The Transfer Ideal under the Action of the Dihedral Group $D_{2 p}$ in the Modular Case

Jizhu NAN, Lingli ZENG*, Kai ZHANG
School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract

In this paper, we determine the structures of the transfer ideal and its radical ideal for the ring of polynomials $F_{p}[x, y]$ under the action of dihedral group $D_{2 p}$ in the modular case. We mainly use Transfer variety, p order elements, and Hilbert's Nullstellensatz Theorem.

Keywords invariant; transfer ideal; transfer variety; radical ideal
MR(2010) Subject Classification 13A50; 37C30; 13A15

1. Introduction

Let G be a finite group, F be a field, and $\varrho: G \hookrightarrow G L(n, F)$ be a faithful representation of G over F. Then, via ϱ, G acts on the vector space $V=F^{n}$. We denote by $F[V]=F\left[x_{1}, \ldots, x_{n}\right]$ the graded algebra of polynomial functions on V, which is defined to be the symmetric algebra on V^{*}, the dual of V, in n indeterminate elements x_{1}, \ldots, x_{n}. Then this action can induce an action of G on $F[V]$ (see [1]):

$$
g f(v)=f\left(\varrho\left(g^{-1}\right) v\right), \forall g \in G, f \in F[V], v \in V
$$

The ring of invariants denoted by $F[V]^{G}$, is the fixed subalgebra, i.e.,

$$
F[V]^{G}=\{f \in F[V] \mid g f=f, \forall g \in G\}
$$

The transfer homomorphism is an important tool to calculate the ring of invariants $F[V]^{G}$, and it is defined by

$$
\begin{aligned}
T r^{G}: F[V] & \rightarrow F[V]^{G} \\
f & \rightarrow \sum_{g \in G} g f .
\end{aligned}
$$

The image of the transfer homomorphism is an ideal of the ring of invariants $F[V]^{G}$, we call it transfer ideal $\operatorname{Im}\left(T r^{G}\right)$.

In the non-modular case, i.e., the order of G and the characteristic of F satisfied: Char $F \nmid$ $|G|$, it is easy to verify that the transfer homomorphism is surjective, so the ring of invariants $F[V]^{G}$ can be completely described by transfer ideal. In the modular case, i.e., Char $F \| G \mid$, it

[^0]is more complicated and harder than the first case. Although the transfer homomorphism is not surjective [2, Section 2], and $\operatorname{Im}\left(\operatorname{Tr}^{G}\right) \subseteq F[V]^{G}$ is a proper ideal of $F[V]^{G}$, but it also can provide a lot of information for the ring of invariants $F[V]^{G}$. Hence, it is necessary to determine the structure of the transfer ideal.

Let $\varrho: G \hookrightarrow G L(n, F)$ be a faithful representation of a finite group over the field F. The transfer variety, denoted by $\Omega_{G} \subseteq V$, is defined by [3, Section 6.4]

$$
\Omega_{G}=\left\{v \in V \mid \operatorname{Tr}^{G}(f)(v)=0, \forall f \in \operatorname{Tot}(F[V])\right\}
$$

Let p be an odd prime, $D_{2 p}=\left\langle a, b \mid a^{p}=1, b^{2}=1, a b=b a^{-1}\right\rangle$ be the dihedral group of order $2 p$. Let $\varrho: D_{2 p} \hookrightarrow G L\left(2, F_{p}\right)$ be a faithful representation of the group $D_{2 p}$ over the prime field F_{p}, afforded by the matrices

$$
\varrho(a)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \varrho(b)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

In this paper, firstly, we obtain the p order elements of the dihedral group $D_{2 p}$ and transfer variety. Secondly, we apply Hilbert's Nullstellensatz Theorem to describe structures of the transfer ideal and its radical ideal for the ring of polynomials $F_{p}[x, y]$ under the action of $D_{2 p}$ in the modular case.

