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Abstract Let (a, b, c) be a primitive Pythagorean triple. Jeśmanowicz conjectured in 1956

that for any positive integer n, the Diophantine equation (an)x + (bn)y = (cn)z has only

the positive integer solution (x, y, z) = (2, 2, 2). Let p ≡ 3 (mod 4) be a prime and s be

some positive integer. In the paper, we show that the conjecture is true when (a, b, c) =

(4p2s − 1, 4ps, 4p2s + 1) and certain divisibility conditions are satisfied.
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1. Introduction

Let a, b, c be a primitive Pythagorean triple, that is, a, b, c are relatively prime positive

integers such that a2 + b2 = c2. In 1956, Jeśmanowicz [2] conjectured that for any positive

integer n, the Diophantine equation

(an)x + (bn)y = (cn)z (1)

has no positive integer solutions other than (x, y, z) = (2, 2, 2).

Whether there are other solutions has been investigated by many authors. Sierpiński [7]

showed that Eq. (1) has no other positive integer solutions when n = 1 and (a, b, c) = (3, 4, 5).

Jeśmanowicz [2] further proved the same conclusion for n = 1 and (a, b, c) = (5, 12, 13), (7, 24, 25),

(9, 40, 41), (11, 60, 61). For any positive integer k, Lu [4] showed that Eq.(1) has only the positive

integer solution (x, y, z) = (2, 2, 2) if n = 1 and (a, b, c) = (4k2 − 1, 4k, 4k2 + 1). Recently, Tang

and Weng [9] proved that for any positive integer m, if c = 22
m

+ 1 is a Fermat number, then

Eq. (1) has only the positive integer solution (x, y, z) = (2, 2, 2). Deng [1] showed that if k = 2s

for some positive integer s and certain divisibility conditions are satisfied, then Jeśmanowicz’

conjecture is true. For related problems, we refer to [3,5,6,8,10].

For any positive integer N with N > 1, let P (N) denote the product of distinct prime

factors of N and let (∗∗ ) denote the Legendre symbol. If qe is a prime power, we write pe∥N to

mean that pe|N while pe+1 - N . Let p ≡ 3 (mod 4) be a prime and s be some positive integer.
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In this paper, we consider the case k = ps and the following results will be proved.

Theorem 1.1 Let p ≡ 3 (mod 4) be a prime and s be some positive integer. Let (a, b, c) =

(4p2s − 1, 4ps, 4p2s + 1) be a primitive Pythagorean triple. Suppose that the positive integer

n is such that either P (a)|n or P (n) - a. Then Eq. (1) has only the positive integer solution

(x, y, z) = (2, 2, 2).

Corollary 1.2 Let s be some positive integer and (a, b, c) = (4 · 32s − 1, 4 · 3s, 4 · 32s + 1) be

a primitive Pythagorean triple. If a has only two distinct prime divisors, then for any positive

integer n, Eq.(1) has only the positive integer solution (x, y, z) = (2, 2, 2).

2. Proofs

We shall begin with the following two Lemmas.

Lemma 2.1 ([4, Theorem]) Let (a, b, c) = (4k2 − 1, 4k, 4k2 + 1) and n = 1. Then Eq. (1) has

only the positive integer solution (x, y, z) = (2, 2, 2).

Lemma 2.2 ([1, Corollary]) Let (a, b, c) be any primitive Pythagorean triple such that the

Diophantine equation ax + by = cz has only the positive integer solution (x, y, z) = (2, 2, 2). If

(x, y, z) is a solution of Eq.(1) with (x, y, z) ̸= (2, 2, 2), then one of the following conditions is

satisfied:

(i) x > z > y and P (n)|b;
(ii) y > z > x and P (n)|a.

Proof of Theorem 1.1 By Lemma 2.1, we may suppose that n > 2. We also suppose that

(x, y, z) is a solution of Eq. (1) with (x, y, z) ̸= (2, 2, 2).

Case 1 P (n) - a. By Lemma 2.2, we have x > z > y and P (n)|b. Then

axnx−y + by = cznz−y.

Since b = 22ps, we can write n = 2αpβ with α+ β > 1. Thus

2α(x−y)pβ(x−y)ax + 22ypsy = 2α(z−y)pβ(z−y)cz. (2)

Subcase 1.1 α = 0, β > 1. Then

pβ(x−y)ax + 22ypsy = pβ(z−y)cz.

Since β(x− y) > β(z − y), we have sy = β(z − y). Thus

pβ(x−z)ax = cz − 22y. (3)

If p = 3, then (−1)x+β(x−z) ≡ 1 (mod 4), and then x+ β(x− z) ≡ 0 (mod 2). Thus taking

modulo 8 in (3), we have

5z ≡ 22y + 1 (mod 8) (4)

If y = 1, then z ≡ 1 (mod 2) and 3β(x−z)ax = cz − 4. Since 3∥cz − 4 and 3 - a, we have
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β(x− z) = 1, thus x is even, x+ β(x− z) ≡ 1 (mod 2), a contradiction. Thus y > 2. By (4) we

have 5z ≡ 1 (mod 8) and z ≡ 0 (mod 2).

