On Jeśmanowicz' Conjecture Concerning Pythagorean Triples

Cuifang SUN*, Zhi CHENG

School of Mathematics and Computer Science, Anhui Normal University, Anhui 241003, P. R. China

Abstract Let (a,b,c) be a primitive Pythagorean triple. Jeśmanowicz conjectured in 1956 that for any positive integer n, the Diophantine equation $(an)^x + (bn)^y = (cn)^z$ has only the positive integer solution (x,y,z) = (2,2,2). Let $p \equiv 3 \pmod 4$ be a prime and s be some positive integer. In the paper, we show that the conjecture is true when $(a,b,c) = (4p^{2s} - 1, 4p^s, 4p^{2s} + 1)$ and certain divisibility conditions are satisfied.

Keywords Jeśmanowicz' conjecture; Diophantine equation

MR(2010) Subject Classification 11D61

1. Introduction

Let a, b, c be a primitive Pythagorean triple, that is, a, b, c are relatively prime positive integers such that $a^2 + b^2 = c^2$. In 1956, Jeśmanowicz [2] conjectured that for any positive integer n, the Diophantine equation

$$(an)^x + (bn)^y = (cn)^z \tag{1}$$

has no positive integer solutions other than (x, y, z) = (2, 2, 2).

Whether there are other solutions has been investigated by many authors. Sierpiński [7] showed that Eq. (1) has no other positive integer solutions when n=1 and (a,b,c)=(3,4,5). Jeśmanowicz [2] further proved the same conclusion for n=1 and (a,b,c)=(5,12,13), (7,24,25), (9,40,41), (11,60,61). For any positive integer k, Lu [4] showed that Eq.(1) has only the positive integer solution (x,y,z)=(2,2,2) if n=1 and $(a,b,c)=(4k^2-1,4k,4k^2+1)$. Recently, Tang and Weng [9] proved that for any positive integer m, if $c=2^{2^m}+1$ is a Fermat number, then Eq. (1) has only the positive integer solution (x,y,z)=(2,2,2). Deng [1] showed that if $k=2^s$ for some positive integer s and certain divisibility conditions are satisfied, then Jeśmanowicz' conjecture is true. For related problems, we refer to [3,5,6,8,10].

For any positive integer N with N > 1, let P(N) denote the product of distinct prime factors of N and let $\binom{*}{*}$ denote the Legendre symbol. If q^e is a prime power, we write $p^e | N$ to mean that $p^e | N$ while $p^{e+1} \nmid N$. Let $p \equiv 3 \pmod{4}$ be a prime and s be some positive integer.

Received August 26, 2014; Accepted November 24, 2014

Supported by the Research Culture Fundation of Anhui Normal University (Grant Nos. 2012xmpy009; 2014xmp y11) and the Natural Science Foundation of Anhui Province (Grant No. 1208085QA02).

* Corresponding author

E-mail address: cuifangsun@163.com (Cuifang SUN); chengzhimath@126.com (Zhi CHENG)

In this paper, we consider the case $k = p^s$ and the following results will be proved.

Theorem 1.1 Let $p \equiv 3 \pmod{4}$ be a prime and s be some positive integer. Let $(a,b,c) = (4p^{2s} - 1, 4p^s, 4p^{2s} + 1)$ be a primitive Pythagorean triple. Suppose that the positive integer n is such that either P(a)|n or $P(n) \nmid a$. Then Eq. (1) has only the positive integer solution (x, y, z) = (2, 2, 2).

Corollary 1.2 Let s be some positive integer and $(a,b,c) = (4 \cdot 3^{2s} - 1, 4 \cdot 3^s, 4 \cdot 3^{2s} + 1)$ be a primitive Pythagorean triple. If a has only two distinct prime divisors, then for any positive integer n, Eq.(1) has only the positive integer solution (x,y,z) = (2,2,2).

2. Proofs

We shall begin with the following two Lemmas.

Lemma 2.1 ([4, Theorem]) Let $(a, b, c) = (4k^2 - 1, 4k, 4k^2 + 1)$ and n = 1. Then Eq. (1) has only the positive integer solution (x, y, z) = (2, 2, 2).

Lemma 2.2 ([1, Corollary]) Let (a,b,c) be any primitive Pythagorean triple such that the Diophantine equation $a^x + b^y = c^z$ has only the positive integer solution (x,y,z) = (2,2,2). If (x,y,z) is a solution of Eq.(1) with $(x,y,z) \neq (2,2,2)$, then one of the following conditions is satisfied:

- (i) x > z > y and P(n)|b;
- (ii) y > z > x and P(n)|a.

