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Abstract The paper deals with heat equations coupled via exponential nonlinearities. We

are interested in the life span (or blow-up time) and obtain the maximal existence time of

blow-up solutions. Our proof is based on the comparison principle and Kaplan’s method.
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1. Introduction

In this paper, we consider the following nonlinear parabolic system

ut = ∆u+ epv, x ∈ Ω, t > 0, (1.1)

vt = ∆v + equ, x ∈ Ω, t > 0, (1.2)

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0, (1.3)

u(x, 0) = λφ(x), v(x, 0) = λψ(x), x ∈ Ω, (1.4)

where p, q > 0, Ω is a bounded domain in Rn with a smooth boundary ∂Ω. λ > 0 is a parameter,

φ and ψ are nonnegative continuous functions on Ω̄.

In [1], it was shown that the problem (1.1)–(1.4) with nonnegative continuous initial data

has a unique classical solution. We denote by T ∗
λ the maximal existence time of a classical

solution (u, v) of problem (1.1)–(1.4), that is

T ∗
λ = sup

{
T > 0, sup

0≤t≤T
(∥u(·, t)∥∞ + ∥v(·, t)∥∞) <∞

}
,

and we call T ∗
λ the life span of (u, v). If T ∗

λ <∞, then we have

lim
t→T∗

λ

sup ∥u(·, t)∥∞ = lim
t→T∗

λ

sup ∥v(·, t)∥∞ = ∞.
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We are interested in the asymptotic behavior of the life span T ∗
λ as λ→ ∞.

Since Fujita’s classic work [2], the single equation

ut = ∆u+ up (1.5)

has been studied extensively in various directions. Friedman and Lacey [3] gave a result on the

life span of solutions of (1.5) in the case of small diffusion. Subsequently, Gui and Wang [4], Lee

and Ni [5] obtained the leading term of the expansion of the life span Tρ of the solution for (1.5)

with the initial data ρφ(x). They proved that Tρ is expanded as

Tρ =
1

p− 1
∥φ∥1−p∞ ρ1−p + o(ρ1−p)

as ρ → ∞. Later, Mizoguchi and Yanagida [6] extended the result and determined the second

term of the expansion of Tρ. They proved that when φ attains the maximum at only one point

a ∈ Ω, Tρ is expanded as

Tρ =
1

p− 1
∥φ∥1−p∞ ρ1−p +

2

p− 1
∥φ∥2(1−p)−1

∞ |∆φ(a)|ρ2(1−p) + o(ρ2(1−p))

as ρ→ ∞. Moreover, Mizoguchi and Yanagida [7] extended the result on the life span of solutions

of (1.5) in the case of small diffusion. In [8], Sato extended the results to general nonlinearities

f(u) in the case of large initial data. Parabolic systems of the following form

ut = ∆u+ f(v), vt = ∆v + g(u) (1.6)

have also been studied in several directions. In [9], Sato investigated (1.6) with f(v) and g(u)

replaced by vp and uq. In their article, they obtained the life span of (u, v) with large initial data.

For other results on system (1.6), we refer the reader to the survey [10], the recent monograph

[11] and the references therein.

On the other hand, much effort has been devoted to the study of parabolic system in the

form (1.6), local and global existence, finite time blowup and blowup rate estimates, etc. In [1],

Zheng and Zhao considered the radially symmetric solutions for the parabolic system

ut = ∆u+ emu+pv, vt = ∆v + equ+nv.

The parabolic equations (1.6) with the nonlinearities f(v) = umepv, g(u) = uqenv subject to null

Dirichlet boundary conditions were considered in [12] by Liu and Li.

However, to the author’s best knowledge, there is little literature on the study of the life

span of solutions for problem (1.1)–(1.4). The aim of this paper is to obtain the leading term

of the expansion of life span T ∗
λ as λ → ∞. In the following, we denote by Mφ and Mψ the

maximum of φ and ψ on Ω. Then our main results of this paper will be summarized as the

following theorem.

Theorem 1.1 Let p, q > 0. Suppose φ,ψ ∈ C(Ω̄) satisfy φ,ψ ≥ 0 in Ω, φ = ψ = 0 on ∂Ω,

φ+ ψ ̸≡ 0.
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(i) If qMφ > pMψ, then we have

lim
λ→∞

T ∗
λ

eqMφλ

λ
=
qMφ − pMψ

p
. (1.7)

(ii) If qMφ < pMψ, then we have

lim
λ→∞

T ∗
λ

epMψλ

λ
=
pMψ − qMφ

q
. (1.8)

2. Preliminaries

In this section we first consider the ODE system

zt = epw, wt = eqz, t > 0; (2.1)

z(0) = α, w(0) = β, (2.2)

where α and β are nonnegative constants.

