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Triples
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Abstract Let (a,b,c) be a primitive Pythagorean triple. Jesmanowicz conjectured in 1956
that for any positive integer n, the Diophantine equation (an)® + (bn)¥ = (cn)® has only
the positive integer solution (z,y,z) = (2,2,2). Let p = 3 (mod 4) be a prime and s be
some positive integer. In the paper, we show that the conjecture is true when (a,b,c) =
(4p** — 1,4p°, 4p>* + 1) and certain divisibility conditions are satisfied.
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1. Introduction

Let a,b,c be a primitive Pythagorean triple, that is, a,b,c are relatively prime positive

2

integers such that a? + b* = ¢2. In 1956, JeSmanowicz [2] conjectured that for any positive

integer n, the Diophantine equation
(an)® 4 (bn)¥ = (cn)* (1)

has no positive integer solutions other than (z,y, 2) = (2,2,2).

Whether there are other solutions has been investigated by many authors. Sierpiriski [7]
showed that Eq. (1) has no other positive integer solutions when n = 1 and (a,b,c) = (3,4,5).
Jedmanowicz [2] further proved the same conclusion for n = 1 and (a, b, ¢) = (5,12,13), (7,24, 25),
(9,40,41), (11,60,61). For any positive integer k, Lu [4] showed that Eq.(1) has only the positive
integer solution (x,y,z) = (2,2,2) if n =1 and (a,b,c) = (4k? — 1,4k, 4k? + 1). Recently, Tang
and Weng [9] proved that for any positive integer m, if ¢ = 22" 11 is a Fermat number, then
Eq. (1) has only the positive integer solution (z,y, z) = (2,2,2). Deng [1] showed that if k = 2°
for some positive integer s and certain divisibility conditions are satisfied, then Jesmanowicz’
conjecture is true. For related problems, we refer to [3,5,6,8,10].

For any positive integer N with N > 1, let P(N) denote the product of distinct prime
factors of N and let (%) denote the Legendre symbol. If ¢° is a prime power, we write p°||N to
mean that p°|N while p** { N. Let p = 3 (mod 4) be a prime and s be some positive integer.
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In this paper, we consider the case k = p°® and the following results will be proved.

Theorem 1.1 Let p = 3 (mod 4) be a prime and s be some positive integer. Let (a,b,c) =
(4p%s — 1,4p®,4p®® + 1) be a primitive Pythagorean triple. Suppose that the positive integer
n is such that either P(a)|n or P(n) t a. Then Eq. (1) has only the positive integer solution
(x,y,2) = (2,2,2).

Corollary 1.2 Let s be some positive integer and (a,b,c) = (4-3%5 —1,4-3%,4-3% 4+ 1) be
a primitive Pythagorean triple. If a has only two distinct prime divisors, then for any positive

integer n, Eq.(1) has only the positive integer solution (z,y,z) = (2,2,2).

2. Proofs
We shall begin with the following two Lemmas.

Lemma 2.1 ([4, Theorem]) Let (a,b,c) = (4k* —1,4k,4k* + 1) and n = 1. Then Eq. (1) has
only the positive integer solution (z,y,z) = (2,2,2).

Lemma 2.2 ([1, Corollary]) Let (a,b,c) be any primitive Pythagorean triple such that the
Diophantine equation a® + bY = ¢* has only the positive integer solution (x,y,z) = (2,2,2). If
(z,y,2) is a solution of Eq.(1) with (z,y,z) # (2,2,2), then one of the following conditions is
satisfied:

(i) >z >y and P(n)|b;

(ii) y > z > x and P(n)a.

Proof of Theorem 1.1 By Lemma 2.1, we may suppose that n > 2. We also suppose that
(x,y, 2) is a solution of Eq. (1) with (z,y, z) # (2,2,2).

Case 1 P(n){a. By Lemma 2.2, we have x > z > y and P(n)|b. Then

a®n*7Y +bY = cFnFTY.
Since b = 22p®, we can write n = 2°p? with o+ 8 > 1. Thus

20(e=y)pBle—y) gz 4 92y — ga(z—y)yBlz=y) o2 (2)
Subcase 1.1 a=0,5> 1. Then
pﬁ(w—y)ax + 22ypsy — pﬂ(z—y)CZ_

Since f(x —y) > B(z — y), we have sy = 8(z —y). Thus

PPE—2ge = 2 _ 92, 3)

If p = 3, then (—1)*t8(==2) =1 (mod 4), and then = + B(z — 2) = 0 (mod 2). Thus taking
modulo 8 in (3), we have
5 =2% 41 (mod 8) (4)

If y = 1, then z = 1 (mod 2) and 3°®*=2)g* = ¢* — 4. Since 3|c* — 4 and 3 { a, we have
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B(x —z) =1, thus x is even,  + f(z — z) = 1 (mod 2), a contradiction. Thus y > 2. By (4) w
have 5 =1 (mod 8) and z =0 (mod 2).

