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Abstract In this paper, we determine the structures of the transfer ideal and its radical ideal

for the ring of polynomials Fp[x, y] under the action of dihedral group D2p in the modular

case. We mainly use Transfer variety, p order elements, and Hilbert’s Nullstellensatz Theorem.
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1. Introduction

Let G be a finite group, F be a field, and ϱ : G ↪→ GL(n, F ) be a faithful representation of

G over F . Then, via ϱ, G acts on the vector space V = Fn. We denote by F [V ] = F [x1, . . . , xn]

the graded algebra of polynomial functions on V , which is defined to be the symmetric algebra

on V ∗, the dual of V , in n indeterminate elements x1, . . . , xn. Then this action can induce an

action of G on F [V ] (see [1]):

gf(v) = f(ϱ(g−1)v), ∀g ∈ G, f ∈ F [V ], v ∈ V.

The ring of invariants denoted by F [V ]G, is the fixed subalgebra, i.e.,

F [V ]G = { f ∈ F [V ] | gf = f, ∀g ∈ G}.

The transfer homomorphism is an important tool to calculate the ring of invariants F [V ]G,

and it is defined by

TrG : F [V ] → F [V ]G

f →
∑
g∈G

gf.

The image of the transfer homomorphism is an ideal of the ring of invariants F [V ]G, we call it

transfer ideal Im(TrG).

In the non-modular case, i.e., the order of G and the characteristic of F satisfied: CharF -
|G|, it is easy to verify that the transfer homomorphism is surjective, so the ring of invariants

F [V ]G can be completely described by transfer ideal. In the modular case, i.e., CharF ||G|, it
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is more complicated and harder than the first case. Although the transfer homomorphism is

not surjective [2, Section 2], and Im(TrG) ⊆ F [V ]G is a proper ideal of F [V ]G, but it also can

provide a lot of information for the ring of invariants F [V ]G. Hence, it is necessary to determine

the structure of the transfer ideal.

Let ϱ : G ↪→ GL(n, F ) be a faithful representation of a finite group over the field F . The

transfer variety, denoted by ΩG ⊆ V , is defined by [3, Section 6.4]

ΩG = {v ∈ V |TrG(f)(v) = 0, ∀f ∈ Tot(F [V ])}.

Let p be an odd prime, D2p = ⟨a, b|ap = 1, b2 = 1, ab = ba−1⟩ be the dihedral group of order

2p. Let ϱ : D2p ↪→ GL(2, Fp) be a faithful representation of the group D2p over the prime field

Fp, afforded by the matrices

ϱ(a) =

(
1 0

1 1

)
, ϱ(b) =

(
−1 0

0 1

)
.

In this paper, firstly, we obtain the p order elements of the dihedral group D2p and trans-

fer variety. Secondly, we apply Hilbert’s Nullstellensatz Theorem to describe structures of the

transfer ideal and its radical ideal for the ring of polynomials Fp[x, y] under the action of D2p in

the modular case.

2. Transfer ideal Im(TrD2p) of D2p

First, we recall the computation of the ring of invariants Fp[V ]D2p .

Let ϱ : D2p ↪→ GL(2, Fp) be a faithful representation of the group D2p over the prime field

Fp, afforded by the matrices

ϱ(a) =

(
1 0

1 1

)
, ϱ(b) =

(
−1 0

0 1

)
.

Let Fp[V ] = Fp[x, y]. Then

a

(
x

y

)
=

(
1 0

1 1

)−1(
x

y

)
=

(
x

−x+ y

)
, b

(
x

y

)
=

(
−1 0

0 1

)−1(
x

y

)
=

(
−x

y

)
.

So the orbits of x, y under the action of D2p are

o[x] = {x,−x}, o[y] = {y, y − x, . . . , y − (p− 1)x} = {y, y + x, . . . , y + (p− 1)x}.

