be a right Ore ring, α an automorphism of R and Q(R) the classical right

quotient ring of R. Assume that aRα(a) = 0 implies a = 0 for any a ∈ R. Then the following

statements are equivalent:

(1) R is a symmetric ring;
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(2) R is a right α-symmetric ring;

(3) R is a symmetric α-ring;

(4) Q is a symmetric ring;

(5) Q is an ᾱ-symmetric ring;

(6) Q is a symmetric ᾱ-ring.

Proof We claim that if R satisfies that aRα(a) = 0 implies a = 0 for any a ∈ R, then Q(R)

satisfies that AQ(R)ᾱ(A) = 0 implies A = 0 for any A ∈ Q(R). Let A = aµ−1 ∈ Q(R) with

AQ(R)ᾱ(A) = 0. Then 0 = aµ−1Q(R)ᾱ(aµ−1) = aQ(R)α(a)α(µ−1) = 0, since µ−1Q(R) =

Q(R). This implies aQ(R)α(a) = 0, and so aRα(a) = 0. By assumption, we get a = 0 and

hence A = 0, completing the claim. Thus the proof is done by Proposition 2.5, Proposition 2.9,

Theorem 3.9 and the claim. �

For an algebra R over a nonzero commutative ring S, the Dorroh extension of R by S is the ring

D = R × S with operations (r1, s1) + (r2, s2) = (r1 + r2, s1 + s2) and (r1, s1)(r2, s2) = (r1r2 +

s1r2 + s2r1, s1s2), where ri ∈ R, si ∈ S. For an endomorphism α of R and the Dorroh extension

of R by S, the nonzero map ᾱ : D → D defined by ᾱ(r, s) = (α(r), s) is an endomorphism of D.

Theorem 3.12 Let S be a commutative domain, α be a monomorphism of a ring R and D be

the Dorroh extension of R by S. If R is a symmetric α-ring, then D is a symmetric ᾱ-ring.

Proof Assume that R is a symmetric α-ring. Let D1 = (r1, s1), D2 = (r2, s2), D3 = (r3, s3) ∈ D

with D1D2ᾱ(D3) = 0. Then we have s1s2s3 = 0 and r1r2α(r3) + s1r2α(r3) + s2r1α(r3) +

s1s2α(r3) + s3r1r2 + s3s1r2 + s3s2r1 = 0. Since S is a domain, s1 = 0 or s2 = 0 or s3 = 0.

If s1 = 0, then r1r2α(r3) + s2r1α(r3) + s3r1r2 + s3s2r1 = 0. Since R is a symmetric α-ring

with a monomorphism α, we have α(1) = 1 by Proposition 2.10. It follows that r1(r2α(r3) +

s2α(r3) + s3r2 + s3s2) = r1(r2 + s2 · 1)(α(r3) + s3α(1)) = r1(r2 + s2)α(r3 + s3 · 1) = 0. Then

r1(r3+s3)α(r2+s2) = 0, and hence r1r3α(r2)+r1r3s2+r1s3α(r2)+r1s3s2 = 0. SoD1D3ᾱ(D2) =

(r1r3α(r2)+ s1r3α(r2)+ s3r1α(r2)+ s1s3α(r2)+ s2r1r3+s2s1r3+s2s3r1, s1s3s2) = (r1r3α(r2)+

s3r1α(r2) + s2r1r3 + s2s3r1, 0) = (r1r3α(r2) + r1r3s2 + r1s3α(r2) + r1s3s2, 0) = 0. If s2 = 0 or

s3 = 0, we also have D1D3ᾱ(D2) = 0, including that the Dorroh extension D of R by S is a

symmetric ᾱ-ring. �

Corollary 3.13 ([8, Proposition 4.2 (1)]) Let R be an algebra over a commutative ring S and

D be the Dorroh extension of R by S. If R is symmetric and S is a domain, then D is also

symmetric.