Proof of Theorem 1.1 By Lemma 2.1, we may suppose that $n \ge 2$. We also suppose that (x, y, z) is a solution of Eq. (1) with $(x, y, z) \ne (2, 2, 2)$.

Case 1 $P(n) \nmid a$. By Lemma 2.2, we have x > z > y and P(n)|b. Then

$$a^x n^{x-y} + b^y = c^z n^{z-y}.$$

Since $b = 2^2 p^s$, we can write $n = 2^{\alpha} p^{\beta}$ with $\alpha + \beta \geqslant 1$. Thus

$$2^{\alpha(x-y)}p^{\beta(x-y)}a^x + 2^{2y}p^{sy} = 2^{\alpha(z-y)}p^{\beta(z-y)}c^z.$$
 (2)

Subcase 1.1 $\alpha = 0, \beta \geqslant 1$. Then

$$p^{\beta(x-y)}a^x + 2^{2y}p^{sy} = p^{\beta(z-y)}c^z.$$

Since $\beta(x-y) > \beta(z-y)$, we have $sy = \beta(z-y)$. Thus

$$p^{\beta(x-z)}a^x = c^z - 2^{2y}. (3)$$

If p = 3, then $(-1)^{x+\beta(x-z)} \equiv 1 \pmod{4}$, and then $x + \beta(x-z) \equiv 0 \pmod{2}$. Thus taking modulo 8 in (3), we have

$$5^z \equiv 2^{2y} + 1 \pmod{8} \tag{4}$$

If y=1, then $z\equiv 1\pmod 2$ and $3^{\beta(x-z)}a^x=c^z-4$. Since $3\|c^z-4$ and $3\nmid a$, we have

 $\beta(x-z)=1$, thus x is even, $x+\beta(x-z)\equiv 1\pmod 2$, a contradiction. Thus $y\geqslant 2$. By (4) we have $5^z\equiv 1\pmod 8$ and $z\equiv 0\pmod 2$.

If p > 3, then $a = 4p^{2s} - 1 \equiv 0 \pmod{3}$, $c = 4p^{2s} + 1 \equiv 2 \pmod{3}$. Thus $2^z \equiv 1 \pmod{3}$ and $z \equiv 0 \pmod{2}$.

Now we can write $z = 2z_1$. By (3),

$$p^{\beta(x-z)}(2p^s+1)^x(2p^s-1)^x = p^{\beta(x-z)}a^x = (c^{z_1}-2^y)(c^{z_1}+2^y).$$

Noting that $\gcd(c^{z_1}-2^y,c^{z_1}+2^y)=1$, we can write $a=a_1a_2$ with $\gcd(a_1,a_2)=1,a_1^x|c^{z_1}+2^y$ and $a_2^x|c^{z_1}-2^y$. Then either $a_1\geqslant 2p^s+1$ or $a_2\geqslant 2p^s+1$. Otherwise, if $a_1<2p^s+1$ and $a_2<2p^s+1$, then $a_1\leqslant 2p^s-1$ and $a_2\leqslant 2p^s-1$ by $a_1a_2=4p^{2s}-1$. Thus

$$a = a_1 a_2 \le (2p^s - 1)^2 < (2p^s - 1)(2p^s + 1) = a,$$

which is impossible. If $a_1 \ge 2p^s + 1$, then

$$a_1^2 \ge (2p^s + 1)^2 = c + 4p^s > c + 4,$$

thus

$$a_1^x > (a_1^2)^{z_1} > (c+4)^{z_1} \geqslant c^{z_1} + 4^{z_1} > c^{z_1} + 2^y$$

but $a_1^x|c^{z_1}+2^y$, a contradiction. If $a_2 \ge 2p^s+1$, we similarly get $a_2^x > c^{z_1}+2^y > c^{z_1}-2^y$, but $a_2^x|c^{z_1}-2^y$, a contradiction.

