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Abstract In present paper, we study precisely the growth of analytic functions defined by

zero order Laplace-Stieltjes transformation converging in right plane. The coefficient char-

acterizations of generalized logarithmic p-type and generalized lower logarithmic p-type are

obtained, which improve the results of logarithmic type and lower logarithmic type.
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1. Introduction

Consider the Laplace-Stieltjes transform

F (s) =

∫ +∞

0

e−sxdα(x), s = σ + it, σ, t ∈ R (1.1)

where α(x) is a defined real-valued or complex-valued function with x ≥ 0, and it is of bounded

variation on any closed interval [0, X] (0 < X < +∞).

Put a sequence

0 = λ0 < λ1 < λ2 < · · · < λn ↑ +∞, (1.2)

which satisfies the following conditions

lim
n→∞

n

λn
= D < +∞, lim

n→∞
(λn+1 − λn) = h < +∞. (1.3)

It is known [1] that the transform (1.1) represents an analytic function F (s) in the right half

plane when the transform satisfies

lim
n→∞

logA∗
n

λn
= 0, (1.4)

where A∗
n = supλn<x≤λn+1,t∈R |

∫ x

λn
e−itydα(y)|.

Let D0 denote the class of all functions F (s) represented by (1.1) and satisfying conditions

(1.2) to (1.4). Kong [2] defined the order of F (s) ∈ D0 as

ρ = lim
σ→0

log+log+Mu(σ, F )

− log σ
,
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where Mu(σ, F ) = sup0<x<+∞,t∈R |
∫ x

0
e−(σ+it)ydα(y)| called the maximum modulus of F (s) in

the right half-place. A function F (s) is said to be of slow growth if ρ = 0. To study the growth

of the functions of slow growth, the concept of ρ(h, F )-order of F (s) was introduced by Luo [3]

as

ρ(h, F ) = lim
σ→0

h(log+Mu(σ, F ))

h(− log σ)
,

where h ∈ ∆ and ∆ is the class of all functions satisfying the following conditions (I) and (II):

(I) h(x) is defined on [a,∞) and is positive, strictly increasing, differentiable and tends to

∞ as x→ ∞;

(II) limx→∞
h(cx)
h(x) = 1 for all c, 0 < c <∞.

In particular, if h(x) = log[p](x), p ≥ 1 (log[1](x) = log x, log[p](x) = log(logp−1(x)), p ≥ 2), we

shall call ρ(h, F )-order as logarithmic p-order of F (s) and denote it ρp. In present paper, we

have introduced some new growth parameters to compare precisely the growths of two functions

belonging to D0 and having the same logarithmic p-order. For this, we first need the following

definition of logarithmic p-proximate order, which, for the case p = 1, includes the definition of

logarithmic proximate order, due to Xu [4].

Definition 1.1 A real valued function ρp(σ) is called a logarithmic p-proximate order if it

satisfies the following:

(1) ρp(σ) is a positive, continuous and piecewise differentiable function for all σ such that

0 < σ < σ0 <∞;

(2) limσ→∞ ρp(σ) = ρp (1 < ρp <∞);

(3) limσ→0 ρp
′(σ)σΠp+1

k=1log
[k](1/σ) = 0,

where ρp
′(σ) is either the right or the left hand derivative of ρp(σ) where they are different.

We now define the generalized logarithmic p-type Tp and generalized lower logarithmic p-

type tp of F (s) ∈ D0 with respect to a given logarithmic p-proximate order ρp(σ) as

Tp = lim
σ→0

log[p]Mu(σ, F )

(log[p](1/σ))
ρp(σ)

, tp = lim
σ→0

log[p]Mu(σ, F )

(log[p](1/σ))
ρp(σ)

. (1.5)

Definition 1.2 A logarithmic p-proximate order ρp(σ) is called a logarithmic p-proximate order

of F (s) ∈ D0 if 0 < Tp <∞.

Definition 1.3 F (s) ∈ D0 is said to be of perfectly regular logarithmic growth with respect to

its logarithmic p-proximate order ρp (σ) if Tp = tp <∞.

For a function F (s) ∈ D0, having logarithmic p-order ρp (1 < ρp < ∞), the existence of a

logarithmic p-proximate order ρp(σ) can be established on the lines of those used by Levin [5,

p. 35–39].

