Journal of Mathematical Research with Applications Jan., 2015, Vol. 35, No. 1, pp. 97–102 DOI:10.3770/j.issn:2095-2651.2015.01.009 Http://jmre.dlut.edu.cn

On the Proximate Type of Analytic Function Represented by Laplace-Stieltjes Transformation

Wanchun LU

Department of Mathematics, Pingxiang University, Jiangxi 337055, P. R. China

Abstract In present paper, we study precisely the growth of analytic functions defined by zero order Laplace-Stieltjes transformation converging in right plane. The coefficient characterizations of generalized logarithmic p-type and generalized lower logarithmic p-type are obtained, which improve the results of logarithmic type and lower logarithmic type.

 $\mathbf{Keywords}$ Laplace-Stieltjes transform; zero order; logarithmic p-type; lower logarithmic p-type

MR(2010) Subject Classification 30D15; 44A10

1. Introduction

Consider the Laplace-Stieltjes transform

$$F(s) = \int_0^{+\infty} e^{-sx} d\alpha(x), \quad s = \sigma + it, \ \sigma, t \in \mathbb{R}$$
 (1.1)

where $\alpha(x)$ is a defined real-valued or complex-valued function with $x \ge 0$, and it is of bounded variation on any closed interval [0, X] $(0 < X < +\infty)$.

Put a sequence

$$0 = \lambda_0 < \lambda_1 < \lambda_2 < \dots < \lambda_n \uparrow + \infty, \tag{1.2}$$

which satisfies the following conditions

$$\overline{\lim_{n \to \infty} \frac{n}{\lambda_n}} = D < +\infty, \quad \overline{\lim_{n \to \infty} (\lambda_{n+1} - \lambda_n)} = h < +\infty.$$
 (1.3)

It is known [1] that the transform (1.1) represents an analytic function F(s) in the right half plane when the transform satisfies

$$\overline{\lim_{n \to \infty}} \frac{\log A_n^*}{\lambda_n} = 0, \tag{1.4}$$

where $A_n^* = \sup_{\lambda_n < x \le \lambda_{n+1}, t \in \mathbb{R}} |\int_{\lambda_n}^x \mathrm{e}^{-\mathrm{i}ty} \mathrm{d}\alpha(y)|$.

Let D_0 denote the class of all functions F(s) represented by (1.1) and satisfying conditions (1.2) to (1.4). Kong [2] defined the order of $F(s) \in D_0$ as

$$\rho = \overline{\lim_{\sigma \to 0}} \frac{\log^{+} \log^{+} M_u(\sigma, F)}{-\log \sigma},$$

Received February 17, 2014; Accepted June 18, 2014

Supported by the Technology Project of Jiangxi Provincial Education Department (Grant No. GJJ13788).

E-mail address: luwanchun540@163.com

98 Wanchun LU

where $M_u(\sigma, F) = \sup_{0 < x < +\infty, t \in \mathbb{R}} |\int_0^x e^{-(\sigma + it)y} d\alpha(y)|$ called the maximum modulus of F(s) in the right half-place. A function F(s) is said to be of slow growth if $\rho = 0$. To study the growth of the functions of slow growth, the concept of $\rho(h, F)$ -order of F(s) was introduced by Luo [3] as

$$\rho(h, F) = \overline{\lim_{\sigma \to 0}} \frac{h(\log^+ M_u(\sigma, F))}{h(-\log \sigma)},$$

where $h \in \Delta$ and Δ is the class of all functions satisfying the following conditions (I) and (II):

- (I) h(x) is defined on $[a, \infty)$ and is positive, strictly increasing, differentiable and tends to ∞ as $x \to \infty$;
- (II) $\lim_{x\to\infty} \frac{h(cx)}{h(x)} = 1$ for all $c, 0 < c < \infty$. In particular, if $h(x) = \log^{[p]}(x)$, $p \ge 1$ $(\log^{[1]}(x) = \log x, \log^{[p]}(x) = \log(\log^{p-1}(x))$, $p \ge 2$, we shall call $\rho(h, F)$ -order as logarithmic p-order of F(s) and denote it ρ_p . In present paper, we have introduced some new growth parameters to compare precisely the growths of two functions belonging to D_0 and having the same logarithmic p-order. For this, we first need the following