Subcase 1.2 $\alpha \geqslant 1, \beta = 0$. Then by (2) we have

$$2^{\alpha(x-y)}a^x + 2^{2y}p^{sy} = 2^{\alpha(z-y)}c^z.$$

Since $\alpha(x-y) > \alpha(z-y)$, we have $2y = \alpha(z-y)$. Thus

$$2^{\alpha(x-z)}a^x = c^z - p^{sy}. (5)$$

If p=3, then $(-1)^{x+\alpha(x-z)}\equiv 1\pmod 3$, thus $x+\alpha(x-z)\equiv 0\pmod 2$. Moreover, $(-1)^x 2^{\alpha(x-z)}\equiv 1-3^{sy}\pmod 4$ and $(-1)^x 2^{\alpha(x-z)}\equiv 1-3^{sy}\pmod 9$. If $sy\equiv 1\pmod 2$, then $1-3^{sy}\equiv 2\pmod 4$, thus $\alpha(x-z)=1, x\equiv 1\pmod 2$. It follows that $\alpha=1, z\equiv 0\pmod 2$, $y\equiv 1\pmod 2$, but $2y=\alpha(z-y)$, a contradiction. Then $sy\equiv 0\pmod 2$ and $(-1)^x 2^{\alpha(x-z)}\equiv 1\pmod 9$. Hence $\alpha(x-z)\geqslant 3$. Further, $5^z\equiv 1\pmod 8$, thus $z\equiv 0\pmod 2$.

If p > 3, then $(-1)^x 2^{\alpha(x-z)} \equiv 1 \pmod{p}$. Since $p \equiv 3 \pmod{4}$ and p > 3, we have $\alpha(x-z) \ge 3$. Moreover, $(-1)^{sy} \equiv 1 \pmod{4}$ and $5^z \equiv 1 \pmod{8}$, thus $sy \equiv 0 \pmod{2}$, $z \equiv 0 \pmod{2}$.

Now we can write $z = 2z_1, sy = 2y_1$. By (5),

$$2^{\alpha(x-z)}a^x = (c^{z_1} - p^{y_1})(c^{z_1} + p^{y_1}).$$

Let $a = a_1 a_2$ with $gcd(a_1, a_2) = 1$, $a_1^x | c^{z_1} + p^{y_1}$ and $a_2^x | c^{z_1} - p^{y_1}$. Then either $a_1 \ge 2p^s + 1$ or $a_2 \ge 2p^s + 1$. Otherwise, if $a_1 \le 2p^s - 1$ and $a_2 \le 2p^s - 1$, then

$$a = a_1 a_2 \le (2p^s - 1)^2 < (2p^s - 1)(2p^s + 1) = a$$

which is impossible. If $a_1 \ge 2p^s + 1$, then

$$a_1^2 \ge (2p^s + 1)^2 = c + 4p^s > c + p^s$$
.

Further, we have

$$a_1^x > (a_1^2)^{z_1} > (c+p^s)^{z_1} \geqslant c^{z_1} + p^{sz_1} > c^{z_1} + p^{y_1},$$

but $a_1^x|c^{z_1} + p^{y_1}$, a contradiction. If $a_2 \ge 2p^s + 1$, we similarly get $a_2^x > c^{z_1} + p^{y_1} > c^{z_1} - p^{y_1}$, but $a_2^x|c^{z_1} - p^{y_1}$, a contradiction.

Subcase 1.3 $\alpha \geqslant 1, \beta \geqslant 1$. Then $\alpha(x-y) > \alpha(z-y), \beta(x-y) > \beta(z-y)$, so $2y = \alpha(z-y), sy = \beta(z-y)$, thus

$$2^{\alpha(x-z)}p^{\beta(x-z)}a^x = c^z - 1. (6)$$

Since $4|c^z-1$ and $p^{2s}|c^z-1$, we have $\alpha(x-z) \ge 2$ and $\beta(x-z) \ge 2s$. Then $\alpha(x-z) \ge 3$. Otherwise, if $\alpha(x-z)=2$, then $\alpha=1, x-z=2$ or $\alpha=2, x-z=1$. By $2y=\alpha(z-y)$, we have z=3y or z=2y. By $sy=\beta(z-y)$, we have $s=2\beta$ or $s=\beta$, but $\beta(x-z) \ge 2s$, it is impossible.

Taking modulo 8 in (6), we have $5^z \equiv 1 \pmod{8}$, thus $z \equiv 0 \pmod{2}$. Write $z = 2z_1$, we have

$$2^{\alpha(x-z)}p^{\beta(x-z)}a^x = (c^{z_1} - 1)(c^{z_1} + 1).$$

Let $a = a_1 a_2$ with $gcd(a_1, a_2) = 1$, $a_1^x | c^{z_1} + 1$ and $a_2^x | c^{z_1} - 1$. Then either $a_1 \ge 2p^s + 1$ or $a_2 \ge 2p^s + 1$. Otherwise, if $a_1 \le 2p^s - 1$ and $a_2 \le 2p^s - 1$, then

$$a = a_1 a_2 \le (2p^s - 1)^2 < (2p^s - 1)(2p^s + 1) = a$$

which is impossible. If $a_1 \ge 2p^s + 1$, then

$$a_1^2 \ge (2p^s + 1)^2 = c + 4p^s > c + 1.$$

Further, we have

$$a_1^x > (a_1^2)^{z_1} > (c+1)^{z_1} \geqslant c^{z_1} + 1,$$

but $a_1^x|c^{z_1}+1$, a contradiction. If $a_2 \ge 2p^s+1$, we similarly get $a_2^x > c^{z_1}+1 > c^{z_1}-1$, but $a_2^x|c^{z_1}-1$, a contradiction.