4. Weak symmetric α-rings

For a ring R, we denote by Nil∗(R) its lower nil-radical, Nil∗(R) its upper nil-radical and

L-rad(R) its Levitzki radical. For a nonempty subset M of a ring R, the symbol ⟨M⟩ denotes

the subring (may not with 1) generated by M . A ring R is called NI if nil(R) = Nil∗(R), and

a ring R is called 2-primal if nil(R) = Nil∗(R). According to Chen et al.[4], a ring R is called
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weakly 2-primal if nil(R) = L-rad(R), and following Hong et al. [5], a ring R is called locally

2-primal if each finite subset generates a 2-primal ring. The following implications hold: reduced

⇒ symmetric ⇒ semicommutative ⇒ 2-primal ⇒ locally 2-primal ⇒ weakly 2-primal ⇒ NI-ring.

As an extension of weak symmetric rings, we now introduce the notion of a weak symmetric

α-ring.

Definition 4.1 Let α be an endomorphism of a ring R. A ring R is called (right) weak symmetric

α-ring if abα(c) ∈ nil(R) implies acα(b) ∈ nil(R) for a, b, c ∈ R.

Similarly, a ring R is said to be a left weak symmetric α-ring if α(a)bc ∈ nil(R), then

α(b)ac ∈ nil(R) for a, b, c ∈ R.

It is easy to see that every subring S with α(S) ⊆ S of a (left) weak symmetric α-ring is

also a (left) weak symmetric α-ring.

Obviously, if α = idR, then a (left) weak symmetric α-ring is a weak symmetric ring.

Example 2.3 provides that if α ̸= idR, there exists a weak symmetric ring which is not a weak

symmetric α-ring.

Lemma 4.2 Let R be an (α, δ)-compatible ring. Then we have the following:

(1) If ab = 0, then af j
i (b) = 0 for all 0 6 i 6 j and a, b ∈ R;

(2) If abc = 0, then aδ(b)c = 0, aδnαm(b)c = 0, af j
i (b)c = 0 for all 0 6 i 6 j, any

non-negative integer m,n and a, b, c ∈ R;

(3) For a, b ∈ R and any positive integer m, ab ∈ nil(R) if and only if aαm(b) ∈ nil(R);

(4) If ab ∈ nil(R), then aδm(b) ∈ nil(R) for any a, b ∈ R and any positive integer m;

(5) If R is an NI ring, then ab ∈ nil(R) implies af j
i (b) ∈ nil(R) for all 0 6 i 6 j and a, b ∈ R;

(6) If R is a weak symmetric α-ring, then abα(c) ∈ nil(R) implies acαn(b) ∈ nil(R) for any

positive integer n and a, b, c ∈ R.

Proof (1) Since R is (α, δ)-compatible, ab = 0 =⇒ aα(b) = 0, aδ(b) = 0 =⇒ aαi(b) = 0, aδj(b) =

0 for all positive integer i, j. This implies that af j
i (b) = 0 for all 0 6 i 6 j and a, b ∈ R.

(2) First, we have abc = 0 =⇒ α(ab)c = 0 =⇒ α(ab)δ(c) = 0 =⇒ α(a)α(b)δ(c) = 0 =⇒
1.α(a)α(α(b)δ(c)) = 0 =⇒ aα(b)δ(c) = 0 and abc = 0 =⇒ aδ(bc) = 0 =⇒ aδ(b)c = 0. On the

other hand, abc = 0 =⇒ aα(bc) = 0 =⇒ aα(b)c = 0 =⇒ aαm(b)c = 0 =⇒ aδnαm(b)c = 0 for

any positive integer m,n. Thus we obtain that aαiδj(b)c = 0, and hence af j
i (b)c = 0 for all

0 6 i 6 j.

(3) It is an immediate consequence of [13, Lemma 3.1] and [15, Lemma 2.8].

(4) Since ab ∈ nil(R), there exists some positive integer k such that (ab)k = 0. In the

following computations, we use freely (2):

(ab)k = ab(ab · · · ab) = 0 ⇒ aδ(b)(ab · · · ab) = (aδ(b)a)b(ab · · · ab) = 0

⇒ (aδ(b)a)δ(b)(ab · · · ab) = 0 ⇒ · · ·

⇒ (aδ(b))k−1ab1 = 0 ⇒ (aδ(b))k = 0.

This implies that aδ(b) ∈ nil(R), and hence aδm(b) ∈ nil(R) for any a, b ∈ R and any positive
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integer m.

(5) ab ∈ nil(R) =⇒ aαi(b), aδj(b) ∈ nil(R) =⇒ aδjαi(b), aαiδj(b) ∈ nil(R) for all i > 0 and

j > 0 by (3) and (4). Since R is NI, we have af j
i (b) ∈ nil(R) for all 0 6 i 6 j.