Definition 1.1 A real valued function $\rho_p(\sigma)$ is called a logarithmic p-proximate order if it

definition of logarithmic p-proximate order, which, for the case p=1, includes the definition of

- (1) $\rho_p(\sigma)$ is a positive, continuous and piecewise differentiable function for all σ such that $0 < \sigma < \sigma_0 < \infty$;
 - (2) $\lim_{\sigma \to \infty} \rho_p(\sigma) = \rho_p \ (1 < \rho_p < \infty);$

logarithmic proximate order, due to Xu [4].

satisfies the following:

(3) $\lim_{\sigma \to 0} \rho_p'(\sigma) \sigma \prod_{k=1}^{p+1} \log^{[k]}(1/\sigma) = 0$,

where $\rho_p'(\sigma)$ is either the right or the left hand derivative of $\rho_p(\sigma)$ where they are different.

We now define the generalized logarithmic p-type T_p and generalized lower logarithmic p-type t_p of $F(s) \in D_0$ with respect to a given logarithmic p-proximate order $\rho_p(\sigma)$ as

$$T_{p} = \overline{\lim_{\sigma \to 0}} \frac{\log^{[p]} M_{u}(\sigma, F)}{(\log^{[p]} (1/\sigma))^{\rho_{p}(\sigma)}}, \quad t_{p} = \underline{\lim_{\sigma \to 0}} \frac{\log^{[p]} M_{u}(\sigma, F)}{(\log^{[p]} (1/\sigma))^{\rho_{p}(\sigma)}}.$$
 (1.5)

Definition 1.2 A logarithmic p-proximate order $\rho_p(\sigma)$ is called a logarithmic p-proximate order of $F(s) \in D_0$ if $0 < T_p < \infty$.

Definition 1.3 $F(s) \in D_0$ is said to be of perfectly regular logarithmic growth with respect to its logarithmic p-proximate order ρ_p (σ) if $T_p = t_p < \infty$.

For a function $F(s) \in D_0$, having logarithmic *p*-order ρ_p (1 < ρ_p < ∞), the existence of a logarithmic *p*-proximate order $\rho_p(\sigma)$ can be established on the lines of those used by Levin [5, p. 35–39].

2. Some lemmas

Lemma 2.1 Let $\rho_p(\sigma)$, $p \ge 1$ be a logarithmic p-proximate order. Then the function $(\log^{[p]}(1/\sigma))^{\rho_p(\sigma)}$ is a monotonically decreasing function of σ for $0 < \sigma < \sigma_0$.

Proof Let $H(\sigma) = (\log^{[p]}(1/\sigma))^{\rho_p(\sigma)}$. Taking logarithm on both the sides and then differentiating with respect to σ , we get

$$H'(\sigma) = \rho_p'(\sigma)(\log^{[p]}(1/\sigma))^{\rho_p(\sigma)}\log^{[p+1]}(1/\sigma) - \frac{\rho_p(\sigma)(\log^{[p]}(1/\sigma))^{\rho_p(\sigma)}}{\sigma \prod_{k=1}^p \log^{[k]}(1/\sigma)}.$$

On using the properties (2) and (3) of logarithmic -proximate order, we have

$$H'(\sigma) < \frac{(\varepsilon - \rho_p)(\log^{[p]}(1/\sigma))^{\rho_p(\sigma)}}{\sigma \prod_{k=1}^p \log^{[k]}(1/\sigma)} < 0, \quad 0 < \varepsilon < \rho_p.$$

Hence the lemma follows. \Box

Since $(\log^{[p]}(1/\sigma))^{\rho_p(\sigma)}$ is a monotonically decreasing function of σ for $0 < \sigma < \sigma_0$, a single valued real function $\psi_p(t)$ of t can be defined for $t > t_0$ such that

$$t = \frac{1}{\sigma} \text{ if and only if } \psi_p(t) = (\log^{[p]}(1/\sigma))^{\rho_p(\sigma)}. \tag{2.1}$$

If $\psi_p(t)$ is defined as above, the following lemma follows easily.