2. Transfer ideal $\operatorname{Im}\left(T^{D_{2 p}}\right)$ of $D_{2 p}$

First, we recall the computation of the ring of invariants $F_{p}[V]^{D_{2 p}}$.
Let $\varrho: D_{2 p} \hookrightarrow G L\left(2, F_{p}\right)$ be a faithful representation of the group $D_{2 p}$ over the prime field F_{p}, afforded by the matrices

$$
\varrho(a)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \varrho(b)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

Let $F_{p}[V]=F_{p}[x, y]$. Then
$a\binom{x}{y}=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)^{-1}\binom{x}{y}=\binom{x}{-x+y}, b\binom{x}{y}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)^{-1}\binom{x}{y}=\binom{-x}{y}$.
So the orbits of x, y under the action of $D_{2 p}$ are

$$
o[x]=\{x,-x\}, o[y]=\{y, y-x, \ldots, y-(p-1) x\}=\{y, y+x, \ldots, y+(p-1) x\} .
$$

Then we have $y \notin \bigcup_{g \in D_{2 p}} \operatorname{Span}\{g x\}$, so x, y are Dade's basis, and the top Chern classes

$$
C_{\mathrm{top}}(x)=-x^{2}, C_{\mathrm{top}}(y)=y^{p}-y x^{p-1}
$$

are a system of parameters. Furthermore,

$$
\left|D_{2 p}\right|=\operatorname{deg}\left(C_{\mathrm{top}}(x)\right) \cdot \operatorname{deg}\left(C_{\mathrm{top}}(y)\right)=2 p
$$

then

$$
F_{p}[V]^{D_{2 p}}=F_{p}\left[x^{2}, y^{p}-y x^{p-1}\right] .
$$

Lemma 2.1 The elements of order p in $D_{2 p}$ are $a^{i}, i=1, \ldots,(p-1)$.
Proof Since the generators a, b in $D_{2 p}$ satisfy $a b=b a^{-1}$, the elements in $D_{2 p}$ can be written in the form of $a^{i} b^{j}, i=1, \ldots,(p-1), j=0,1$. And the representation

$$
\varrho\left(a^{i} b\right)=\left(\begin{array}{cc}
(-1)^{j} & 0 \\
i & 1
\end{array}\right)
$$

ϱ is faithful, when $j=1$, the order of $\left(\begin{array}{cc}-1 & 0 \\ i & 1\end{array}\right)$ is 2 ; when $j=0$, the order of $\left(\begin{array}{cc}1 & 0 \\ i & 1\end{array}\right)$ is p. Hence, the elements of order p in $D_{2 p}$ are $a^{i}, i=1, \ldots,(p-1)$.

Lemma $2.2 V^{a}=V^{a^{i}}, i=1, \ldots,(p-1)$, where V^{a} denote the fix points in V under the action of $a \in D_{2 p}$.

Proof On the one hand, $\forall v \in V^{a}, a(v)=v$, we have $a^{i}(v)=a^{i-1}(a(v))=a^{i-1}(v)=\cdots=$ $a(v)=v$, i.e., $V^{a} \subseteq V^{a^{i}}$. On the other hand, every non-identity element in the group (a) is a generator of the group (a), since the order of the cyclic group (a) is prime p. Then there is a number k, such that $a=\left(a^{i}\right)^{k}$. If $a^{i}(v)=v$, then $a(v)=v$, i.e., $V^{a^{i}} \subseteq V^{a}$.

Since $\operatorname{Im}\left(T r^{G}\right)$ is an ideal of $F[V]^{G}, F[V]^{G} \subseteq F[V]$ is ring extension. According to the definition of transfer variety $\Omega_{G}=\left\{v \in V \mid \operatorname{Tr}^{G}(f)(v)=0, \forall f \in \operatorname{Tot}(F[V])\right\}$, we have

$$
\Omega_{G}=\left\{v \in V \mid f(v)=0, \forall f \in\left(\operatorname{Im}\left(T r^{G}\right)\right)^{e}\right\}=V\left(\left(\operatorname{Im}\left(T r^{G}\right)\right)^{e}\right)
$$

where $\left(\operatorname{Im}\left(\operatorname{Tr}^{G}\right)\right)^{e}$ denotes the extension ideal of $\operatorname{Im}\left(\operatorname{Tr}^{G}\right)$ in $F[V]$.
Lemma 2.3 ([3, Corollary 6.4.6]) Let $\varrho: G \hookrightarrow G L(n, F)$ be a faithful representation of a finite group over the field F of characteristic p. Then

$$
\Omega_{G}=\bigcup_{g \in G,|g|=p} V^{g}
$$

i.e., transfer variety is the union of the fixed-point sets of the elements in G of order p.

Let $V=\left\{\lambda_{1} e_{1}+\lambda_{2} e_{2} \mid \lambda_{1}, \lambda_{2} \in F_{p}\right\}$ be the vector space over the prime field F_{p} of dimension 2. Then the group $D_{2 p}$ has a natural action on V.