(6) Since R is a weak symmetric α-ring, abα(c) ∈ nil(R) =⇒ acα(b) ∈ nil(R) =⇒ acαn(b) ∈
nil(R) by (4), for a, b, c ∈ R and any positive integer n. �

Lemma 4.3 Let R be a weakly 2-primal ring. If R is (α, δ)-compatible, and f(x) =
∑n

i=0 aix
i ∈

R[x;α, δ], then f(x) ∈ nil(R[x;α, δ]) if and only if ai ∈ nil(R) for each 0 ≤ i ≤ n, that is, we

have, nil(R[x;α, δ]) = nil(R)[x;α, δ].

Proof Let f(x) =
∑n

i=0 aix
i ∈ nil(R[x;α, δ]). Then there exists some positive integer k such

that 0 = f(x)k = (a0+a1x+· · ·+anx
n)k = “lower terms” +anα

n(an)α
2n(an) · · ·α(k−1)n(an)x

nk.

Thus, we have that

anα
n(an)α

2n(an) · · ·α(k−1)n(an) = 0

⇒ anα
n((an)α

n(an) · · ·α(k−2)n(an)) = 0

⇒ a2nα
n(an) · · ·α(k−3)n(an)α

(k−2)n(an) = 0

⇒ a3nα
n(an) · · ·α(k−3)n(an) = 0

⇒ · · · ⇒ akn = 0 ⇒ an ∈ nil(R).

By Lemma 4.2, an = 1 · an ∈ nil(R) implies 1 · f t
s(an) = f t

s(an) ∈ nil(R) for all 0 6 s 6 t. Let

Q = a0 + a1x+ · · ·+ an−1x
n−1. Then we have

0 = (Q+ anx
n)k = (Q+ anx

n)(Q+ anx
n) · · · (Q+ anx

n)

= (Q2 +Q · anxn + anx
n ·Q+ anx

n · anxn)(Q+ anx
n) · · · (Q+ anx

n)

= · · · = Qk +∆,

where ∆ ∈ R[x;α, δ]. Notice that the coefficients of ∆ can be written as sums of monomials

in ai and fv
u(aj) where ai, aj ∈ {a0, a1, . . . , an} and 0 6 u 6 v are positive integers, and each

monomial has an or f t
s(an). Since nil(R) is an ideal of R, we obtain that each monomial is in

nil(R), and then ∆ ∈ nil(R)[x;α, δ]. Thus we obtain (a0 + a1x + · · · + an−1x
n−1)k = “lower

terms” +an−1α
n−1(an−1) · · ·α(n−1)(k−1)(an−1)x

(n−1)k ∈ nil(R)[x;α, δ]. By Lemma 4.2, we have

an−1α
n−1(an−1) · · ·α(n−1)(k−1)(an−1) ∈ nil(R)

⇒ an−1α
n−1(an−1α

n−1(an−1) · · ·α(n−1)(k−2)(an−1)) ∈ nil(R)

⇒ a2n−1α
n−1(an−1) · · ·α(n−1)(k−2)(an−1) ∈ nil(R)

⇒ a3n−1α
n−1(an−1) · · ·α(n−1)(k−3)(an−1) ∈ nil(R)

⇒ · · · ⇒ ak−1
n−1 ∈ nil(R) ⇒ an−1 ∈ nil(R).

Using induction on n, we have ai ∈ nil(R) for all 0 6 i 6 n.

Conversely, consider the finite subset {a0, a1, . . . , an}. Since R is weakly 2-primal, nil(R) =

L − rad(R) and ⟨a0, a1, . . . , an⟩ is nilpotent subring of R. So, there exists a positive integer k

such that any product of k elements ai1ai2 · · · aik from {a0, a1, . . . , an} is zero. Note that the
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coefficients of f(x)k+1 = (
∑n

i=0 aix
i)k+1 in R[x;α, δ] can be written as sums of monomials of

length k+1 in ai and fv
u(aj), where ai, aj ∈ {a0, a1, . . . , an} and 0 6 u 6 v are positive integers.