Case 2 P(a)|n. By Lemma 2.2, we have y > z > x. Then

$$a^x + b^y n^{y-x} = c^z n^{z-x}.$$

Since y - x > z - x > 0, we have P(n)|a and $n^{z-x}|a^x$, which means that P(n) = P(a) and $n^{z-x} = a^x$. Thus

$$b^y n^{y-z} = c^z - 1. (7)$$

It follows that $5^z \equiv 1 \pmod{8}$, so $z \equiv 0 \pmod{2}$. Write $z = 2z_1$. Since $c \equiv 1 \pmod{b}$, $c^{z_1} + 1 \equiv 2 \pmod{b}$, we have $\gcd(c^{z_1} + 1, b) = 2$. Then by (7), we have $\frac{b^y}{2} | c^{z_1} - 1$. But

$$\frac{b^y}{2} > \frac{b^{2z_1}}{2} = \frac{(c-a)^{z_1}(c+a)^{z_1}}{2} \geqslant c^{z_1} + a^{z_1} > c^{z_1} - 1,$$

which is impossible.

This completes the proof of Theorem 1.1 \square

Proof of Corollary 1.2 By Lemma 2.1, we may suppose that $n \ge 2$ and suppose that (x, y, z) is a solution of (1) with $(x, y, z) \ne (2, 2, 2)$. By Case 2 of Theorem 1.1 and Lemma 2.2, we may suppose that y > z > x, P(n)|a and P(n) < P(a). Since $a = 4 \cdot 3^{2s} - 1$ has only two distinct prime divisors and $\gcd(2 \cdot 3^s - 1, 2 \cdot 3^s + 1) = 1$, we can write $2 \cdot 3^s - 1 = q_1^{\alpha_1}, 2 \cdot 3^s + 1 = q_2^{\alpha_2}$, where q_1 and q_2 are distinct odd primes and $\alpha_1, \alpha_2 \ge 1$. Then we have either $n = q_1^{\alpha}$ or $n = q_2^{\beta}$ with $\alpha, \beta \ge 1$.

If $n = q_1^{\alpha}$, then we have

$$q_1^{\alpha_1 x} q_2^{\alpha_2 x} + (4 \cdot 3^s)^y q_1^{\alpha(y-x)} = (4 \cdot 3^{2s} + 1)^z q_1^{\alpha(z-x)}.$$

Since $\alpha(y-x) > \alpha(z-x)$, we have $\alpha_1 x = \alpha(z-x)$ and

$$(4 \cdot 3^s)^y q_1^{\alpha(y-z)} = (4 \cdot 3^{2s} + 1)^z - q_2^{\alpha_2 x} = (4 \cdot 3^{2s} + 1)^z - (2 \cdot 3^s + 1)^x.$$
 (8)

If s is even, then $3^x \equiv 1 \pmod{4}$ and $5^z \equiv 3^x \pmod{8}$, thus x and z are both even. If s is odd, then $5^z \equiv 7^x \pmod{8}$, thus x and z are both even. Now write $z = 2z_1, x = 2x_1$. By (8),

$$(4 \cdot 3^{s})^{y} q_{1}^{\alpha(y-z)} = ((4 \cdot 3^{2s} + 1)^{z_{1}} - (2 \cdot 3^{s} + 1)^{x_{1}})((4 \cdot 3^{2s} + 1)^{z_{1}} + (2 \cdot 3^{s} + 1)^{x_{1}}). \tag{9}$$

Noting that $gcd((4 \cdot 3^{2s} + 1)^{z_1} - (2 \cdot 3^s + 1)^{x_1}, (4 \cdot 3^{2s} + 1)^{z_1} + (2 \cdot 3^s + 1)^{x_1}) = 2$ and

$$\frac{(4 \cdot 3^{s})^{y}}{2} = \frac{b^{y}}{2} > \frac{b^{z}}{2} = \frac{b^{2z_{1}}}{2} = \frac{2^{z_{1}}(c+a)^{z_{1}}}{2} \geqslant (c+a)^{z_{1}} \geqslant c^{z_{1}} + a^{z_{1}}$$
$$> (4 \cdot 3^{2s} + 1)^{z_{1}} + (2 \cdot 3^{s} + 1)^{x_{1}} > (4 \cdot 3^{2s} + 1)^{z_{1}} - (2 \cdot 3^{s} + 1)^{x_{1}}$$

we deduce that (9) cannot hold.