Then we have y /∈
∪

g∈D2p
Span{gx}, so x, y are Dade’s basis, and the top Chern classes

Ctop(x) = −x2, Ctop(y) = yp − yxp−1

are a system of parameters. Furthermore,

|D2p| = deg(Ctop(x)) · deg(Ctop(y)) = 2p,

then

Fp[V ]D2p = Fp[x
2, yp − yxp−1].
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Lemma 2.1 The elements of order p in D2p are ai, i = 1, . . . , (p− 1).

Proof Since the generators a, b in D2p satisfy ab = ba−1, the elements in D2p can be written in

the form of aibj , i = 1, . . . , (p− 1), j = 0, 1. And the representation

ϱ(aib) =

(
(−1)j 0

i 1

)
,

ϱ is faithful, when j = 1, the order of

(
−1 0

i 1

)
is 2; when j = 0, the order of

(
1 0

i 1

)
is p.

Hence, the elements of order p in D2p are ai, i = 1, . . . , (p− 1). �

Lemma 2.2 V a = V ai

, i = 1, . . . , (p−1), where V a denote the fix points in V under the action

of a ∈ D2p.

Proof On the one hand, ∀v ∈ V a, a(v) = v, we have ai(v) = ai−1(a(v)) = ai−1(v) = · · · =
a(v) = v, i.e., V a ⊆ V ai

. On the other hand, every non-identity element in the group (a) is a

generator of the group (a), since the order of the cyclic group (a) is prime p. Then there is a

number k, such that a = (ai)k. If ai(v) = v, then a(v) = v, i.e., V ai ⊆ V a. �
Since Im(TrG) is an ideal of F [V ]G, F [V ]G ⊆ F [V ] is ring extension. According to the

definition of transfer variety ΩG = {v ∈ V |TrG(f)(v) = 0,∀f ∈ Tot(F [V ])}, we have

ΩG = {v ∈ V |f(v) = 0, ∀f ∈ (Im(TrG))e} = V ((Im(TrG))e),

where (Im(TrG))e denotes the extension ideal of Im(TrG) in F [V ].

Lemma 2.3 ([3, Corollary 6.4.6]) Let ϱ : G ↪→ GL(n, F ) be a faithful representation of a finite

group over the field F of characteristic p. Then

ΩG =
∪

g∈G,|g|=p

V g,

i.e., transfer variety is the union of the fixed-point sets of the elements in G of order p.

Let V = {λ1e1 + λ2e2|λ1, λ2 ∈ Fp} be the vector space over the prime field Fp of dimension

2. Then the group D2p has a natural action on V .

Lemma 2.4 The fixed-point set of element a is V a = {λe2|λ ∈ Fp}.

Proof Let λ1e1 + λ2e2 ∈ V . Then(
e1 e2

)( 1 0

1 1

)
=
(

e1 + e2 e2

)
,

and

a(λ1e1 + λ2e2) = λ1(e1 + e2) + λ1e2 = λ1e1 + (λ1 + λ2)e2.

If λ1e1 + λ2e2 ∈ V a, then we have

a(λ1e1 + λ2e2) = λ1e1 + λ2e2.
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So λ1 = 0, and V a = {λe2|λ ∈ Fp}. �

Proposition 2.5 Let ϱ : D2p ↪→ GL(2, Fp) be a faithful representation of the group D2p over

the prime field Fp, afforded by the matrices

ϱ(a) =

(
1 0

1 1

)
, ϱ(b) =

(
−1 0

0 1

)
.

Then
√

(Im(TrD2p))e = (x)Fp[V ], where (x)Fp[V ] is the ideal generated by x in Fp[V ].

Proof By Lemma 2.1, we know that if g ∈ D2p and |g| = p, then g = ai, i = 1, . . . , (p− 1). By

Lemmas 2.2 and 2.4, we see

V ai

= V a = {λe2|λ ∈ Fp}.

Furthermore, by Lemma 2.3, we have

ΩD2p =
∪

g∈D2p,|g|=p

V g =

p−1∪
i=1

V ai

= V a = {λe2|λ ∈ Fp}.