2. Some lemmas

Lemma 2.1 Let ρp(σ), p ≥ 1 be a logarithmic p-proximate order. Then the function (log[p](1/σ))ρp(σ)

is a monotonically decreasing function of σ for 0 < σ < σ0.
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Proof Let H(σ) = (log[p](1/σ))ρp(σ). Taking logarithm on both the sides and then differentiat-

ing with respect to σ, we get

H ′(σ) = ρp
′(σ)(log[p](1/σ))ρp(σ)log[p+1](1/σ)− ρp(σ)(log

[p](1/σ))
ρp(σ)

σ
p∏

k=1

log[k](1/σ)

.

On using the properties (2) and (3) of logarithmic -proximate order, we have

H ′(σ) <
(ε− ρp)(log

[p](1/σ))
ρp(σ)

σ
p∏

k=1

log[k](1/σ)

< 0, 0 < ε < ρp.

Hence the lemma follows. �
Since (log[p](1/σ))ρp(σ) is a monotonically decreasing function of σ for 0 < σ < σ0, a single

valued real function ψp(t) of t can be defined for t > t0 such that

t =
1

σ
if and only if ψp(t) = (log[p](1/σ))ρp(σ). (2.1)

If ψp(t) is defined as above, the following lemma follows easily.

Lemma 2.2 Let ρp(σ), p ≥ 1, be a logarithmic p-proximate order and let ψp(t) be as defined

in (2.1). Then

lim
t→∞

dlogψp(t)

dlog[p+1]t
= ρp (2.2)

and for every b (0 < b <∞)

lim
t→∞

ψp(t
b)

ψp(t)
= E(b, ρp) (2.3)

where E(b, ρp) = bρp for p = 1 and E(b, ρp) = 1 for p ≥ 2.

3. Main results

Theorem 3.1 Let F (s) ∈ D0 be given by (1.1). Assume that F (s) has logarithmic p-proximate

order ρp(σ) and logarithmic p-order ρp (1 < ρp < ∞). Then the generalized logarithmic p-type

Tp of F (s) with respect to the logarithmic p-proximate order ρp(σ) is given by

Tp = lim
n→∞

log[p]A∗
n

ψp(λn)
(3.1)

where ψp(λn) is defined by (2.1).

Remark 3.2 For p = 1, the above theorem is due to Theorem 3.2 of Xu [4].

Proof From (1.5), given ε > 0, there exists σ0 = σ0(ε) such that for 0 < σ < σ0, we have

logMu(σ, F ) < exp[p−1]{(Tp + ε)(log[p](1/σ))ρp(σ)}.

So we have

logA∗
n − σλn < exp[p−1]{(Tp + ε)(log[p](1/σ))ρp(σ)}
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for 0 < σ < σ0 and all n. Taking, in particular, σ = 1
λn

in the above inequality gives

logA∗
n − 1 < exp[p−1]{(Tp + ε)ψp(λn)}.

The above relation gives

θ ≤ Tp + ε,

where θ denotes the limit superior on the right hand side of (3.1). Since ε > 0 is arbitrary, this

in turn gives that

θ ≤ Tp. (3.2)

On the other hand, from the definition of θ, for given ε > 0, we have for all n > n0 = n0(ε),

log[p]A∗
n < (θ + ε)ψp(λn). (3.3)

Now, since (1.3) holds, we have n < D1λn for all n > n1 = n1(D1), where D1 > D. We can

assume without loss of generality that n0 > n1.

For any x > 0, there exists n ∈ N, λn ≤ x ≤ λn+1, such that∫ x

0

e−(σ+it)ydα(y) =
n−1∑
k=1

∫ λk+1

λk

e−(σ+it)ydα(y)+

∫ x

λn

e−(σ+it)ydα(y).

Let

Ik(x, it) =

∫ x

λk

e−itydα(y), λk ≤ x ≤ λk+1.

For any t ∈ R, we have

|Ik(x, it)| ≤ A∗
k ≤ µ(σ, F )eλkσ, σ > 0.

