Journal of Mathematical Research with Applications Mar., 2015, Vol. 35, No. 2, pp. 137–142 DOI:10.3770/j.issn:2095-2651.2015.02.003 Http://jmre.dlut.edu.cn

Evaluating Binomial Character Sums Modulo Powers of Two

Vincent PIGNO, Chris PINNER*, Joe SHEPPARD

Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA

Abstract We show that for any mod 2^m characters, χ_1, χ_2 , the complete exponential sum, $\sum_{x=1}^{2^m} \chi_1(x)\chi_2(Ax^k + B)$ has a simple explicit evaluation.

Keywords character sums

MR(2010) Subject Classification 11L05; 11L03; 11L10

1. Introduction

Suppose that χ_1 and χ_2 are mod 2^m multiplicative characters with χ_2 primitive mod 2^m , $m \geq 3$. We are interested here in evaluating the complete character sum

$$S = \sum_{x=1}^{2^m} \chi_1(x) \chi_2(Ax^k + B).$$

Writing $\chi(Ax^K + Bx^L) = \chi^L(x)\chi(Ax^{K-L} + B)$ these sums of course include the binomial character sums. Cases where one can explicitly evaluate an exponential or character sum are unusual and therefore worth investigating.

In [8] we considered the corresponding result for mod p^m characters with $p \geq 3$ and m sufficiently large, using reduction techniques of Cochrane [2] and Cochrane & Zheng [3,4]. Though their results are stated for odd primes, the approach can often be adapted for p = 2 as we showed for twisted monomial exponential sums in [7]. When k = 1 and A = -1, B = 1, the mod p^m sum is the classical Jacobi sum (though uninterestingly zero if p = 2). See [1] or [5] for an extensive treatment of mod p Jacobi sums and their generalizations over \mathbb{F}_{p^m} . In [6] we treated the k = 1 case for general A, B, including when p = 2, along with generalizations of the multivariable Jacobi sums considered in [9].

Plainly S = 0 if A and B are not of opposite parity (otherwise x or $Ax^k + B$ will be even and the individual terms will all be zero). We assume here that A is even and B is odd and write

$$A = 2^n A_1, n > 0, k = 2^t k_1, 2 \nmid A_1 k_1 B.$$

Received March 13, 2014; Accepted January 16, 2015

The first and third authors acknowledge support of K-State's I-Center and Arts & Sciences Undergraduate Research Scholarships Respectively.

E-mail address: pignov@math.ksu.edu (Vincent PIGNO); pinner@math.ksu.edu (Chris PINNER); jnshep-pa@math.ksu.edu (Joe SHEPPARD)

^{*} Corresponding author

If B is even and A odd, we can use $x \mapsto x^{-1}$ to write S in the form

$$S = \sum_{x=1}^{2^m} \overline{\chi}_1 \overline{\chi}_2^k(x) \chi_2(Bx^k + A).$$

Since $\mathbb{Z}_{2^m}^* = \langle -1, 5 \rangle$, the characters χ_1 , χ_2 are completely determined by their values on -1 and 5. Since 5 has order 2^{m-2} mod 2^m , we can define integers c_1 , c_2 with

$$\chi_i(5) = e_{2^{m-2}}(c_i), \quad 1 \le c_i \le 2^{m-2},$$

where $e_n(x) := e^{2\pi i x/n}$. Since χ_2 is primitive, we have $2 \nmid c_2$. We define the odd integers R_i , $i \geq 2$, by

$$5^{2^{i-2}} = 1 + R_i 2^i. (1)$$

Defining

$$N := \begin{cases} \lceil \frac{1}{2}(m-n) \rceil, & \text{if } m-n > 2t+4, \\ t+2, & \text{if } t+2 \le m-n \le 2t+4, \end{cases}$$

and

$$C(x) := c_1(Ax^k + B) + c_2Akx^kR_NR_{N+n}^{-1}$$
(2)

(here and throughout the paper y^{-1} denotes the inverse of $y \mod 2^m$) it transpires that the sum S will be zero unless there is a solution x_0 to the characteristic equation

$$C(x_0) \equiv 0 \bmod 2^{\lfloor \frac{1}{2}(m+n)\rfloor + t},\tag{3}$$

with $2 \nmid x_0(Ax_0^k + B)$, when m - n > 2t + 4, and a solution to C(1) or $C(-1) \equiv 0 \mod 2^{m-2}$ when $t + 2 \leq m - n \leq 2t + 4$.