If F is the algebraic closure of Fp and ΩD2p the transfer variety over F , then

ΩD2p = ΩD2p⊗FpF = V a⊗FpF

is the variety defined by the set of linear forms {kx⊗Fp1 | k ∈ Fp}, for (x⊗Fp1) · (e2⊗Fp1) = 0

and (x⊗Fp1) · (e1⊗Fp1) = 1⊗Fp1 ̸= 0. Hence

ΩD2p = {v ∈ V = F
2 | kx⊗Fp1(v) = 0, k ∈ Fp}.

Thus, we get

V ((Im(TrD2p))e) = ΩD2p = V ((x)F [V ]) in F [V ].

By Hilbert’s Nullstellensatz Theorem, it follows that√
(Im(TrD2p))e = I(V ((Im(TrD2p))e)) = I(V ((x)F [V ])) =

√
(x)F [V ]

in F [V ], then limit the result on the field Fp by flat base change which is the similar method

to the example 1 on the page 276 in [3], that
√
(Im(TrD2p))e =

√
(x)Fp[V ] in Fp[V ], since x is

defined over Fp. Hence
√
(Im(TrD2p))e = (x)Fp[V ], by (x)Fp[V ] is a prime ideal. �

Suppose pi = xi
1 + · · · + xi

n are the ith symmetric power sums of x1, . . . , xn, and si =

si(x1, . . . , xn) are the ith elementary symmetric polynomials of x1, . . . , xn.

Lemma 2.6 (Newton’s Formulae)([1, Proposition 4.7]) The symmetric power sums pi and

elementary symmetric polynomials si satisfy the following relations：

s1 = p1,

2s2 = p1s1 − p2,

· · ·
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isi =
i∑

k=1

(−1)k−1pksi−k,

where we set s0 = 1.

Lemma 2.7 In the prime field Fp, si(1, . . . , p− 1) = 0, i = 1, . . . , p− 2.

Proof We consider the polynomial
∏p−1

k=1(x− k) in Fp[x] with roots of all non zero elements of

Fp. Since all non zero elements of Fp satisfy the equation kp−1 = 1, we know that they are roots

of polynomial xp−1 − 1 in Fp[x], hence
∏p−1

k=1(x− k) = xp−1 − 1, which means si(1, . . . , p− 1) =

0, i = 1, . . . , p− 2. �

Lemma 2.8 In the prime field Fp,
∑p−1

k=1 k
i = 0, i = 1, . . . , p− 2.

Proof By the Newton’s Formulae in the Lemma 2.6, we have

isi =
i∑

k=1

(−1)k−1pksi−k.

i.e.,

(−1)i−1pi =
i−1∑
k=1

(−1)k−1pksi−k − isi.

Put the elements of the field Fp into preceding equation and by the Lemma 2.7, we see that

(−1)i−1pi = 0, hence
∑p−1

k=1 k
i = 0, i = 1, . . . , p− 2. �

Lemma 2.9 (Fermat’s Theorem) ([4, Theorem 71]) If p is a prime，and p - a, then ap−1 ≡
1 (mod p).

Lemma 2.10 ([5, Theorems 1.4.12, 1.4.13]) Let A,B be two rings, Φ : A → B be a ring

homomorphism, a ⊆ A is an ideal of A, then (1) a ⊆ aec; (2) (
√
a)e ⊆

√
(ae).

Theorem 2.11 Let ϱ : D2p ↪→ GL(2, Fp) be a faithful representation of the group D2p over

the prime field Fp, afforded by the matrices

ϱ(a) =

(
1 0

1 1

)
, ϱ(b) =

(
−1 0

0 1

)
.

Then
√

Im(TrD2p) = (x2)Fp[V ]D2p .

Proof On the one hand, we have√
Im(TrD2p) ⊆ (

√
Im(TrD2p))ec

by Lemma 2.10 (1).

Since (
√
Im(TrD2p))ec = (

√
Im(TrD2p))e

∩
Fp[V ]D2p , we have

(
√
Im(TrD2p))e

∩
Fp[V ]D2p ⊆

√
(Im(TrD2p))e

∩
Fp[V ]D2p

by Lemma 2.10 (2).
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Since Fp[V ]D2p = Fp[x
2, yp − y(xp−1)] and by Proposition 2.5, we see that

√
(Im(TrD2p))e

∩
Fp[V ]D2p = (x)Fp[V ]

∩
Fp[x

2, yp − y(xp−1)] = (x2)Fp[V ]D2p .