For each monomial ai1f
t2
s2 (ai2) · · · f

tk+1
sk+1 (aik+1

), where ai1 , ai2 , . . . , aik+1
∈ {a0, a1, . . . , an} and

tj , sj (tj > sj , 2 6 j 6 k+1) are nonnegative integers, we obtain ai1f
t2
s2 (ai2) · · · f

tk+1
sk+1 (aik+1

) = 0

by Lemma 4.2. Thus, we have f(x)k+1 = 0 and hence f(x) ∈ nil(R[x;α, δ]). �

Proposition 4.4 Let R be an (α, δ)-compatible weakly 2-primal ring. Then for f(x) =∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j , h(x) =

∑p
k=0 ckx

k ∈ R[x;α, δ], and c ∈ R, we have the following:

(1) fg ∈ nil(R[x;α, δ]) ⇔ aibj ∈ nil(R) for all 0 6 i 6 m, 0 6 j 6 n;

(2) fgc ∈ nil(R[x;α, δ]) ⇔ aibjc ∈ nil(R) for all 0 6 i 6 m, 0 6 j 6 n;

(3) fgh ∈ nil(R[x;α, δ]) ⇔ aibjck ∈ nil(R) for all 0 6 i 6 m, 0 6 j 6 n and 0 6 k 6 p.

Proof We refer to the proof of [15, Theorem 2.11] to show the proposition.

(1) (⇒) Let f(x) =
∑m

i=0 aix
i, g(x) =

∑n
j=0 bjx

j ∈ R[x;α, δ] such that fg ∈ nil(R[x;α, δ]).

Then

f(x)g(x) =(
m∑
i=0

aix
i)(

n∑
j=0

bjx
j)

=

m∑
i=0

aif
i
0(b0) + (

m∑
i=1

aif
i
1(b0) +

m∑
i=0

aif
i
0(b1))x+ · · ·+ (

∑
s+t=k

(

m∑
i=s

aif
i
s(bt)))x

k+

· · ·+ amαm(bn)x
m+n ∈ nil(R[x;α, δ]).

Thus, we have the following system of equations by Lemma 4.3:

Ωm+n = amαm(bn) ∈ nil(R); (1)

Ωm+n−1 = amαm(bn−1) + am−1α
m−1(bn) + amfm

m−1(bn) ∈ nil(R); (2)

Ωm+n−2 = amαm(bn−2) +
m∑

i=m−1

f i
m−1(bn−1) +

m∑
i=m−2

f i
m−2(bn) ∈ nil(R); (3)

...

Ωk =
∑

s+t=k

(
m∑
i=s

aif
i
s(bt)) ∈ nil(R); (4)

From Lemma 4.2 and Eq.(1), we have ambn ∈ nil(R). Next we show that aibn ∈ nil(R)

for all 0 6 i 6 m. If we multiply Eq.(2) on the left side by bn, then bnam−1α
m−1(bn) ∈ nil(R)

since nil(R) is an ideal of R. Thus by Lemma 4.2, we obtain bnam−1bn ∈ nil(R), and so

bnam−1 ∈ nil(R), am−1bn ∈ nil(R). If we multiply Eq.(3) on the left side by bn, since nil(R) is

an ideal of R, we obtain

bnam−2α
m−2(bn) =bnΩm+n−2 − bnamαm(bn−2)− bnam−1α

m−1(bn−1)− bnamfm
m−1(bn−1)−

bnam−1f
m−1
m−2 (bn)− bnamfm

m−2(bn) ∈ nil(R).

Thus we obtain bnam−2 ∈ nil(R) and am−2bn ∈ nil(R). Continuing this procedure yields aibn ∈
nil(R) for all 0 6 i 6 m, and so aif

t
s(bn) ∈ nil(R) for any 0 6 s 6 t and 0 6 i 6 m by Lemma 4.2.
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Thus it is easy to verify that (
∑m

i=0 aix
i)(
∑n−1

j=0 bjx
j) ∈ nil(R[x;α, δ]). Applying the preceding

method repeatedly, we obtain that aibj ∈ nil(R) for all 0 6 i 6 m and 0 6 j 6 n.