Theorem 1.1 Suppose that $m - n \ge t + 2$. The sum S = 0 unless $c_1 = 2^{n+t}c_3$, with $2 \nmid c_3$, and $\chi_1(-1) = 1$ when k is even, and the characteristic equation (3) has an odd solution x_0 when m - n > 2t + 4. Assuming these conditions do hold.

When m-n > 2t+4,

$$S = 2^{\frac{1}{2}(m+n)+t+\min\{1,t\}} \chi_1(x_0) \chi_2(Ax_0^k + B) \begin{cases} 1, & \text{if } m-n \text{ is even,} \\ \omega^h(\frac{2}{h}), & \text{if } m-n \text{ is odd,} \end{cases}$$

where $(\frac{2}{x})$ is the Jacobi symbol, $\omega = e^{\pi i/4}$, $C(x_0) = \lambda 2^{\lfloor \frac{1}{2}(m+n)\rfloor + t}$ for some integer λ and $h := 2\lambda + (k_1 - 1) + (2^n - 1)c_3$.

When $t + 3 < m - n \le 2t + 4$.

$$S = \begin{cases} 2^{m-1}\chi_2(A+B), & \text{if } k \text{ is even and } C(1) \equiv 0 \mod 2^{m-2}, \\ 2^{m-2}\chi_2(A+B), & \text{if } k \text{ is odd and } C(1) \equiv 0 \mod 2^{m-2}, \\ 2^{m-2}\chi_1(-1)\chi_2(-A+B), & \text{if } k \text{ is odd and } C(-1) \equiv 0 \mod 2^{m-2}, \\ 0, & \text{otherwise.} \end{cases}$$

When m-n=t+3,

$$S = \begin{cases} 2^{m-1}\chi_2(A+B), & \text{if } k \text{ is even and } \chi_1(5) = \pm 1, \, \chi_1(-1) = 1, \\ 2^{m-2}\left(\chi_2(A+B) + \chi_1(-1)\chi_2(-A+B)\right), & \text{if } k \text{ is odd and } \chi_1(5) = \pm 1, \\ 0, & \text{otherwise.} \end{cases}$$

When m-n=t+2

$$S = \begin{cases} 2^{m-1}\chi_2(A+B), & \text{if } k \text{ is even and } \chi_1 = \chi_0 \text{ or } k \text{ is odd and } \chi_1 = \chi_4, \\ 0, & \text{otherwise,} \end{cases}$$

where χ_0 is the principal character mod 2^m and χ_4 is the mod 2^m character induced by the non-trivial character mod 4 (i.e., $\chi_4(x) = \pm 1$ as $x \equiv \pm 1 \mod 4$, respectively).

Note that the restriction $m-n \ge t+2$ is quite natural; for m-n < t+2 the odd x will make $Ax^k+B \equiv A+B \mod 2^m$ and $S=\chi_2(A+B)\sum_{x=1}^{2^m}\chi_1(x)=2^{m-1}\chi_2(A+B)$ if $\chi_1=\chi_0$ and zero otherwise.

Our original assumption that χ_2 is primitive is also reasonable; if χ_1 and χ_2 are both imprimitive, then one should reduce the modulus, while if χ_1 is primitive and χ_2 imprimitive, then S=0 (if χ_1 is primitive then $u=1+2^{m-1}$ must have $\chi_1(u)=-1$, since $x+2^{m-1}\equiv ux$ mod 2^m for any odd x, and $x\mapsto xu$ gives $S=\chi_1(u)S$ when χ_2 is imprimitive).