If $n = q_2^{\beta}$, then we have

$$q_1^{\alpha_1 x} q_2^{\alpha_2 x} + (4 \cdot 3^s)^y q_2^{\beta(y-x)} = (4 \cdot 3^{2s} + 1)^z q_2^{\beta(z-x)}.$$

Since $\beta(y-x) > \beta(z-x)$, we have $\alpha_2 x = \beta(z-x)$ and

$$(4 \cdot 3^s)^y q_2^{\beta(y-z)} = (4 \cdot 3^{2s} + 1)^z - q_1^{\alpha_1 x} = (4 \cdot 3^{2s} + 1)^z - (2 \cdot 3^s - 1)^x.$$
 (10)

It follows that x is even since $(-1)^x \equiv 1 \pmod{3}$ and z is even since $5^z \equiv 1 \pmod{8}$. Now write $z = 2z_1, x = 2x_1$. By (10),

$$(4\cdot 3^s)^y q_2^{\beta(y-z)} = \left((4\cdot 3^{2s}+1)^{z_1} - (2\cdot 3^s-1)^{x_1} \right) \left((4\cdot 3^{2s}+1)^{z_1} + (2\cdot 3^s-1)^{x_1} \right). \tag{11}$$

Noting that $gcd((4 \cdot 3^{2s} + 1)^{z_1} - (2 \cdot 3^s - 1)^{x_1}, (4 \cdot 3^{2s} + 1)^{z_1} + (2 \cdot 3^s - 1)^{x_1}) = 2$ and

$$\frac{b^y}{2} > \frac{b^{2z_1}}{2} \geqslant (c+a)^{z_1} \geqslant c^{z_1} + a^{z_1} > (4 \cdot 3^{2s} + 1)^{z_1} + (2 \cdot 3^s - 1)^{x_1} > (4 \cdot 3^{2s} + 1)^{z_1} - (2 \cdot 3^s - 1)^{x_1},$$

we deduce that (11) cannot hold.

This completes the proof of Corollary 1.2 \square

Acknowledgements We thank the referees for their valuable suggestions which improved the presentation of this paper.

References

- [1] Moujie DENG. A note on the Dionphantine equation $(na)^x + (nb)^y = (nc)^z$. Bull. Aust. Math. Soc., 2014, **89**(2): 316–321.
- [2] L. JÉSMANOWICZ. Several remarks on Pythagorean numbers. Wiadom. Mat. (2), 1955/1956, 1: 196-202.
- [3] Maohua LE. A note on Jeśmanowicz' conjecture concerning Pythagorean triples. Bull. Aust. Math. Soc., 1999, **59**(3): 477–480.
- [4] Wenduan LU. On the Pythagorean numbers $4n^2-1,4n$ and $4n^2+1.$ Acta Sci. Natur. Univ. Szechuan, 1959, **2**: 39–42. (in Chinese)
- [5] T. MIYAZAKI. Generalizations of classical results on Jeśmanowicz' conjecture concerning pythagorean triples. J. Number Theory, 2013, 133(2): 583-595.
- [6] T. MIYAZAKI, A. TOGBÉ. The Diophantine equation $(2am-1)^x + (2m)^y = (2am+1)^z$. Int. J. Number Theory, 2012, 8(8): 2035–2044.
- [7] W. SIERPIŃSKI. On the equation $3^x + 4^y = 5^z$. Wiadom. Mat. (2), 1955/1956, 1: 194-195.
- [8] Min TANG, Zhijuan YANG. Jeśmanowicz' conjecture revisited. Bull. Aust. Math. Soc., 2013, 88(3): 486-491.
- [9] Min TANG, Jianxin WENG. Jeśmanowicz' conjecture with Fermat numbers. Taiwanese J. Math., 2014, 18(3): 925-930.
- [10] Zhijian YANG, Min TANG. On the Diophantine equation $(8n)^x + (15n)^y = (17n)^2$. Bull. Aust. Math. Soc., 2012, **86**(2): 348–352.