Here, for constants α and β with (α, β) ̸≡ (0, 0), we define by (z(t;α, β), w(t;α, β)) the

solution for problem (2.1)–(2.2). It is well known that (z(t;α, β), w(t;α, β)) exists and blows up

in finite time. We then give the following lemma.

Lemma 2.1 Let p, q > 0. Suppose that α, β are nonnegative constants and (α, β) ̸≡ (0, 0).

Then the life span of the solution (z, w) for problem (2.1)–(2.2) is

T ∗
α,β =

∫ ∞

α

ds
p
q (e

qs − eqα) + epβ
=

∫ ∞

β

ds
q
p (e

ps − epβ) + eqα
. (2.3)

Proof Multiplying the first equation in (2.1) by eqz and the second equation by epw, we obtain

the equality eqzzt = epwwt. Integrating this equality over (0, t), we have

1

q
(eqz − eqα) =

1

p
(epw − epβ).

Hence we get

eqz =
q

p

(
epw − epβ

)
+ eqα, epw =

p

q
(eqz − eqα) + epβ .

Substituting those equalities in the equations of (2.1), we see that (z, w) satisfies the initial-value

problem

zt =
p

q
(eqz − eqα) + epβ , t > 0, z(0) = α, (2.4)

wt =
p

q
(eqz − eqα) + epβ , t > 0, w(0) = β. (2.5)

Integrating equations in (2.4), (2.5) over (0, t) yields∫ z(t)

α

ds
p
q (e

qs − eqα) + epβ
= t,

∫ w(t)

β

ds
q
p (e

ps − epβ) + eqα
= t.

This implies that the life span of (z, w) is

T ∗
α,β = min

{∫ ∞

β

ds
p
q (e

qs − eqα) + epβ
,

∫ ∞

α

ds
q
p (e

ps − epβ) + eqα

}
.
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By using the change of variables epξ = p
q (e

qs − eqα) + epβ , we see that∫ ∞

β

ds
p
q (e

qs − eqα) + epβ
=

∫ ∞

α

dξ
q
p (e

pξ − epβ) + eqα
.

We end this section by giving the following comparison principle which will play a key role

in proving Theorem 1.1 in the next section. This Lemma can be proved in the same way as in

[10,11]. Since the proof is more or less standard, and is therefore omitted here. �

Lemma 2.2 Let (û, v̂) and (ũ, ṽ) be a pair of upper-lower solutions of problem (1.1)–(1.4).

Then the problem (1.1)–(1.4) has a unique solution (u, v) satisfying (ũ, ṽ) ≤ (u, v) ≤ (û, v̂).

3. Proof of Theorem 1.1

We divide Theorem 1.1 into Lemmas 3.1 and 3.2, in which we derive upper and lower

estimates of T ∗
λ .

Lemma 3.1 Assume the assumptions of Theorem 1.1.

(i) If qMφ > pMψ, then we have

lim inf
λ→∞

T ∗
λ

eqMφλ

λ
≥ qMφ − pMψ

p
. (3.1)

(ii) If qMφ < pMψ, then we have

lim inf
λ→∞

T ∗
λ

epMψλ

λ
≥ pMψ − qMφ

q
. (3.2)

Proof We give the proof of (i). It is obvious that the solution (z(t;λMφ, λMψ), w(t;λMφ, λMψ)),

is a supersolution of problem (1.1)–(1.4), so we have

u(x, t) ≤ z(t;λMφ, λMψ), v(x, t) ≤ w(t;λMφ, λMψ),

for x ∈ Ω and 0 < t < min{T ∗
λMφ,λMψ

, T ∗
λ}. This implies

T ∗
λ ≥ T ∗

λMφ,λMψ
. (3.3)

First we assume that φ ̸= 0. Then by (3.4) and Lemma 2.1, a routine computation shows

T ∗
λ ≥

∫ ∞

λMφ

ds
q
p (e

ps − epλMψ ) + eqλMφ
,

this yields

T ∗
λ ≥ (qMφ − pMψ)λ+ ln p− ln q

peqλMφ − qepλMψ
.

Hence, taking λ→ ∞, we have

lim inf
λ→∞

T ∗
λ

eqMφλ

λ
≥ qMφ − pMψ

p
.

So we obtain (3.1). Slightly revising the above process, one can prove (ii). �
Next, we give an upper estimate of T ∗

λ .

Lemma 3.2 Assume the assumptions of Theorem 1.1.
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(i) If qMφ > pMψ, then we have

lim sup
λ→∞

T ∗
λ

eqMφλ

λ
≤ qMφ − pMψ

p
. (3.4)

(ii) If qMφ < pMψ, then we have

lim sup
λ→∞

T ∗
λ

epMψλ

λ
≤ pMψ − qMφ

q
. (3.5)

Proof We prove this lemma by using Kaplan’s method [13]. We only give the proof of (i), and

the other case (ii) can be proved similarly. First, we consider the case of φ ̸= 0. Without loss of

generality, we may assume that φ(0) = Mφ. We define by µR the first eigenvalue of −∆ in the

ball BR = BR(0) and ϕR the corresponding eigenfunction. Thus, we have

−∆ϕR = µRϕR in BR , (3.6)

ϕ
R
= 0 on ∂BR, (3.7)

we further assume that
∫
BR

ϕR(x)dx = 1. We note that

µ
R
=
µ1

R2
, ϕ

R
(x) = R−Nϕ1(

x

R
).