Lemma 2.4 The fixed-point set of element a is $V^{a}=\left\{\lambda e_{2} \mid \lambda \in F_{p}\right\}$.
Proof Let $\lambda_{1} e_{1}+\lambda_{2} e_{2} \in V$. Then

$$
\left(\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
e_{1}+e_{2} & e_{2}
\end{array}\right)
$$

and

$$
a\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}\right)=\lambda_{1}\left(e_{1}+e_{2}\right)+\lambda_{1} e_{2}=\lambda_{1} e_{1}+\left(\lambda_{1}+\lambda_{2}\right) e_{2} .
$$

If $\lambda_{1} e_{1}+\lambda_{2} e_{2} \in V^{a}$, then we have

$$
a\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}\right)=\lambda_{1} e_{1}+\lambda_{2} e_{2}
$$

So $\lambda_{1}=0$, and $V^{a}=\left\{\lambda e_{2} \mid \lambda \in F_{p}\right\}$.
Proposition 2.5 Let $\varrho: D_{2 p} \hookrightarrow G L\left(2, F_{p}\right)$ be a faithful representation of the group $D_{2 p}$ over the prime field F_{p}, afforded by the matrices

$$
\varrho(a)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \varrho(b)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

Then $\sqrt{\left(\operatorname{Im}\left(\operatorname{Tr}^{D_{2 p}}\right)\right)^{e}}=(x)_{F_{p}[V]}$, where $(x)_{F_{p}[V]}$ is the ideal generated by x in $F_{p}[V]$.
Proof By Lemma 2.1, we know that if $g \in D_{2 p}$ and $|g|=p$, then $g=a^{i}, i=1, \ldots,(p-1)$. By Lemmas 2.2 and 2.4, we see

$$
V^{a^{i}}=V^{a}=\left\{\lambda e_{2} \mid \lambda \in F_{p}\right\}
$$

Furthermore, by Lemma 2.3, we have

$$
\Omega_{D_{2 p}}=\bigcup_{g \in D_{2 p},|g|=p} V^{g}=\bigcup_{i=1}^{p-1} V^{a^{i}}=V^{a}=\left\{\lambda e_{2} \mid \lambda \in F_{p}\right\}
$$

If \bar{F} is the algebraic closure of F_{p} and $\bar{\Omega}_{D_{2 p}}$ the transfer variety over \bar{F}, then

$$
\bar{\Omega}_{D_{2 p}}=\Omega_{D_{2 p}} \otimes_{F_{p}} \bar{F}=V^{a} \otimes_{F_{p}} \bar{F}
$$

is the variety defined by the set of linear forms $\left\{k x \otimes_{F_{p}} 1 \mid k \in F_{p}\right\}$, for $\left(x \otimes_{F_{p}} 1\right) \cdot\left(e_{2} \otimes_{F_{p}} 1\right)=0$ and $\left(x \otimes_{F_{p}} 1\right) \cdot\left(e_{1} \otimes_{F_{p}} 1\right)=1 \otimes_{F_{p}} 1 \neq 0$. Hence

$$
\bar{\Omega}_{D_{2 p}}=\left\{\bar{v} \in \bar{V}=\bar{F}^{2} \mid k x \otimes_{F_{p}} 1(\bar{v})=0, k \in F_{p}\right\} .
$$

Thus, we get

$$
V\left(\left(\operatorname{Im}\left(T^{D_{2 p}}\right)\right)^{e}\right)=\bar{\Omega}_{D_{2 p}}=V\left((x)_{\bar{F}[\bar{V}]}\right) \quad \text { in } \quad \bar{F}[\bar{V}] .
$$

By Hilbert's Nullstellensatz Theorem, it follows that

$$
\sqrt{\left(\operatorname{Im}\left(\operatorname{Tr}^{D_{2 p}}\right)\right)^{e}}=I\left(V\left(\left(\operatorname{Im}\left(\operatorname{Tr}^{D_{2 p}}\right)\right)^{e}\right)\right)=I\left(V\left((x)_{\bar{F}[\bar{V}]}\right)\right)=\sqrt{(x)_{\bar{F}[\bar{V}]}}
$$

in $\bar{F}[\bar{V}]$, then limit the result on the field F_{p} by flat base change which is the similar method to the example 1 on the page 276 in [3], that $\sqrt{\left(\operatorname{Im}\left(\operatorname{Tr}^{D_{2 p}}\right)\right)^{e}}=\sqrt{(x)_{F_{p}[V]}}$ in $F_{p}[V]$, since x is defined over F_{p}. Hence $\sqrt{\left(\operatorname{Im}\left(T^{D_{2 p}}\right)\right)^{e}}=(x)_{F_{p}[V]}$, by $(x)_{F_{p}[V]}$ is a prime ideal.