Lemma 2.2 Let $\rho_p(\sigma)$, $p \ge 1$, be a logarithmic p-proximate order and let $\psi_p(t)$ be as defined in (2.1). Then

$$\lim_{t \to \infty} \frac{\operatorname{dlog} \psi_p(t)}{\operatorname{dlog}^{[p+1]} t} = \rho_p \tag{2.2}$$

and for every b $(0 < b < \infty)$

$$\lim_{t \to \infty} \frac{\psi_p(t^b)}{\psi_p(t)} = E(b, \rho_p)$$
 (2.3)

where $E(b, \rho_p) = b^{\rho_p}$ for p = 1 and $E(b, \rho_p) = 1$ for $p \ge 2$.

3. Main results

Theorem 3.1 Let $F(s) \in D_0$ be given by (1.1). Assume that F(s) has logarithmic p-proximate order $\rho_p(\sigma)$ and logarithmic p-order ρ_p (1 < ρ_p < ∞). Then the generalized logarithmic p-type T_p of F(s) with respect to the logarithmic p-proximate order $\rho_p(\sigma)$ is given by

$$T_p = \overline{\lim_{n \to \infty}} \frac{\log^{[p]} A_n^*}{\psi_p(\lambda_n)} \tag{3.1}$$

where $\psi_p(\lambda_n)$ is defined by (2.1).

Remark 3.2 For p = 1, the above theorem is due to Theorem 3.2 of Xu [4].

Proof From (1.5), given $\varepsilon > 0$, there exists $\sigma_0 = \sigma_0(\varepsilon)$ such that for $0 < \sigma < \sigma_0$, we have

$$\log M_u(\sigma, F) < \exp^{[p-1]} \{ (T_p + \varepsilon) (\log^{[p]} (1/\sigma))^{\rho_p(\sigma)} \}.$$

So we have

$$\log A_n^* - \sigma \lambda_n < \exp^{[p-1]} \{ (T_n + \varepsilon) (\log^{[p]} (1/\sigma))^{\rho_p(\sigma)} \}$$

100 Wanchun LU

for $0 < \sigma < \sigma_0$ and all n. Taking, in particular, $\sigma = \frac{1}{\lambda_n}$ in the above inequality gives

$$\log A_n^* - 1 < \exp^{[p-1]} \{ (T_p + \varepsilon) \psi_p(\lambda_n) \}.$$

The above relation gives

$$\theta \le T_p + \varepsilon,$$

where θ denotes the limit superior on the right hand side of (3.1). Since $\varepsilon > 0$ is arbitrary, this in turn gives that

$$\theta \le T_p. \tag{3.2}$$

On the other hand, from the definition of θ , for given $\varepsilon > 0$, we have for all $n > n_0 = n_0(\varepsilon)$,

$$\log^{[p]} A_n^* < (\theta + \varepsilon) \psi_p(\lambda_n). \tag{3.3}$$

Now, since (1.3) holds, we have $n < D_1 \lambda_n$ for all $n > n_1 = n_1(D_1)$, where $D_1 > D$. We can assume without loss of generality that $n_0 > n_1$.

For any x > 0, there exists $n \in \mathbb{N}$, $\lambda_n \leq x \leq \lambda_{n+1}$, such that

$$\int_0^x \mathrm{e}^{-(\sigma+\mathrm{i}t)y} \mathrm{d}\alpha(y) = \sum_{k=1}^{n-1} \int_{\lambda_k}^{\lambda_{k+1}} \mathrm{e}^{-(\sigma+\mathrm{i}t)y} \mathrm{d}\alpha(y) + \int_{\lambda_n}^x \mathrm{e}^{-(\sigma+\mathrm{i}t)y} \mathrm{d}\alpha(y).$$

Let

$$I_k(x, it) = \int_{\lambda_k}^x e^{-ity} d\alpha(y), \quad \lambda_k \le x \le \lambda_{k+1}.$$

For any $t \in \mathbb{R}$, we have

$$|I_k(x, it)| \le A_k^* \le \mu(\sigma, F) e^{\lambda_k \sigma}, \quad \sigma > 0.$$

Hence for any $x \in [\lambda_n, \lambda_{n+1}]$ and $\sigma > 0$

$$\int_0^x e^{-(\sigma+it)y} d\alpha(y) = \sum_{k=1}^{n-1} \left[e^{-\lambda_{k+1}\sigma} I_k(\lambda_{k+1}, it) - \int_{\lambda_k}^{\lambda_{k+1}} I_k(y, it) de^{-\sigma y} \right] + e^{-x\sigma} I_n(x, it) - \int_{\lambda_n}^x I_n(y, it) de^{-\sigma y}.$$