If p> 3, then a = 4p*>* — 1 =0 (mod 3),c = 4p** + 1 =2 (mod 3). Thus 2* =1 (mod 3)
and z =0 (mod 2).

Now we can write z = 2z;. By (3),

PO @ + 1) (27— 1)7 = pat = (e - (e 2),
Noting that ged(c** — 2Y,¢* +2Y) = 1, we can write a = ajas with ged(ag, az) = 1,a|c* + 2Y
and af|c®* — 2Y. Then either aq; > 2p° + 1 or ag > 2p° + 1. Otherwise, if a; < 2p® + 1 and
as < 2p° 41, then a1 < 2p° — 1 and ag < 2p° — 1 by ajas = 4p®s — 1. Thus
a=aay < (2p° = 1)2 < (2p° = 1)(2p° + 1) = q,
which is impossible. If a; > 2p® + 1, then
a? > (2p° +1)2 =c+4p° > c+4,
thus

aj > (a%)z1 > (c+4)* 2 447 > 429,

but af|c** 4+ 2Y, a contradiction. If ag > 2p® + 1, we similarly get af > ¢ +2Y > ¢** — 2¥ but

af|c®* — 2Y, a contradiction.

Subcase 1.2 « > 1,5 =0. Then by (2) we have

ga(z—y) x| 22ypsy — 9a(z=Y) 7
Since a(z — y) > a(z —y), we have 2y = a(z — y). Thus
2a(z—z)am = F — psy. (5)

If p = 3, then (—1)***@=2) = 1 (mod 3), thus = + a(z — 2) = 0 (mod 2). Moreover,
(=1)*2%(==2) = 1 — 3% (mod 4) and (—1)*2%(*=2) =1 — 3% (mod 9). If sy = 1 (mod 2), then
1-3%% =2 (mod 4), thus a(z—2) = 1,2 =1 (mod 2). It follows that « = 1,z =0 (mod 2),y =
1 (mod 2), but 2y = a(z — y), a contradiction. Then sy = 0 (mod 2) and (—1)*2%(*=2) = 1
(mod 9). Hence a(x — z) > 3. Further, 5 =1 (mod 8), thus z =0 (mod 2).

If p > 3, then (—1)*2(®=2) = 1 (mod p). Since p = 3 (mod 4) and p > 3, we have
alx — z) = 3. Moreover, (—1)*¥ =1 (mod 4) and 5* = 1 (mod 8), thus sy =0 (mod 2),z =0
(mod 2).

Now we can write z = 2z1, sy = 2y1. By (5),

200 H)a® = (¢ — pUt) (™ + ™).

Let a = ajae with ged(ag,a2) = 1,a7|c¢* + p¥* and af|c** — p¥*. Then either a; > 2p® + 1 or
as = 2p® 4+ 1. Otherwise, if a1 < 2p° — 1 and as < 2p® — 1, then

a=ajay < (2p° —1)> < (2p° —1)(2p° +1) =a,
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which is impossible. If a; > 2p°® 4+ 1, then
a? > (2p° +1)2 = c+4p° > c+p°.
Further, we have
af > (a})™ > (c+p°)* > ¢ 4t > T 4 ph,
but af|c** + p¥', a contradiction. If ag > 2p® + 1, we similarly get af > ¢** 4+ p¥* > ¢* — p¥1,

but af|c** — p¥, a contradiction.

Subcase 1.3 o> 1,6 > 1. Then a(z—y) > a(z—y), B(x—y) > B(z—y), s0 2y = a(z—y), sy =
B(z —y), thus
ge(e=2)pBle=2)qe — o= _q, (6)

Since 4|c* — 1 and p?*|c* — 1, we have a(z — 2) > 2 and B(z — 2) > 2s. Then a(z — z) > 3.
Otherwise, if a(x —2) =2, thena =1,z —z2=2o0ra =2,z — 2z =1. By 2y = a(z — y), we have
z=3yorz=2y. Bysy=p(z—y), we have s = 23 or s = 3, but S(x —z) > 2s, it is impossible.