Suppose $p_{i}=x_{1}^{i}+\cdots+x_{n}^{i}$ are the i th symmetric power sums of x_{1}, \ldots, x_{n}, and $s_{i}=$ $s_{i}\left(x_{1}, \ldots, x_{n}\right)$ are the i th elementary symmetric polynomials of x_{1}, \ldots, x_{n}.

Lemma 2.6 (Newton's Formulae)([1, Proposition 4.7]) The symmetric power sums p_{i} and elementary symmetric polynomials s_{i} satisfy the following relations:

$$
\begin{gathered}
s_{1}=p_{1} \\
2 s_{2}=p_{1} s_{1}-p_{2}
\end{gathered}
$$

$$
i s_{i}=\sum_{k=1}^{i}(-1)^{k-1} p_{k} s_{i-k}
$$

where we set $s_{0}=1$.
Lemma 2.7 In the prime field $F_{p}, s_{i}(1, \ldots, p-1)=0, i=1, \ldots, p-2$.
Proof We consider the polynomial $\prod_{k=1}^{p-1}(x-k)$ in $F_{p}[x]$ with roots of all non zero elements of F_{p}. Since all non zero elements of F_{p} satisfy the equation $k^{p-1}=1$, we know that they are roots of polynomial $x^{p-1}-1$ in $F_{p}[x]$, hence $\prod_{k=1}^{p-1}(x-k)=x^{p-1}-1$, which means $s_{i}(1, \ldots, p-1)=$ $0, i=1, \ldots, p-2$.

Lemma 2.8 In the prime field $F_{p}, \sum_{k=1}^{p-1} k^{i}=0, i=1, \ldots, p-2$.
Proof By the Newton's Formulae in the Lemma 2.6, we have

$$
i s_{i}=\sum_{k=1}^{i}(-1)^{k-1} p_{k} s_{i-k}
$$

i.e.,

$$
(-1)^{i-1} p_{i}=\sum_{k=1}^{i-1}(-1)^{k-1} p_{k} s_{i-k}-i s_{i}
$$

Put the elements of the field F_{p} into preceding equation and by the Lemma 2.7, we see that $(-1)^{i-1} p_{i}=0$, hence $\sum_{k=1}^{p-1} k^{i}=0, i=1, \ldots, p-2$.

Lemma 2.9 (Fermat's Theorem) ([4, Theorem 71]) If p is a prime, and $p \nmid a$, then $a^{p-1} \equiv$ $1(\bmod p)$.

Lemma 2.10 ([5, Theorems 1.4.12, 1.4.13]) Let A, B be two rings, $\Phi: A \rightarrow B$ be a ring homomorphism, $a \subseteq A$ is an ideal of A, then (1) $a \subseteq a^{e c} ;(2)(\sqrt{a})^{e} \subseteq \sqrt{\left(a^{e}\right)}$.

Theorem 2.11 Let $\varrho: D_{2 p} \hookrightarrow G L\left(2, F_{p}\right)$ be a faithful representation of the group $D_{2 p}$ over the prime field F_{p}, afforded by the matrices

$$
\varrho(a)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \varrho(b)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Then $\sqrt{\operatorname{Im}\left(\operatorname{Tr}^{D_{2 p}}\right)}=\left(x^{2}\right)_{F_{p}[V]^{D_{2 p}}}$.
Proof On the one hand, we have

$$
\sqrt{\operatorname{Im}\left(\operatorname{Tr}^{D_{2 p}}\right)} \subseteq\left(\sqrt{\operatorname{Im}\left(\operatorname{Tr}^{D_{2 p}}\right)}\right)^{e c}
$$

by Lemma 2.10 (1).
Since $\left(\sqrt{\operatorname{Im}\left(T^{D_{2 p}}\right)}\right)^{e c}=\left(\sqrt{\operatorname{Im}\left(T^{D_{2 p}}\right)}\right)^{e} \bigcap F_{p}[V]^{D_{2 p}}$, we have

$$
\left(\sqrt{\operatorname{Im}\left(\operatorname{Tr}^{D_{2 p}}\right)}\right)^{e} \bigcap F_{p}[V]^{D_{2 p}} \subseteq \sqrt{\left(\operatorname{Im}\left(\operatorname{Tr}^{D_{2 p}}\right)\right)^{e}} \bigcap F_{p}[V]^{D_{2 p}}
$$

by Lemma 2.10 (2).