So

$$\left| \int_{0}^{x} e^{-(\sigma + it)y} d\alpha(y) \right| \leq \sum_{k=1}^{n-1} |A_{k}^{*} e^{-\lambda_{k+1}\sigma} - A_{k}^{*} (e^{-\sigma\lambda_{k+1}} - e^{-\sigma\lambda_{k}})| + |A_{n}^{*} e^{-x\sigma} - A_{n}^{*} (e^{-\sigma x} - e^{-\sigma\lambda_{n}})|$$

$$\leq \sum_{n=1}^{\infty} A_{n}^{*} e^{-\lambda_{n}\sigma}.$$

Using (3.3), we have

$$\left| \int_0^x e^{-(\sigma + it)y} d\alpha(y) \right| \le Q(n_0) + \sum_{n=n_0+1}^\infty \exp\{\exp^{[p-1]} \{ (\theta + \varepsilon) \psi_p(\lambda_n) \} - \sigma \lambda_n \}, \tag{3.4}$$

where $Q(n_0)$, the sum of first terms n_0 , is bounded.

For each σ ($\sigma > 0$), we define a natural number $n(\sigma)$ as

$$\lambda_{n(\sigma)} \le \frac{4}{\sigma^2} < \lambda_{n(\sigma)+1}.$$

It is seen that $\exp^{[p-1]}\{b\psi_p(x)\}/x < 1/\sqrt{x}, 0 < b < \infty$, for all $x > x_0(b)$. Hence for σ sufficiently close to 0 and all $n > n(\sigma)$, we have

$$\frac{\exp^{[p-1]}\{(\theta+\varepsilon)\psi_p(\lambda_n)\}}{\lambda_n} < \frac{1}{\sqrt{\lambda_{n(\sigma)+1}}} < \frac{\sigma}{2}.$$
 (3.5)

Using (3.5), for all σ sufficiently close to 0, we have

$$\sum_{n=n(\sigma)+1}^{\infty} \exp\{\exp^{[p-1]}\{(\theta+\varepsilon)\psi_p(\lambda_n)\} - \sigma\lambda_n\}$$

$$\leq \sum_{n=n(\sigma)+1}^{\infty} \exp\{\frac{-\sigma\lambda_n}{2}\} \leq \sum_{n=n(\sigma)+1}^{\infty} \exp\{\frac{-\sigma n}{2D_1}\}$$

$$\leq \frac{1}{1-\exp\{\frac{-\sigma}{2D_1}\}} \sim \frac{2D_1}{\sigma}.$$
(3.6)

Now, consider the function G(x), defines as

$$G(x) = \exp^{[p-1]} \{ (\theta + \varepsilon) \psi_p(x) \} - \sigma x.$$

Let x_* be defined as $G(x_*) = \max_{x_0 \le x \le \infty} G(x)$. Then

$$(\theta + \varepsilon) \left\{ \prod_{k=1}^{p-1} \exp^{[k]} \left\{ (\theta + \varepsilon) \psi_p(x_*) \right\} \right\} \frac{\mathrm{d}\psi_p(x)}{\mathrm{d}x} \Big|_{x=x_*} = \sigma, \tag{3.7}$$

where the quantity inside the curly bracket is assumed to be 1 for p = 1. As $\sigma \to 0$, the relation (3,7), in view of (2.2), gives that

$$x_* = (1/\sigma)^{1+o(1)}$$
.

Thus,

$$\max_{x_0 \le x \le \infty} G(x) \le \exp^{[p-1]} \{ (\theta + \varepsilon) \psi_p((1/\sigma)^{1+o(1)}) \}.$$
 (3.8)

From (3.4), (3.6) and (3.8), we have

$$M_u(\sigma, F) \leq Q(n_0) + n(\sigma) \exp^{[p]} \{ (\theta + \varepsilon) \psi_p((1/\sigma)^{1+o(1)}) \} \cdot \frac{2D_1}{\sigma}.$$

Now, by the definition of $n(\sigma)$, we have

$$M_u(\sigma, F) \le \frac{(4D_1)^2}{\sigma^3} \exp^{[p]} \{ (\theta + \varepsilon) \psi_p((1/\sigma)^{1+o(1)}) \}$$

or

$$\log M_u(\sigma, F) \le 4 \log \frac{1}{\sigma} + \exp^{[p-1]} \{ (\theta + \varepsilon) \psi_p((1/\sigma)^{1+o(1)}) \}.$$

The above relation, in view of (2.3), gives that

$$T_p \leq \theta + \varepsilon$$
.