(⇐) Let aibj ∈ nil(R) for all i, j. Then aif
i
s(bj) ∈ nil(R) for all i, j and all position integer

0 6 s 6 i by Lemma 4.2. Thus
∑

s+t=k(
∑m

i=s aif
i
s(bt)) ∈ nil(R), k = 0, 1, 2, . . . ,m + n. Hence

fg =
∑m

k=0(
∑

s+t=k(
∑m

i=s aif
i
s(bt)))x

k ∈ nil(R[x;α, δ]) by Lemma 4.3.

(2) (⇒) We have

g(x)c = (
n∑

j=0

bjx
j)c =

n∑
j=0

bjf
j
0 (c) + (

n∑
j=1

bjf
j
1 (c))x+ · · ·+ (

n∑
j=s

bjf
j
s (c))x

s + · · ·+ bnα
n(c)xn

= ∆0 +∆1x+ · · ·+∆sx
s + · · ·+∆nx

n,

where ∆s =
∑n

j=s bjf
j
s (c), 0 6 s 6 n. By (1) we have ai∆s = ai(

∑n
j=s bjf

j
s (c)) ∈ nil(R) for

0 6 i 6 m and 0 6 s 6 n.

For s = n, we have ai∆n = aibnα
n(c) ∈ nil(R) for all 0 6 i 6 m. Then by Lemma 4.2, we

obtain aibnc ∈ nil(R) for all 0 6 i 6 m.

For s = n− 1, we have ai∆n−1 = aibn−1α
n−1(c) + aibnf

n
n−1(c) ∈ nil(R) for all 0 6 i 6 m.

Since aibnc ∈ nil(R), we have aibnf
n
n−1(c) ∈ nil(R) by Lemma 4.2. Thus, aibn−1α

n−1(c) =

ai∆n−1 − aibnf
n
n−1(c) ∈ nil(R), and hence aibnc ∈ nil(R) for all 0 6 i 6 m.

Now suppose that k is a positive integer such that aibjc ∈ nil(R) for all 0 6 i 6 m when

j > k. We show that aibkc ∈ nil(R) for all 0 6 i 6 m.

If s = k, then for all 0 6 i 6 m, we have

ai∆k = aibkα
k(c) + aibk+1f

k+1
k (c) + · · ·+ aibnf

n
k (c) ∈ nil(R).

Since aibjc ∈ nil(R) for 0 6 i 6 m and k < j 6 n, we have aibjf
j
k(c) ∈ nil(R) for all 0 6 i 6 m

and k < j 6 n by Lemma 4.2. It follows that aibkα
k(c) ∈ nil(R), and hence aibkc ∈ nil(R) for

all 0 6 i 6 m. Therefore, by induction we obtain aibjc ∈ nil(R) for all 0 6 i 6 m and 0 6 j 6 n.

(⇐) Suppose aibjc ∈ nil(R) for all 0 6 i 6 m and 0 6 j 6 n. Then aibjf
j
s (c) ∈ nil(R)

and so ai
∑n

j=s(bjf
j
s (c)) ∈ nil(R) for all 0 6 i 6 m and 0 6 j 6 n. By (1), we obtain

fgc ∈ nil(R[x;α, δ]). �

Theorem 4.5 Let R be a weakly 2-primal ring. If R is (α, δ)-compatible, then R is a weak

symmetric α-ring if and only if the Ore extension R[x;α, δ] of R is a weak symmetric ᾱ-ring.

Proof Suppose that R[x;α, δ] is a weak symmetric ᾱ-ring. Since S is a subring of R[x;α, δ]

with ᾱ(S) ⊆ S, and hence is also a weak symmetric ᾱ-ring. Thus R is a weak symmetric α-ring.

Conversely, assume that R is a weak symmetric α-ring. Let f(x) = a0 + a1x + · · · +
anx

n, g(x) = b0 + b1x + · · · + bmxm, and h(x) = c0 + c1x + · · · + clx
l ∈ R[x;α, δ] with

fgᾱ(h) ∈ nil(R[x;α, δ]). Then by Lemma 4.3, we have aibjα(ck) ∈ nil(R) for all i, j, k, and

hence aickα(bj) ∈ nil(R) for all i, j, k since R is a weak symmetric α-ring. This implies

fhᾱ(g) ∈ nil(R[x;α, δ]) by Lemma 4.3, so R[x;α, δ] is a weak symmetric ᾱ-ring. �

Corollary 4.6 ([15, Theorem 2.12]) Let R be a reversible ring. If R is α-compatible, then R

is a weak symmetric α-ring if and only if the skew polynomial ring R[x;α] is a weak symmetric
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ᾱ-ring.