Since $F_{p}[V]^{D_{2 p}}=F_{p}\left[x^{2}, y^{p}-y\left(x^{p-1}\right)\right]$ and by Proposition 2.5 , we see that

$$
\sqrt{\left(\operatorname{Im}\left(\operatorname{Tr}^{D_{2 p}}\right)\right)^{e}} \bigcap F_{p}[V]^{D_{2 p}}=(x)_{F_{p}[V]} \bigcap F_{p}\left[x^{2}, y^{p}-y\left(x^{p-1}\right)\right]=\left(x^{2}\right)_{F_{p}[V]^{D_{2 p}}}
$$

Hence $\sqrt{\operatorname{Im}\left(T^{D_{2 p}}\right)} \subseteq\left(x^{2}\right)_{F_{p}[V]^{D_{2 p}}}$.
On the other hand, in order to prove $\left(x^{2}\right)_{F_{p}[V]}{ }^{D_{2 p}} \subseteq \sqrt{\operatorname{Im}\left(T^{D_{2 p}}\right)}$, it suffices to show that there exists a number k, such that $\left(x^{2}\right)^{k} \in \operatorname{Im}\left(\operatorname{Tr}^{D_{2 p}}\right)$. In fact,

$$
\begin{aligned}
\operatorname{Tr}^{D_{2 p}}\left(y^{p-1}\right) & =\sum_{g \in D_{2 p}} g y^{p-1}=2 \sum_{k=0}^{p-1}(y+k x)^{p-1} \\
& =2 \sum_{k=0}^{p-1}\left(y^{p-1}+(p-1) y^{p-2}(k x)+\cdots+(p-1) y(k x)^{p-2}+(k x)^{p-1}\right) \\
& =2 \sum_{k=0}^{p-1} y^{p-1}+2(p-1) y^{p-2} x \sum_{k=0}^{p-1} k+\cdots+2(p-1) y x^{p-2} \sum_{k=0}^{p-1} k^{p-2}+2 x^{p-1} \sum_{k=0}^{p-1} k^{p-1} .
\end{aligned}
$$

By Lemma 2.8, $\sum_{k=1}^{p-1} k^{i}=0, i=1, \ldots, p-2$, it follows that

$$
\operatorname{Tr}^{D_{2 p}}\left(y^{p-1}\right)=2 x^{p-1} \sum_{k=0}^{p-1} k^{p-1}=2 x^{p-1} \sum_{k=1}^{p-1} k^{p-1}
$$

And by Lemma 2.9, $k^{p-1} \equiv 1(\bmod p)$, we conclude that

$$
\begin{aligned}
\operatorname{Tr}^{D_{2 p}}\left(y^{p-1}\right) & =2 x^{p-1} \sum_{k=1}^{p-1} k^{p-1}=2 x^{p-1} \sum_{k=1}^{p-1} 1 \\
& =2 x^{p-1}(p-1)=-2 x^{p-1}=-2\left(x^{2}\right)^{\frac{p-1}{2}}
\end{aligned}
$$

This implies $\left(x^{2}\right)^{\frac{p-1}{2}} \in \operatorname{Im}\left(\operatorname{Tr}^{D_{2 p}}\right)$, and the proof is completed.
Theorem 2.12 Let $\varrho: D_{2 p} \hookrightarrow G L\left(2, F_{p}\right)$ be a faithful representation of the group $D_{2 p}$ over the prime field F_{p}, afforded by the matrices

$$
\varrho(a)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \varrho(b)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