And since $\varepsilon > 0$ is arbitrary, we have

$$T_p \le \theta. \tag{3.9}$$

In view of (3.2) and (3.9), the proof of the theorem is completed. \square

102 Wanchun LU

Theorem 3.3 Let $F(s) \in D_0$ be given by (1.1). Assume that F(s) has logarithmic p-proximate order $\rho_p(\sigma)$ and logarithmic p-order $\rho_p(1 < \rho_p < \infty)$. Let $\varphi(n) = \frac{\log A_n^* - \log A_{n+1}^*}{\lambda_{n+1} - \lambda_n}$ be ultimately a non-decreasing function of. Then the generalized lower logarithmic p-type t_p of F(s) satisfies

$$t_p \le \underline{\lim}_{n \to \infty} \frac{\log^{[p]} A_n^*}{\psi_p(\lambda_n)} \tag{3.10}$$

where $\psi_p(\lambda_n)$ is defined by (2.1). Further, if $\psi_p(\lambda_n) \sim \psi_p(\lambda_{n+1})$ as $n \to \infty$, then the equality holds in (3.10).

Remark 3.4 For p = 1, the above theorem is due to Theorem 3.3 of Xu [4].

The proof of the theorem can be constructed by suitably adopting the techniques used in [4] and the present paper and so we omit the proof.

References

- [1] Jiarong YU. On the Borel lines of entire functions defined by Laplace-Stieltjes transforms. Acta Math. Sinica, 1963, 13(3): 471–484. (in Chinese)
- [2] Yingying KONG, Yong HONG. On the Growth of Laplace-Stieltjes Transforms and the Singular Direction of Complex Analysis. Press in Jinan University, Guangzhou, 2010.
- [3] Xi LUO, Yingying KONG. On orders and types of Laplace-Stieltjes transforms of slow growth. Acta Math. Sci. Ser. A Chin. Ed., 2012, 32(3): 601–607.
- [4] Hongyan XU, Caifeng YI, Yi HU. On logarithmic order and logarithmic proximate order of the analytic function defined by Laplace-Stieltjes transformations. Acta Math. Sci. A Chin. Ed., 2013, 33(2): 366–376.
- [5] B. Ja. LEVIN. Distribution of Zeros of Entire Functions. American Mathematical Society, Providence, R. I, 1964
- [6] Yinying KONG, Daochun SUN. On the growth of zero order Laplace-Stieltjes transform convergent in the right half-plane. Acta Math. Sci. Ser. B Engl. Ed., 2008, 28(2): 431–440.
- [7] Yinying KONG. The Laplace-Stieltjes transform of infinite order in the whole complex plane. Acta Math. Sinica, 2013, **56**(1): 53–60.
- [8] Wanchun LU, Youhua PENG. The infinite order of Laplace-Stieltjes transformations converging in right plane. Pure Appl. Math. (Xi'an), 2012, 28(5): 620–627.
- [9] Yinying KONG. Laplace-Stieltjes transforms of infinite order in the right half-plane. Acta Math. Sinica (Chin. Ser.), 2012, 55(1): 141–148. (in Chinese)
- [10] A. NAUTIYAL, R. P. DOHEREY. On the proximate order of an analytic function represented by Dirichlet series. Indian J. Pure Appl. Math., 1982, 13(12): 1427–1432.
- [11] Lina SHANG, Zongsheng GAO. The growth of entire functions of infinite order represented by Laplace-Stieltjes transformation. Acta Math. Sci. Ser. A Chin. Ed., 2007, 27(6): 1035–1043.
- [12] Yingying KONG, Daochun SUN. The analytic function in the right half plane defined by Laplace-Stieltjes transforms. J. Math. Res. Exposition, 2008, 28(2): 353–358.
- [13] Jiarong YU. Dirichlet Series and the Random Dirichlet Series. Science Press, Beijing, 1997.