On Jeśmanowicz' Conjecture Concerning Pythagorean Triples

Cuifang SUN*, Zhi CHENG
School of Mathematics and Computer Science, Anhui Normal University, Anhui 241003, P. R. China

Abstract

Let (a, b, c) be a primitive Pythagorean triple. Jeśmanowicz conjectured in 1956 that for any positive integer n, the Diophantine equation $(a n)^{x}+(b n)^{y}=(c n)^{z}$ has only the positive integer solution $(x, y, z)=(2,2,2)$. Let $p \equiv 3(\bmod 4)$ be a prime and s be some positive integer. In the paper, we show that the conjecture is true when $(a, b, c)=$ $\left(4 p^{2 s}-1,4 p^{s}, 4 p^{2 s}+1\right)$ and certain divisibility conditions are satisfied.

Keywords Jeśmanowicz' conjecture; Diophantine equation
MR(2010) Subject Classification 11D61

1. Introduction

Let a, b, c be a primitive Pythagorean triple, that is, a, b, c are relatively prime positive integers such that $a^{2}+b^{2}=c^{2}$. In 1956, Jeśmanowicz [2] conjectured that for any positive integer n, the Diophantine equation

$$
\begin{equation*}
(a n)^{x}+(b n)^{y}=(c n)^{z} \tag{1}
\end{equation*}
$$

has no positive integer solutions other than $(x, y, z)=(2,2,2)$.
Whether there are other solutions has been investigated by many authors. Sierpiński $[7]$ showed that Eq. (1) has no other positive integer solutions when $n=1$ and $(a, b, c)=(3,4,5)$. Jeśmanowicz [2] further proved the same conclusion for $n=1$ and $(a, b, c)=(5,12,13),(7,24,25)$, $(9,40,41),(11,60,61)$. For any positive integer $k, \mathrm{Lu}[4]$ showed that Eq.(1) has only the positive integer solution $(x, y, z)=(2,2,2)$ if $n=1$ and $(a, b, c)=\left(4 k^{2}-1,4 k, 4 k^{2}+1\right)$. Recently, Tang and Weng [9] proved that for any positive integer m, if $c=2^{2^{m}}+1$ is a Fermat number, then Eq. (1) has only the positive integer solution $(x, y, z)=(2,2,2)$. Deng [1] showed that if $k=2^{s}$ for some positive integer s and certain divisibility conditions are satisfied, then Jeśmanowicz' conjecture is true. For related problems, we refer to $[3,5,6,8,10]$.

For any positive integer N with $N>1$, let $P(N)$ denote the product of distinct prime factors of N and let $\left(\frac{*}{*}\right)$ denote the Legendre symbol. If q^{e} is a prime power, we write $p^{e} \| N$ to mean that $p^{e} \mid N$ while $p^{e+1} \nmid N$. Let $p \equiv 3(\bmod 4)$ be a prime and s be some positive integer.

[^0]In this paper, we consider the case $k=p^{s}$ and the following results will be proved.
Theorem 1.1 Let $p \equiv 3(\bmod 4)$ be a prime and s be some positive integer. Let $(a, b, c)=$ $\left(4 p^{2 s}-1,4 p^{s}, 4 p^{2 s}+1\right)$ be a primitive Pythagorean triple. Suppose that the positive integer n is such that either $P(a) \mid n$ or $P(n) \nmid a$. Then Eq. (1) has only the positive integer solution $(x, y, z)=(2,2,2)$.

Corollary 1.2 Let s be some positive integer and $(a, b, c)=\left(4 \cdot 3^{2 s}-1,4 \cdot 3^{s}, 4 \cdot 3^{2 s}+1\right)$ be a primitive Pythagorean triple. If a has only two distinct prime divisors, then for any positive integer n, Eq.(1) has only the positive integer solution $(x, y, z)=(2,2,2)$.

2. Proofs

We shall begin with the following two Lemmas.
Lemma 2.1 ([4, Theorem]) Let $(a, b, c)=\left(4 k^{2}-1,4 k, 4 k^{2}+1\right)$ and $n=1$. Then Eq. (1) has only the positive integer solution $(x, y, z)=(2,2,2)$.

Lemma 2.2 ([1, Corollary]) Let (a, b, c) be any primitive Pythagorean triple such that the Diophantine equation $a^{x}+b^{y}=c^{z}$ has only the positive integer solution $(x, y, z)=(2,2,2)$. If (x, y, z) is a solution of Eq.(1) with $(x, y, z) \neq(2,2,2)$, then one of the following conditions is satisfied:
(i) $x>z>y$ and $P(n) \mid b$;
(ii) $y>z>x$ and $P(n) \mid a$.

Proof of Theorem 1.1 By Lemma 2.1, we may suppose that $n \geqslant 2$. We also suppose that (x, y, z) is a solution of Eq. (1) with $(x, y, z) \neq(2,2,2)$.

Case $1 P(n) \nmid a$. By Lemma 2.2, we have $x>z>y$ and $P(n) \mid b$. Then

$$
a^{x} n^{x-y}+b^{y}=c^{z} n^{z-y} .
$$

Since $b=2^{2} p^{s}$, we can write $n=2^{\alpha} p^{\beta}$ with $\alpha+\beta \geqslant 1$. Thus

$$
\begin{equation*}
2^{\alpha(x-y)} p^{\beta(x-y)} a^{x}+2^{2 y} p^{s y}=2^{\alpha(z-y)} p^{\beta(z-y)} c^{z} . \tag{2}
\end{equation*}
$$