2. Proof

Initial decomposition

Observing that $\pm 5^{\gamma}$, $\gamma = 1, \dots, 2^{m-2}$, gives a reduced residue system mod 2^m and writing

$$S(A) := \sum_{\gamma=1}^{2^{m-2}} \chi_1(5^{\gamma}) \chi_2(A5^{\gamma k} + B),$$

if k is even we have

$$S = (1 + \chi_1(-1))S(A) = \begin{cases} 0, & \text{if } \chi_1(-1) = -1, \\ 2S(A), & \text{if } \chi_1(-1) = 1, \end{cases}$$
(4)

and if k is odd

$$S = S(A) + \chi_1(-1)S(-A). \tag{5}$$

Large m values: m > n + 2t + 4

If I_1 is an interval of length $2^{\lceil \frac{m-n}{2} \rceil - t - 2}$, then plainly

$$\gamma = u2^{\lceil \frac{m-n}{2} \rceil - t - 2} + v, \ v \in I_1, \ u \in I_2 := [1, 2^{\lfloor \frac{m+n}{2} \rfloor + t}],$$

runs through a complete set of residues mod 2^{m-2} . Hence, writing $h(x) := Ax^k + B$ and noting that $2 \nmid h(5^v)$,

$$S(A) = \sum_{v \in I_1} \chi_1(5^v) \sum_{u \in I_2} \chi_1(5^{u2^{\lceil \frac{m-n}{2} \rceil - t - 2}}) \chi_2(A5^{vk} 5^{ku2^{\lceil \frac{m-n}{2} \rceil - t - 2}} + B)$$

$$= \sum_{v \in I_1} \chi_1(5^v) \chi_2(h(5^v)) \sum_{u \in I_2} \chi_1(5^{u2^{\lceil \frac{m-n}{2} \rceil - t - 2}}) \chi_2(W)$$

where

$$W = h(5^{v})^{-1} A 5^{vk} \left(5^{ku2^{\lceil \frac{m-n}{2} \rceil - t - 2}} - 1 \right) + 1.$$

Since $n + 2\lceil \frac{m-n}{2} \rceil \ge m$ and $2\lceil \frac{m+n}{2} \rceil \ge m$, we have

$$W = A_1 5^{vk} h(5^v)^{-1} 2^n \left((1 + R_{\lceil \frac{m-n}{2} \rceil} 2^{\lceil \frac{m-n}{2} \rceil})^{uk_1} - 1 \right) + 1$$

$$\begin{split} &\equiv 1 + A_1 5^{vk} h(5^v)^{-1} u k_1 R_{\lceil \frac{m-n}{2} \rceil} 2^{\lceil \frac{m+n}{2} \rceil} \bmod 2^m \\ &\equiv \left(1 + R_{\lceil \frac{m+n}{2} \rceil} 2^{\lceil \frac{m+n}{2} \rceil}\right)^{A_1 5^{vk} h(5^v)^{-1} u k_1 R_{\lceil \frac{m-n}{2} \rceil} R_{\lceil \frac{m+n}{2} \rceil}^{-1}} \bmod 2^m \\ &= 5^{A_1 5^{vk} h(5^v)^{-1} u k_1 R_{\lceil \frac{m-n}{2} \rceil} R_{\lceil \frac{m+n}{2} \rceil}^{-1} 2^{\lceil \frac{m+n}{2} \rceil - 2} \\ &= 5^{A_5^{vk} h(5^v)^{-1} u k R_{\lceil \frac{m-n}{2} \rceil} R_{\lceil \frac{m+n}{2} \rceil}^{-1} 2^{\lceil \frac{m-n}{2} \rceil - t - 2}}. \end{split}$$

So we can write

$$\sum_{u \in I_2} \chi_1 \left(5^{u2^{\left\lceil \frac{m-n}{2} \right\rceil - t - 2}} \right) \chi_2(W) = \sum_{u \in I_2} e_{2^{\left\lfloor \frac{m+n}{2} \right\rfloor + t}} \left(u(c_1 + c_2 A 5^{vk} h(5^v)^{-1} k R_{\left\lceil \frac{m-n}{2} \right\rceil} R_{\left\lceil \frac{m+n}{2} \right\rceil}^{-1}) \right),$$

which equals $2^{\lfloor \frac{m+n}{2} \rfloor + t}$ for the v with

$$c_1 h(5^v) + c_2 A 5^{vk} k R_{\lceil \frac{m-n}{2} \rceil} R_{\lceil \frac{m+n}{2} \rceil}^{-1} \equiv 0 \bmod 2^{\lfloor \frac{m+n}{2} \rfloor + t}$$

$$\tag{6}$$

and zero otherwise. Since $m \ge n+2$, equation (6) has no solution (and hence S=0) unless $c_1 = 2^{n+t}c_3$ with $2 \nmid c_3$, in which case (6) becomes

$$\left(c_3 A + c_2 A_1 k_1 R_{\lceil \frac{m-n}{2} \rceil} R_{\lceil \frac{m+n}{2} \rceil}^{-1}\right) 5^{vk} \equiv -c_3 B \mod 2^{\lfloor \frac{m-n}{2} \rfloor}.$$
 (7)