Then $\operatorname{Im}\left(\operatorname{Tr}^{D_{2 p}}\right)=\left(x^{p-1}\right)_{F_{p}[V]^{D_{2 p}}}$.
Proof By the proof of Theorem 2.11, we see that $\operatorname{Tr}^{D_{2 p}}\left(y^{p-1}\right)=-2 x^{p-1}$, so it is obvious that $\operatorname{Im}\left(\operatorname{Tr}^{D_{2 p}}\right) \supseteq\left(x^{p-1}\right)_{F_{p}[V] D^{D_{2 p}}}$. On the other hand, in order to prove $\operatorname{Im}\left(\operatorname{Tr}^{D_{2 p}}\right) \subseteq\left(x^{p-1}\right)_{F_{p}[V]^{D_{2 p}}}$, we need only consider the image of the monomial $x^{r} y^{s}, r, s \in N$, since transfer is a linear
homomorphism.

$$
\begin{aligned}
\operatorname{Tr}^{D_{2 p}}\left(x^{r} y^{s}\right) & =\sum_{i=0}^{p-1} a^{i}\left(x^{r} y^{s}\right)+\sum_{i=0}^{p-1} a^{i} b\left(x^{r} y^{s}\right) \\
& =x^{r} \sum_{i=0}^{p-1} a^{i}\left(y^{s}\right)+(-1)^{r} x^{r} \sum_{i=0}^{p-1} a^{i}\left(y^{s}\right) \\
& =\left(1+(-1)^{r}\right) x^{r} \sum_{i=0}^{p-1} a^{i}\left(y^{s}\right)=\left(1+(-1)^{r}\right) x^{r} \sum_{i=0}^{p-1}(y+i x)^{s} \\
& =\left(1+(-1)^{r}\right) x^{r}\left(\sum_{i=0}^{p-1}\left(y^{s}+s y^{s-1} i x+\cdots+C_{s}^{k} y^{s-k}(i x)^{k}+\cdots+(i x)^{s}\right)\right) \\
& =\left(1+(-1)^{r}\right) x^{r}\left(\sum_{i=0}^{p-1} y^{s}+\sum_{i=0}^{p-1} s y^{s-1} i x+\cdots+\sum_{i=0}^{p-1} C_{s}^{k} y^{s-k}(i x)^{k}+\cdots+\sum_{i=0}^{p-1}(i x)^{s}\right)
\end{aligned}
$$

By Lemma 2.8, we have
(1) When $s<p-1$, then $k \leq p-2$ and all $\sum_{i=0}^{p-1} C_{s}^{k} y^{s-k}(i x)^{k}=0$, hence $\operatorname{Tr}^{D_{2 p}}\left(x^{r} y^{s}\right)=0$.
(2) When $s \geq p-1$, if $k \leq p-2$, then the terms $\sum_{i=0}^{p-1} C_{s}^{k} y^{s-k}(i x)^{k}=0$, hence

$$
\operatorname{Tr}^{D_{2 p}}\left(x^{r} y^{s}\right)=\left(1+(-1)^{r}\right) x^{r}\left(\sum_{i=0}^{p-1} C_{s}^{p-1} y^{s-p+1}(i x)^{p-1}+\cdots+\sum_{i=0}^{p-1}(i x)^{s}\right)
$$

So we obtain $x^{p-1} \mid \operatorname{Tr}^{D_{2 p}}\left(x^{r} y^{s}\right)$, for all $r, s \in N$. Thus, $\operatorname{Im}\left(\operatorname{Tr}^{D_{2 p}}\right) \subseteq\left(x^{p-1}\right)_{F_{p}[V]^{D_{2 p}}}$, and the theorem is proved.

Acknowledgements The authors would like to thank the referees for their time and useful comments.

References

[1] M. D. NEUSEL. Invariant Theory. Student Mathematical Library, vol.36, Amer. Math. Soc., 2006.
[2] L. SMITH. Polynomial invariants of finite groups. A survey of recent developments. Bull. Amer. Math. Soc. (N.S.), 1997, 34(3): 211-250.
[3] M. D. NEUSEL, L. SMITH. Invariant Theory of Finite Groups. American Mathematical Society, Providence, RI, 2002.
[4] G. H. HARDY, E. M. WRIGHT. An Introduction to the Theory of Numbers. Fifth Edition, The Clarendon Press, Oxford University Press, New York, 1981.
[5] Jizhu NAN, Ying WANG. Introduction to Commutative Algebra. Science Press, Beijing, 2012. (in Chinese)

[^0]: Received April 14, 2014; Accepted June 18, 2014
 Supported by the National Natural Science Foundation of China (Grant No. 11371343).

 * Corresponding author

 E-mail address: jznan@163.com (Jizhu NAN); zengl1929@163.com (Lingli ZENG)