Hence
√
Im(TrD2p) ⊆ (x2)Fp[V ]D2p .

On the other hand, in order to prove (x2)Fp[V ]D2p ⊆
√
Im(TrD2p), it suffices to show that

there exists a number k, such that (x2)k ∈ Im(TrD2p). In fact,

TrD2p(yp−1) =
∑

g∈D2p

gyp−1 = 2

p−1∑
k=0

(y + kx)p−1

= 2

p−1∑
k=0

(yp−1 + (p− 1)yp−2(kx) + · · ·+ (p− 1)y(kx)p−2 + (kx)p−1)

= 2

p−1∑
k=0

yp−1 + 2(p− 1)yp−2x

p−1∑
k=0

k + · · ·+ 2(p− 1)yxp−2

p−1∑
k=0

kp−2 + 2xp−1

p−1∑
k=0

kp−1.

By Lemma 2.8,
∑p−1

k=1 k
i = 0, i = 1, . . . , p− 2, it follows that

TrD2p(yp−1) = 2xp−1

p−1∑
k=0

kp−1 = 2xp−1

p−1∑
k=1

kp−1.

And by Lemma 2.9, kp−1 ≡ 1 (mod p), we conclude that

TrD2p(yp−1) = 2xp−1

p−1∑
k=1

kp−1 = 2xp−1

p−1∑
k=1

1

= 2xp−1(p− 1) = −2xp−1 = −2(x2)
p−1
2 .

This implies (x2)
p−1
2 ∈ Im(TrD2p), and the proof is completed. �

Theorem 2.12 Let ϱ : D2p ↪→ GL(2, Fp) be a faithful representation of the group D2p over

the prime field Fp, afforded by the matrices

ϱ(a) =

(
1 0

1 1

)
, ϱ(b) =

(
−1 0

0 1

)
.

Then Im(TrD2p) = (xp−1)Fp[V ]D2p .

Proof By the proof of Theorem 2.11, we see that TrD2p(yp−1) = −2xp−1, so it is obvious that

Im(TrD2p) ⊇ (xp−1)Fp[V ]D2p . On the other hand, in order to prove Im(TrD2p) ⊆ (xp−1)Fp[V ]D2p ,

we need only consider the image of the monomial xrys, r, s ∈ N, since transfer is a linear
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homomorphism.

TrD2p(xrys) =

p−1∑
i=0

ai(xrys) +

p−1∑
i=0

aib(xrys)

= xr

p−1∑
i=0

ai(ys) + (−1)rxr

p−1∑
i=0

ai(ys)

= (1 + (−1)r)xr

p−1∑
i=0

ai(ys) = (1 + (−1)r)xr

p−1∑
i=0

(y + ix)
s

= (1 + (−1)r)xr(

p−1∑
i=0

(ys + sys−1ix+ · · ·+ Ck
s y

s−k(ix)k + · · ·+ (ix)s))

= (1 + (−1)r)xr(

p−1∑
i=0

ys +

p−1∑
i=0

sys−1ix+ · · ·+
p−1∑
i=0

Ck
s y

s−k(ix)k + · · ·+
p−1∑
i=0

(ix)s)

By Lemma 2.8, we have

(1) When s < p−1, then k ≤ p−2 and all
∑p−1

i=0 Ck
s y

s−k(ix)k = 0, hence TrD2p(xrys) = 0.

(2) When s ≥ p− 1, if k ≤ p− 2, then the terms
∑p−1

i=0 Ck
s y

s−k(ix)k = 0, hence

TrD2p(xrys) = (1 + (−1)r)xr
( p−1∑

i=0

Cp−1
s ys−p+1(ix)p−1 + · · ·+

p−1∑
i=0

(ix)s
)
.

So we obtain xp−1|TrD2p(xrys), for all r, s ∈ N. Thus, Im(TrD2p) ⊆ (xp−1)Fp[V ]D2p , and the

theorem is proved. �
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