If no v satisfies (6), then plainly S=0. So assume that (6) has a solution $v=v_0$ and take $I_1=[v_0,v_0+2^{\lceil \frac{m-n}{2}\rceil-t-2})$. Now any other v solving (7) must have

$$5^{vk} \equiv 5^{v_0 k} \mod 2^{\lfloor \frac{m-n}{2} \rfloor} \Rightarrow vk \equiv v_0 k \mod 2^{\lfloor \frac{m-n}{2} \rfloor - 2} \Rightarrow v \equiv v_0 \mod 2^{\lfloor \frac{m-n}{2} \rfloor - t - 2}$$

So if m-n is even, I_1 contains only the solution v_0 and

$$S(A) = 2^{\lfloor \frac{m+n}{2} \rfloor + t} \chi_1(5^{v_0}) \chi_2(A5^{v_0k} + B). \tag{8}$$

Observe that a solution $x_0 = 5^{v_0}$ or $x_0 = -5^{v_0}$ of (3) corresponds to a solution v_0 to (6) when k is even and a solution v_0 to (6) for A or -A respectively (both cannot have solutions) if k is odd. The evaluation for S follows at once from (8) and (4) or (5). When m - n is odd, I_1 contains two solutions v_0 and $v_0 + 2^{\lfloor \frac{m-n}{2} \rfloor - t - 2}$ and

$$\begin{split} S(A) &= 2^{\lfloor \frac{m+n}{2} \rfloor + t} \chi_1(5^{v_0}) \left(\chi_2(h(5^{v_0})) + \chi_1(5^{2^{\lfloor \frac{m-n}{2} \rfloor - t - 2}}) \chi_2(A5^{v_0k} 5^{k2^{\lfloor \frac{m-n}{2} \rfloor - t - 2}} + B) \right) \\ &= 2^{\lfloor \frac{m+n}{2} \rfloor + t} \chi_1(5^{v_0}) \chi_2(h(5^{v_0})) \left(1 + \chi_1(5^{2^{\lfloor \frac{m-n}{2} \rfloor - t - 2}}) \chi_2(\xi) \right) \end{split}$$

where, since $3\lfloor \frac{m-n}{2} \rfloor + n \ge m$ for $m \ge n+3$,

$$\begin{split} \xi &= A5^{v_0k} \left(5^{k_1 2^{\lfloor \frac{m-n}{2} \rfloor - 2}} - 1 \right) h(5^{v_0})^{-1} + 1 \\ &= A5^{v_0k} h(5^{v_0})^{-1} \left((1 + R_{\lfloor \frac{m-n}{2} \rfloor} 2^{\lfloor \frac{m-n}{2} \rfloor})^{k_1} - 1 \right) + 1 \\ &\equiv A5^{v_0k} h(5^{v_0})^{-1} \left(k_1 R_{\lfloor \frac{m-n}{2} \rfloor} 2^{\lfloor \frac{m-n}{2} \rfloor} + \binom{k_1}{2} R_{\lfloor \frac{m-n}{2} \rfloor}^2 2^{m-n-1} \right) + 1 \bmod 2^m \\ &\equiv \left(A_1 5^{v_0k} h(5^{v_0})^{-1} k_1 R_{\lfloor \frac{m-n}{2} \rfloor} R_{\lfloor \frac{m+n}{2} \rfloor}^{-1} + \frac{1}{2} (k_1 - 1) 2^{\lfloor \frac{m-n}{2} \rfloor} \right) R_{\lfloor \frac{m+n}{2} \rfloor} 2^{\lfloor \frac{m+n}{2} \rfloor} + 1 \bmod 2^m \\ &\equiv \left(1 + R_{\lfloor \frac{m+n}{2} \rfloor} 2^{\lfloor \frac{m+n}{2} \rfloor} \right)^{A_1 5^{v_0k} h(5^{v_0})^{-1} k_1 R_{\lfloor \frac{m-n}{2} \rfloor} R_{\lfloor \frac{m+n}{2} \rfloor}^{-1} + \frac{1}{2} (k_1 - 1) 2^{\lfloor \frac{m-n}{2} \rfloor} + \frac{1}{2} (k_1 - 1) 2^{\lfloor \frac{m-n}{2} \rfloor} \bmod 2^m \\ &= 5^{\left(A_1 5^{v_0k} h(5^{v_0})^{-1} k_1 R_{\lfloor \frac{m-n}{2} \rfloor} R_{\lfloor \frac{m+n}{2} \rfloor}^{-1} + \frac{1}{2} (k_1 - 1) 2^{\lfloor \frac{m-n}{2} \rfloor} \right) 2^{\lfloor \frac{m+n}{2} \rfloor - 2}}{2^{\lfloor \frac{m+n}{2} \rfloor}} . \end{split}$$