Hence for any x ∈ [λn, λn+1] and σ > 0∫ x

0

e−(σ+it)ydα(y) =
n−1∑
k=1

[e−λk+1σIk(λk+1, it)−
∫ λk+1

λk

Ik(y, it)de
−σy]+

e−xσIn(x, it)−
∫ x

λn

In(y, it)de
−σy.

So∣∣∣∫ x

0

e−(σ+it)ydα(y)
∣∣∣ ≤ n−1∑

k=1

|A∗
ke

−λk+1σ −A∗
k(e

−σλk+1 − e−σλk)|+ |A∗
ne

−xσ −A∗
n(e

−σx − e−σλn)|

≤
∞∑

n=1

A∗
ne

−λnσ.

Using (3.3), we have∣∣∣∫ x

0

e−(σ+it)ydα(y)
∣∣∣ ≤ Q(n0) +

∞∑
n=n0+1

exp{exp[p−1]{(θ + ε)ψp(λn)} − σλn}, (3.4)

where Q(n0), the sum of first terms n0, is bounded.

For each σ (σ > 0), we define a natural number n(σ) as

λn(σ) ≤
4

σ2
< λn(σ)+1.
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It is seen that exp[p−1]{bψp(x)}/x < 1/
√
x, 0 < b <∞, for all x > x0(b). Hence for σ sufficiently

close to 0 and all n > n(σ), we have

exp[p−1]{(θ + ε)ψp(λn)}
λn

<
1√

λn(σ)+1

<
σ

2
. (3.5)

Using (3.5), for all σ sufficiently close to 0, we have

∞∑
n=n(σ)+1

exp{exp[p−1]{(θ + ε)ψp(λn)} − σλn}

≤
∞∑

n=n(σ)+1

exp{−σλn
2

} ≤
∞∑

n=n(σ)+1

exp{−σn
2D1

}

≤ 1

1− exp{ −σ
2D1

}
∼ 2D1

σ
. (3.6)

Now, consider the function G(x), defines as

G(x) = exp[p−1]{(θ + ε)ψp(x)} − σx.

Let x∗ be defined as G(x∗) = max
x0≤x≤∞

G(x). Then

(θ + ε){
p−1

Π
k=1

exp[k]{(θ + ε)ψp(x∗)}}
dψp(x)

dx

∣∣∣
x=x∗

= σ, (3.7)

where the quantity inside the curly bracket is assumed to be 1 for p = 1. As σ → 0, the relation

(3,7), in view of (2.2), gives that

x∗ = (1/σ)1+o(1).

Thus,

max
x0≤x≤∞

G(x) ≤ exp[p−1]{(θ + ε)ψp((1/σ)
1+o(1))}. (3.8)

From (3.4), (3.6) and (3.8), we have

Mu(σ, F ) ≤ Q(n0) + n(σ)exp[p]{(θ + ε)ψp((1/σ)
1+o(1))} · 2D1

σ
.

Now, by the definition of n(σ), we have

Mu(σ, F ) ≤
(4D1)

2

σ3
exp[p]{(θ + ε)ψp((1/σ)

1+o(1))}

or

logMu(σ, F ) ≤ 4 log
1

σ
+ exp[p−1]{(θ + ε)ψp((1/σ)

1+o(1))}.

The above relation, in view of (2.3), gives that

Tp ≤ θ + ε.

And since ε > 0 is arbitrary, we have

Tp ≤ θ. (3.9)

In view of (3.2) and (3.9), the proof of the theorem is completed. �
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Theorem 3.3 Let F (s) ∈ D0 be given by (1.1). Assume that F (s) has logarithmic p-proximate

order ρp(σ) and logarithmic p-order ρp (1 < ρp < ∞). Let φ(n) =
logA∗

n−logA∗
n+1

λn+1−λn
be ultimately

a non-decreasing function of. Then the generalized lower logarithmic p-type tp of F (s) satisfies

tp ≤ lim
n→∞

log[p]A∗
n

ψp(λn)
(3.10)

where ψp(λn) is defined by (2.1). Further, if ψp(λn) ∼ ψp(λn+1) as n → ∞, then the equality

holds in (3.10).

Remark 3.4 For p = 1, the above theorem is due to Theorem 3.3 of Xu [4].

The proof of the theorem can be constructed by suitably adopting the techniques used in

[4] and the present paper and so we omit the proof.
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