Let B
R
⊂ Ω. We set

z(t) =

∫
BR

u(x, t)ϕ
R
(x)dx, w(t) =

∫
BR

v(x, t)ϕ
R
(x)dx, (3.8)

α(R) =

∫
BR

φ(x)ϕ
R
(x)dx, β(R) =

∫
BR

ψ(x)ϕ
R
(x)dx. (3.9)

By φ,ψ ∈ C(Ω̄),
∫
B1
ϕ1(x)dx = 1, we have

lim
R→0

α(R) = φ(0), lim
R→0

β(R) = ψ(0).

Multiplying the equations (1.1) and (1.4) by ϕR , integrating by parts and using Jensen’s

inequality, we obtain

zt ≥ −µRz + epw, t > 0, (3.10)

wt ≥ −µ
R
w + eqz, t > 0, (3.11)

z(0) = λα(R), w(0) = λβ(R). (3.12)

Hence, we have

(eµR tz)t ≥ eµR t+pw, (eµR tw)t ≥ eµR t+qz.

Integrating these inequalities over (0, t), we see that

eµR tz − λα ≥
∫ t

0

eµRs+pw(s)ds, eµR tw − λβ ≥
∫ t

0

eµRs+qz(s)ds.

Substituting the second inequality into the first inequality, it follows that

eµR tz − λα ≥
∫ t

0

exp
{
µRs+ λpβe−µRs + pe−µRs

∫ s

0

eµRy+qz(y)dy
}
ds.
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Moreover, we have

z(t) ≥ λαe−µR t + e−µR t
∫ t

0

exp
{
µ
R
s+ λpβe−µRs + pe−µRs

∫ s

0

eµRy+qz(y)dy
}
ds.

We fix 0 < ϵ < 1 and take TR > 0 such that e−µRTR > 1− ϵ. Then we have

z(t) ≥ (1− ϵ)λα+ (1− ϵ)

∫ t

0

exp
{
(1− ϵ)λpβ + p(1− ϵ)

∫ s

0

eqz(y)dy
}
ds.

We set

h(t) = (1− ϵ)λα+ (1− ϵ)

∫ t

0

exp
{
(1− ϵ)λpβ + p(1− ϵ)

∫ s

0

eqz(y)dy
}
ds,

then we have

h′(t) = (1− ϵ) exp
{
(1− ϵ)λpβ + p(1− ϵ)

∫ t

0

eqz(s)ds
}
,

h′′(t) = (1− ϵ) exp
{
(1− ϵ)λpβ + p(1− ϵ)

∫ t

0

eqz(s)ds
}
· p(1− ϵ)eqz.

After a careful computation, we see that

h′′(t) ≥ h′(t)p(1− ϵ)eqh(t).

Integrating this inequality over (0, t), it follows that

h′(t) ≥ p

q
(1− ϵ)eqh(t) + (1− ϵ)e(1−ϵ)λpβ − p

q
(1− ϵ)e(1−ϵ)λqα.

Dividing the left-hand side by the right-hand side and integrating over (0, t), we obtain∫ h(t)

(1−ϵ)λα

ds
p
q (1− ϵ)eqs + (1− ϵ)e(1−ϵ)λpβ − p

q (1− ϵ)e(1−ϵ)λqα
≥ t,

We take λ large such that

Tϵ,R =

∫ ∞

(1−ϵ)λα

ds
p
q (1− ϵ)eqs + (1− ϵ)e(1−ϵ)λpβ − p

q (1− ϵ)e(1−ϵ)λqα
≤ TR.

Then z̄ blows up at some T ≤ Tϵ,R, and

Tϵ,R =
ln p− ln q + λ(1− ϵ)(qα− pβ)

p(1− ϵ)e(1−ϵ)λqα − q(1− ϵ)e(1−ϵ)λpβ
,

hence we get

T ∗
λ ≤ ln p− ln q + λ(1− ϵ)(qα− pβ)

p(1− ϵ)e(1−ϵ)λqα − q(1− ϵ)e(1−ϵ)λpβ
.

Therefore, taking R→ 0 and then ϵ→ 0, paying attention to qMφ > pMψ, it follows that

lim sup
λ→∞

T ∗
λ

eqMφλ

λ
≤ qMφ − pMψ

p
,

so we get the inequality (3.4). �
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