If p > 3, then a = 4p2s − 1 ≡ 0 (mod 3), c = 4p2s + 1 ≡ 2 (mod 3). Thus 2z ≡ 1 (mod 3)

and z ≡ 0 (mod 2).

Now we can write z = 2z1. By (3),

pβ(x−z)(2ps + 1)x(2ps − 1)x = pβ(x−z)ax = (cz1 − 2y)(cz1 + 2y).

Noting that gcd(cz1 − 2y, cz1 + 2y) = 1, we can write a = a1a2 with gcd(a1, a2) = 1, ax1 |cz1 + 2y

and ax2 |cz1 − 2y. Then either a1 > 2ps + 1 or a2 > 2ps + 1. Otherwise, if a1 < 2ps + 1 and

a2 < 2ps + 1, then a1 6 2ps − 1 and a2 6 2ps − 1 by a1a2 = 4p2s − 1. Thus

a = a1a2 6 (2ps − 1)2 < (2ps − 1)(2ps + 1) = a,

which is impossible. If a1 > 2ps + 1, then

a21 > (2ps + 1)2 = c+ 4ps > c+ 4,

thus

ax1 > (a21)
z1 > (c+ 4)z1 > cz1 + 4z1 > cz1 + 2y,

but ax1 |cz1 + 2y, a contradiction. If a2 > 2ps + 1, we similarly get ax2 > cz1 + 2y > cz1 − 2y, but

ax2 |cz1 − 2y, a contradiction.

Subcase 1.2 α > 1, β = 0. Then by (2) we have

2α(x−y)ax + 22ypsy = 2α(z−y)cz.

Since α(x− y) > α(z − y), we have 2y = α(z − y). Thus

2α(x−z)ax = cz − psy. (5)

If p = 3, then (−1)x+α(x−z) ≡ 1 (mod 3), thus x + α(x − z) ≡ 0 (mod 2). Moreover,

(−1)x2α(x−z) ≡ 1− 3sy (mod 4) and (−1)x2α(x−z) ≡ 1− 3sy (mod 9). If sy ≡ 1 (mod 2), then

1−3sy ≡ 2 (mod 4), thus α(x−z) = 1, x ≡ 1 (mod 2). It follows that α = 1, z ≡ 0 (mod 2), y ≡
1 (mod 2), but 2y = α(z − y), a contradiction. Then sy ≡ 0 (mod 2) and (−1)x2α(x−z) ≡ 1

(mod 9). Hence α(x− z) > 3. Further, 5z ≡ 1 (mod 8), thus z ≡ 0 (mod 2).

If p > 3, then (−1)x2α(x−z) ≡ 1 (mod p). Since p ≡ 3 (mod 4) and p > 3, we have

α(x − z) > 3. Moreover, (−1)sy ≡ 1 (mod 4) and 5z ≡ 1 (mod 8), thus sy ≡ 0 (mod 2), z ≡ 0

(mod 2).

Now we can write z = 2z1, sy = 2y1. By (5),

2α(x−z)ax = (cz1 − py1)(cz1 + py1).

Let a = a1a2 with gcd(a1, a2) = 1, ax1 |cz1 + py1 and ax2 |cz1 − py1 . Then either a1 > 2ps + 1 or

a2 > 2ps + 1. Otherwise, if a1 6 2ps − 1 and a2 6 2ps − 1, then

a = a1a2 6 (2ps − 1)2 < (2ps − 1)(2ps + 1) = a,
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which is impossible. If a1 > 2ps + 1, then

a21 > (2ps + 1)2 = c+ 4ps > c+ ps.

Further, we have

ax1 > (a21)
z1 > (c+ ps)z1 > cz1 + psz1 > cz1 + py1 ,

but ax1 |cz1 + py1 , a contradiction. If a2 > 2ps + 1, we similarly get ax2 > cz1 + py1 > cz1 − py1 ,

but ax2 |cz1 − py1 , a contradiction.

Subcase 1.3 α > 1, β > 1. Then α(x−y) > α(z−y), β(x−y) > β(z−y), so 2y = α(z−y), sy =

β(z − y), thus

2α(x−z)pβ(x−z)ax = cz − 1. (6)

Since 4|cz − 1 and p2s|cz − 1, we have α(x − z) > 2 and β(x − z) > 2s. Then α(x − z) > 3.

Otherwise, if α(x− z) = 2, then α = 1, x− z = 2 or α = 2, x− z = 1. By 2y = α(z− y), we have

z = 3y or z = 2y. By sy = β(z−y), we have s = 2β or s = β, but β(x−z) > 2s, it is impossible.

Taking modulo 8 in (6), we have 5z ≡ 1 (mod 8), thus z ≡ 0 (mod 2). Write z = 2z1, we

have

2α(x−z)pβ(x−z)ax = (cz1 − 1)(cz1 + 1).