Corollary 4.7 Let R be a weakly 2-primal ring. If R is α-compatible, then R is a weak sym-

metric α-ring if and only if the skew polynomial ring R[x;α] is a weak symmetric ᾱ-ring.

Corollary 4.8 Let R be a weakly 2-primal ring. If R is δ-compatible, then R is a weak sym-

metric α-ring if and only if the differential polynomial ring R[x; δ] is a weak symmetric ᾱ-ring.

Corollary 4.9 Let R be a weakly 2-primal ring. Then R is a weak symmetric α-ring if and

only if the polynomial ring R[x] is a weak symmetric ᾱ-ring.

Corollary 4.10 ([15, Corollary 2.13]) Let R be a reversible ring. Then we have the following:

(1) R is weak symmetric if and only if R[x] is weak symmetric;

(2) If R is α-compatible, then R is weak symmetric if and only if R[x] is weak symmetric;

(3) If R is δ-compatible, then R is weak symmetric if and only if differential polynomial ring

R[x, δ] is weak symmetric.

References

[1] D. D. ANDERSON, V. CAMILLO. Semigroups and rings whose zero products commute. Comm. Algebra,

1999, 27(6): 2847–2852.

[2] M. BASER, A. HARMANCI, T. K. KWAK. Generalized semicommutative rings and their extensions. Bull.

Korean Math. Soc., 2008, 45(2): 285–297.

[3] M. BASER, F. KAYNARCA, T. K. KWAK. Ring endomorphisms with the reversible condition. Comm.

Korean Math. Soc., 2010, 25(3): 349–364.

[4] Weixin CHEN, Shuying CUI. On weakly semicommutative rings. Comm. Math. Res., 2011, 27(2): 179–192.

[5] C. Y. HONG, H. K. KIM, N. K. KIM, et al. Rings whose nilpotent elements form a Levitzki radical ring.

Comm. Algebra, 2007, 35(4): 1379–1390.

[6] C. Y. HONG, N. K. KIM, T. K. KWAK. Ore extensions of Baer and p.p.-rings. J. Pure Appl. Algebra,

2000, 151(3): 215–226.

[7] C. Y. HONG, T. K. KWAK, S. T. RIZVI. Extensions of generalized Armendariz rings. Algebra Colloq.,

2006, 13(2): 253–266.

[8] C. HUH, H. K. KIM, N. K. KIM, et al. Basic examples and extensions of symmetric rings. J. Pure Appl.

Algebra, 2005, 202(1-3): 154–167.

[9] N. K. KIM, Y. LEE. extensions of reverseble rings. J. Pure Appl. Algebra, 2003, 185: 207–223.

[10] T. K. KWAK. Extensions of extended symmetric ring. Bull. Korean Math. Soc., 2007, 44(4): 777–788.

[11] G. KAFKAS, B. UNGOR, S. HALICIOGLU, et al. Generalized symmetric rings. Algebra Discrete Math.,

2011, 12(2): 72–84.

[12] J. LAMBEK. On the representation of modules by sheaves of factor modules. Canad. Math. Bull., 1971,

14(3): 359–368.

[13] Li LIANG, Limin WANG, Zhongkui LIU. On a generalization of semicommutative rings. Taiwanese J. Math.,

2007, 11(5): 1359–1368.

[14] G. MARKS. Reversible and symmetric rings. J. Pure Appli. Algebra, 2002, 174: 311–318.

[15] Lunqun OUYANG, Huanyin CHEN. On weak symmetric rings. Comm. Algebra, 2010, 38(2): 697–713.

[16] H. POURTAHERIAN, I. S. RAKHIMOV. On skew version of reversible rings. Int. J. Pure Appl. Math.,

2011, 73(3): 267–280.

[17] Yao WANG, Qing SHEN, Yanli REN. Rings with the semicommutative endomorphisms. J. Jilin Univ.

(Science Edition), 2013, 51(6): 997–1003 (in Chinese).

[18] L. B. YAKOUB, M. LOUZARI. Ore extensions of extended symmetric and reversible rings. Int. J. Algebra,

2009, 3(9-12): 423–433.