Taking modulo 8 in (6), we have 5 = 1 (mod 8), thus z = 0 (mod 2). Write z = 221, we
have

ga(w=2)pflz=2) g — (*r = 1)(* +1).

Let a = ajas with ged(ag,a2) = 1,af|c® + 1 and af|c®* — 1. Then either a1 > 2p° + 1 or
as > 2p® 4+ 1. Otherwise, if a1 < 2p° — 1 and as < 2p° — 1, then

a=ajay < (2p° —1)% < (2p° — 1)(2p° + 1) = a,
which is impossible. If a; > 2p® 4+ 1, then
al > 2p° +1)2 =c+4p° >c+ 1.
Further, we have
af > (a})* > (c+ 1) =™ +1,
but af|c** 4+ 1, a contradiction. If as > 2p° 4+ 1, we similarly get a3 > ¢®* +1 > ¢** — 1, but

aj|c®* — 1, a contradiction.

Case 2 P(a)|n. By Lemma 2.2, we have y > z > z. Then

a® +b¥n¥ =" = cFnfE.
Since y —x > z —x > 0, we have P(n)|a and n*~*|a®, which means that P(n) = P(a) and
n*~% =qa”. Thus

¥ =c* — 1. (7)
It follows that 5 =1 (mod 8),s0 2 =0 (mod 2). Write z = 2z;. Sincec =1 (mod b),c**+1 =2
(mod b), we have ged(c® 4+ 1,b) = 2. Then by (7), we have %|cz1 — 1. But
wo_b* (c—a)P(c+a)?

57 9 T 2 > 4 a™ >t -1,

which is impossible.
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This completes the proof of Theorem 1.1 [J

Proof of Corollary 1.2 By Lemma 2.1, we may suppose that n > 2 and suppose that (z,y, 2)
is a solution of (1) with (z,v, z) # (2,2,2). By Case 2 of Theorem 1.1 and Lemma 2.2, we may
suppose that y > z > z, P(n)|a and P(n) < P(a). Since a = 4 - 3% — 1 has only two distinct
prime divisors and ged(2-3° —1,2-3° + 1) = 1, we can write 2-3° — 1 = ¢7'*,2-3° + 1 = ¢52,
where ¢; and go are distinct odd primes and oy, g > 1. Then we have either n = ¢ff or n = qQB
with o, 8 > 1.

If n = ¢, then we have
g + (435 gt VT = (40 3% 4 127
Since a(y — z) > a(z — x), we have ayx = a(z — ) and
(4-35)Yg ™) = (4.82 4 1)7 — g8>® = (432 +1)7 — (2-3° + 1)°. (8)

If s is even, then 3 =1 (mod 4) and 5 = 3* (mod 8), thus z and z are both even. If s is odd,
then 5% = 7% (mod 8), thus z and z are both even. Now write z = 221,z = 2z;1. By (8),

(430 = (43 4 1) — (2-3° + 1)™) ((4-3 + 1) + (2-3° + 1)™).  (9)
Noting that ged((4- 3% +1)% — (2-3° + 1)1, (4- 3% 4+ 1) + (2-3° + 1)") = 2 and
(4-39)Y W b B 27 (cta)t

2 27 2 2 2
> 4.3+ 1) +(2-3°+1)™ > (4-3% £ 1) —(2-3° + 1),

> (c+a)™ =2 +a*

we deduce that (9) cannot hold.
Ifn= qg , then we have
a7 g5 4 (4-37)0ay T = (482 4+ 1)7g5 7.
Since B(y — ) > B(z — x), we have azz = (2 — z) and
(4-35)Yg0W™") = (4.3%5 4 1)7 — 0% = (4-3% +1)7 — (2-3° — 1), (10)

It follows that « is even since (—1)* =1 (mod 3) and z is even since 5* = 1 (mod 8). Now write
z =2z, = 2x1. By (10),

(4-3%)Yqh ") = (4-3% 4 1) — (2-3° —1)™) ((4-3% + 1) + (2-3° — 1)), (11)
Noting that ged((4-3% +1)* — (2-3° — 1)*1,(4- 3% + 1) + (2-3° — 1)*1) = 2 and

b b
27
we deduce that (11) cannot hold.

This completes the proof of Corollary 1.2 [J

> (ct+a) = +a™ > (4-3F 1) +(2-3° - 1) > (4.3 + 1) —(2-3° - 1)™,
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