Let a = a1a2 with gcd(a1, a2) = 1, ax1 |cz1 + 1 and ax2 |cz1 − 1. Then either a1 > 2ps + 1 or

a2 > 2ps + 1. Otherwise, if a1 6 2ps − 1 and a2 6 2ps − 1, then

a = a1a2 6 (2ps − 1)2 < (2ps − 1)(2ps + 1) = a,

which is impossible. If a1 > 2ps + 1, then

a21 > (2ps + 1)2 = c+ 4ps > c+ 1.

Further, we have

ax1 > (a21)
z1 > (c+ 1)z1 > cz1 + 1,

but ax1 |cz1 + 1, a contradiction. If a2 > 2ps + 1, we similarly get ax2 > cz1 + 1 > cz1 − 1, but

ax2 |cz1 − 1, a contradiction.

Case 2 P (a)|n. By Lemma 2.2, we have y > z > x. Then

ax + byny−x = cznz−x.

Since y − x > z − x > 0, we have P (n)|a and nz−x|ax, which means that P (n) = P (a) and

nz−x = ax. Thus

byny−z = cz − 1. (7)

It follows that 5z ≡ 1 (mod 8), so z ≡ 0 (mod 2). Write z = 2z1. Since c ≡ 1 (mod b), cz1+1 ≡ 2

(mod b), we have gcd(cz1 + 1, b) = 2. Then by (7), we have by

2 |c
z1 − 1. But

by

2
>

b2z1

2
=

(c− a)z1(c+ a)z1

2
> cz1 + az1 > cz1 − 1,

which is impossible.
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This completes the proof of Theorem 1.1 �

Proof of Corollary 1.2 By Lemma 2.1, we may suppose that n > 2 and suppose that (x, y, z)

is a solution of (1) with (x, y, z) ̸= (2, 2, 2). By Case 2 of Theorem 1.1 and Lemma 2.2, we may

suppose that y > z > x, P (n)|a and P (n) < P (a). Since a = 4 · 32s − 1 has only two distinct

prime divisors and gcd(2 · 3s − 1, 2 · 3s + 1) = 1, we can write 2 · 3s − 1 = qα1
1 , 2 · 3s + 1 = qα2

2 ,

where q1 and q2 are distinct odd primes and α1, α2 > 1. Then we have either n = qα1 or n = qβ2
with α, β > 1.

If n = qα1 , then we have

qα1x
1 qα2x

2 + (4 · 3s)yqα(y−x)
1 = (4 · 32s + 1)zq

α(z−x)
1 .

Since α(y − x) > α(z − x), we have α1x = α(z − x) and

(4 · 3s)yqα(y−z)
1 = (4 · 32s + 1)z − qα2x

2 = (4 · 32s + 1)z − (2 · 3s + 1)x. (8)

If s is even, then 3x ≡ 1 (mod 4) and 5z ≡ 3x (mod 8), thus x and z are both even. If s is odd,

then 5z ≡ 7x (mod 8), thus x and z are both even. Now write z = 2z1, x = 2x1. By (8),

(4 · 3s)yqα(y−z)
1 =

(
(4 · 32s + 1)z1 − (2 · 3s + 1)x1

)(
(4 · 32s + 1)z1 + (2 · 3s + 1)x1

)
. (9)

Noting that gcd((4 · 32s + 1)z1 − (2 · 3s + 1)x1 , (4 · 32s + 1)z1 + (2 · 3s + 1)x1) = 2 and

(4 · 3s)y

2
=

by

2
>

bz

2
=

b2z1

2
=

2z1(c+ a)z1

2
> (c+ a)z1 > cz1 + az1

> (4 · 32s + 1)z1 + (2 · 3s + 1)x1 > (4 · 32s + 1)z1 − (2 · 3s + 1)x1 ,

we deduce that (9) cannot hold.

If n = qβ2 , then we have

qα1x
1 qα2x

2 + (4 · 3s)yqβ(y−x)
2 = (4 · 32s + 1)zq

β(z−x)
2 .

Since β(y − x) > β(z − x), we have α2x = β(z − x) and

(4 · 3s)yqβ(y−z)
2 = (4 · 32s + 1)z − qα1x

1 = (4 · 32s + 1)z − (2 · 3s − 1)x. (10)

It follows that x is even since (−1)x ≡ 1 (mod 3) and z is even since 5z ≡ 1 (mod 8). Now write

z = 2z1, x = 2x1. By (10),

(4 · 3s)yqβ(y−z)
2 =

(
(4 · 32s + 1)z1 − (2 · 3s − 1)x1

)(
(4 · 32s + 1)z1 + (2 · 3s − 1)x1

)
. (11)

Noting that gcd((4 · 32s + 1)z1 − (2 · 3s − 1)x1 , (4 · 32s + 1)z1 + (2 · 3s − 1)x1) = 2 and

by

2
>

b2z1

2
> (c+ a)z1 > cz1 + az1 > (4 · 32s +1)z1 + (2 · 3s − 1)x1 > (4 · 32s +1)z1 − (2 · 3s − 1)x1 ,

we deduce that (11) cannot hold.

This completes the proof of Corollary 1.2 �
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