Hence, setting

$$c_3 + c_2 A_1 5^{v_0 k} h(5^{v_0})^{-1} k_1 R_{\lceil \frac{m-n}{2} \rceil} R_{\lceil \frac{m+n}{2} \rceil}^{-1} = \lambda 2^{\lfloor \frac{m-n}{2} \rfloor}$$

(only the parity of λ will be used) and recalling that c_2 is odd, we have

$$\chi_1(5^{2^{\lfloor \frac{m-n}{2} \rfloor - t - 2}})\chi_2(\xi) = e_{2^{\lceil \frac{m-n}{2} \rceil}} \left(c_3 + c_2 A_1 5^{v_0 k} h(5^{v_0})^{-1} k_1 R_{\lfloor \frac{m-n}{2} \rfloor} R_{\lfloor \frac{m+n}{2} \rfloor}^{-1} \right) (-1)^{\frac{1}{2}(k_1 - 1)c_2}$$

$$= e_{2^{\lceil \frac{m-n}{2} \rceil}} \left(c_2 A_1 5^{v_0 k} h(5^{v_0})^{-1} k_1 \left(R_{\lfloor \frac{m-n}{2} \rfloor} R_{\lfloor \frac{m+n}{2} \rfloor}^{-1} - R_{\lceil \frac{m-n}{2} \rceil} R_{\lceil \frac{m+n}{2} \rceil}^{-1} \right) \right) (-1)^{\frac{1}{2}(k_1 - 1) + \lambda}.$$

Since $1 + R_{i+1}2^{i+1} = (1 + R_i2^i)^2$, we have $R_{i+1} = R_i + 2^{i-1}R_i^2 \equiv R_i + 2^{i-1} \mod 2^{i+2}$, giving $R_i \equiv 3 \mod 4$ for $i \geq 3$, and

$$\begin{split} R_{\lfloor\frac{m-n}{2}\rfloor}R_{\lfloor\frac{m+n}{2}\rfloor}^{-1} - R_{\lceil\frac{m-n}{2}\rceil}R_{\lceil\frac{m+n}{2}\rceil}^{-1} &\equiv R_{\lfloor\frac{m+n}{2}\rfloor}^{-1}R_{\lceil\frac{m+n}{2}\rceil}^{-1} \big((R_{\lceil\frac{m-n}{2}\rceil} - 2^{\lceil\frac{m-n}{2}\rceil-2})R_{\lceil\frac{m+n}{2}\rceil} - R_{\lceil\frac{m-n}{2}\rceil}^{-1} - 2^{\lceil\frac{m-n}{2}\rceil+n-2})\big) & \mod 2^{\lceil\frac{m-n}{2}\rceil} \\ &\equiv (1-2^n)2^{\lceil\frac{m-n}{2}\rceil-2} \mod 2^{\lceil\frac{m-n}{2}\rceil}. \end{split}$$

From (6) we have $c_2 A_1 5^{v_0 k} h(5^{v_0})^{-1} k_1 \equiv -c_3 \mod 4$ and

$$S(A) = 2^{\lfloor \frac{m+n}{2} \rfloor + t} \chi_1(5^{v_0}) \chi_2(h(5^{v_0})) (1 + i^{(2^n - 1)c_3} (-1)^{\frac{1}{2}(k_1 - 1) + \lambda}).$$

The result follows on writing $\frac{1+i^h}{\sqrt{2}} = \omega^h(\frac{2}{h}).$

Small m values: $t+2 \le m-n \le 2t+4$

Since $n + 2(t+2) \ge m$, we have

$$A5^{\gamma k} + B = A_1 2^n (1 + R_{t+2} 2^{t+2})^{\gamma k_1} + B$$

$$\equiv (A+B) \left(1 + \gamma k_1 A_1 R_{t+2} (A+B)^{-1} 2^{t+n+2} \right) \mod 2^m$$

$$\equiv (A+B) \left(1 + R_{t+n+2} 2^{t+n+2} \right)^{\gamma k_1 A_1 (A+B)^{-1} R_{t+2} R_{t+n+2}^{-1}} \mod 2^m$$

$$= (A+B) 5^{\gamma A k (A+B)^{-1} R_{t+2} R_{t+n+2}^{-1}}.$$

Hence $\chi_1(5^{\gamma})\chi_2(A5^{\gamma k}+B)$ equals

$$\chi_2(A+B)e_{2^{m-2}}\left(\gamma\left(c_1(A+B)+c_2AkR_{t+2}R_{t+n+2}^{-1}\right)(A+B)^{-1}\right)$$

and $S(A) = 2^{m-2}\chi_2(A+B)$ if $C(1) \equiv 0 \mod 2^{m-2}$ and 0 otherwise. Since $m-n \geq t+2$, the congruence $C(1) \equiv 0 \mod 2^{m-2}$ implies $c_1 = 2^{t+n}c_3$ (with c_3 odd if m-n > t+2) and becomes

$$c_3(A+B) + c_2 A_1 k_1 R_{t+2} R_{t+n+2}^{-1} \equiv 0 \mod 2^{m-n-t-2}.$$
 (9)

For m-n=t+2 or t+3 this will automatically hold (for both A and -A when k is odd) and $S=2^{m-1}\chi_2(A+B)$ for k even and $\chi_1(-1)=1$, and

$$S = 2^{m-2}(\chi_2(A+B) + \chi_1(-1)\chi_2(-A+B))$$

for k odd. Further for k odd and m-n=2 we have $-A+B \equiv (1+2^{m-1})(A+B) \mod 2^m$ with $\chi_2(1+2^{m-1})=-1$ and $S=2^{m-2}\chi_2(A+B)(1-\chi_1(-1))=2^{m-1}\chi_2(A+B)$ if $\chi_1(-1)=-1$ and zero otherwise. Note when m-n=t+2, we have $c_1=2^{m-2}$ and $\chi_1(5)=1$ and when m-n=t+3, we have $c_1=2^{m-2}$ or 2^{m-3} and $\chi_1(5)=\pm 1$.

Since c_3B is odd, (9) cannot hold for both A and -A for m-n>t+3 and at most one of S(A) or S(-A) is non-zero. When k is odd, the congruence condition for -A becomes $C(-1) \equiv 0$ mod 2^{m-2} .

References

- B. C. BERNDT, R. J. EVANS, K. S. WILLIAMS. Gauss and Jacobi Sums. John Wiley & Sons, Inc., New York, 1998.
- [2] T. COCHRANE. Exponential sums modulo prime powers. Acta Arith., 2002, 101(2): 131-149.
- [3] T. COCHRANE, Zhiyong ZHENG. Pure and mixed exponential sums. Acta Arith., 1999, 91(3): 249–278.
- [4] T. COCHRANE, Zhiyong ZHENG. A Survey on Pure and Mixed Exponential Sums Modulo Prime Powers. Number Theory for the Millennium, I (Urbana, IL, 2000), 273-300, A K Peters, Natick, MA, 2002.
- [5] R. LIDL, H. NIEDERREITER. Finite Fields, Encyclopedia of Mathematics and Its Applications 20, 2nd Edition, Cambridge University Press, 1997.
- [6] M. LONG, V. PIGNO, C. PINNER. Evaluating Prime Power Gauss and Jacobi Sums. arXiv:1410.6179
- [7] V. PIGNO, C. PINNER. Twisted monomial Gauss sums modulo prime powers. Funct. Approx. Comment. Math., 2014, 51(2): 285–301.
- [8] V. PIGNO, C. PINNER. Binomial Character Sums Modulo Prime Powers. arXiv:1410.6494
- [9] Wenpeng ZHANG, Zhefeng XU. On the Dirichlet characters of polynomials in several variables. Acta Arith., 2006, 121(2): 117–124.