Subcase $1.1 \alpha=0, \beta \geqslant 1$. Then

$$
p^{\beta(x-y)} a^{x}+2^{2 y} p^{s y}=p^{\beta(z-y)} c^{z} .
$$

Since $\beta(x-y)>\beta(z-y)$, we have $s y=\beta(z-y)$. Thus

$$
\begin{equation*}
p^{\beta(x-z)} a^{x}=c^{z}-2^{2 y} . \tag{3}
\end{equation*}
$$

If $p=3$, then $(-1)^{x+\beta(x-z)} \equiv 1(\bmod 4)$, and then $x+\beta(x-z) \equiv 0(\bmod 2)$. Thus taking modulo 8 in (3), we have

$$
\begin{equation*}
5^{z} \equiv 2^{2 y}+1 \quad(\bmod 8) \tag{4}
\end{equation*}
$$

If $y=1$, then $z \equiv 1(\bmod 2)$ and $3^{\beta(x-z)} a^{x}=c^{z}-4$. Since $3 \| c^{z}-4$ and $3 \nmid a$, we have
$\beta(x-z)=1$, thus x is even, $x+\beta(x-z) \equiv 1(\bmod 2)$, a contradiction. Thus $y \geqslant 2$. By (4) we have $5^{z} \equiv 1(\bmod 8)$ and $z \equiv 0(\bmod 2)$.

If $p>3$, then $a=4 p^{2 s}-1 \equiv 0(\bmod 3), c=4 p^{2 s}+1 \equiv 2(\bmod 3)$. Thus $2^{z} \equiv 1(\bmod 3)$ and $z \equiv 0(\bmod 2)$.

Now we can write $z=2 z_{1}$. By (3),

$$
p^{\beta(x-z)}\left(2 p^{s}+1\right)^{x}\left(2 p^{s}-1\right)^{x}=p^{\beta(x-z)} a^{x}=\left(c^{z_{1}}-2^{y}\right)\left(c^{z_{1}}+2^{y}\right)
$$

Noting that $\operatorname{gcd}\left(c^{z_{1}}-2^{y}, c^{z_{1}}+2^{y}\right)=1$, we can write $a=a_{1} a_{2}$ with $\operatorname{gcd}\left(a_{1}, a_{2}\right)=1, a_{1}^{x} \mid c^{z_{1}}+2^{y}$ and $a_{2}^{x} \mid c^{z_{1}}-2^{y}$. Then either $a_{1} \geqslant 2 p^{s}+1$ or $a_{2} \geqslant 2 p^{s}+1$. Otherwise, if $a_{1}<2 p^{s}+1$ and $a_{2}<2 p^{s}+1$, then $a_{1} \leqslant 2 p^{s}-1$ and $a_{2} \leqslant 2 p^{s}-1$ by $a_{1} a_{2}=4 p^{2 s}-1$. Thus

$$
a=a_{1} a_{2} \leqslant\left(2 p^{s}-1\right)^{2}<\left(2 p^{s}-1\right)\left(2 p^{s}+1\right)=a
$$

which is impossible. If $a_{1} \geqslant 2 p^{s}+1$, then

$$
a_{1}^{2} \geqslant\left(2 p^{s}+1\right)^{2}=c+4 p^{s}>c+4
$$

thus

$$
a_{1}^{x}>\left(a_{1}^{2}\right)^{z_{1}}>(c+4)^{z_{1}} \geqslant c^{z_{1}}+4^{z_{1}}>c^{z_{1}}+2^{y}
$$

but $a_{1}^{x} \mid c^{z_{1}}+2^{y}$, a contradiction. If $a_{2} \geqslant 2 p^{s}+1$, we similarly get $a_{2}^{x}>c^{z_{1}}+2^{y}>c^{z_{1}}-2^{y}$, but $a_{2}^{x} \mid c^{z_{1}}-2^{y}$, a contradiction.

Subcase $1.2 \alpha \geqslant 1, \beta=0$. Then by (2) we have

$$
2^{\alpha(x-y)} a^{x}+2^{2 y} p^{s y}=2^{\alpha(z-y)} c^{z}
$$

Since $\alpha(x-y)>\alpha(z-y)$, we have $2 y=\alpha(z-y)$. Thus

$$
\begin{equation*}
2^{\alpha(x-z)} a^{x}=c^{z}-p^{s y} \tag{5}
\end{equation*}
$$

If $p=3$, then $(-1)^{x+\alpha(x-z)} \equiv 1(\bmod 3)$, thus $x+\alpha(x-z) \equiv 0(\bmod 2)$. Moreover, $(-1)^{x} 2^{\alpha(x-z)} \equiv 1-3^{s y}(\bmod 4)$ and $(-1)^{x} 2^{\alpha(x-z)} \equiv 1-3^{s y}(\bmod 9)$. If $s y \equiv 1(\bmod 2)$, then $1-3^{s y} \equiv 2(\bmod 4)$, thus $\alpha(x-z)=1, x \equiv 1(\bmod 2)$. It follows that $\alpha=1, z \equiv 0(\bmod 2), y \equiv$ $1(\bmod 2)$, but $2 y=\alpha(z-y)$, a contradiction. Then $s y \equiv 0(\bmod 2)$ and $(-1)^{x} 2^{\alpha(x-z)} \equiv 1$ $(\bmod 9)$. Hence $\alpha(x-z) \geqslant 3$. Further, $5^{z} \equiv 1(\bmod 8)$, thus $z \equiv 0(\bmod 2)$.

If $p>3$, then $(-1)^{x} 2^{\alpha(x-z)} \equiv 1(\bmod p)$. Since $p \equiv 3(\bmod 4)$ and $p>3$, we have $\alpha(x-z) \geqslant 3$. Moreover, $(-1)^{s y} \equiv 1(\bmod 4)$ and $5^{z} \equiv 1(\bmod 8)$, thus $s y \equiv 0(\bmod 2), z \equiv 0$ $(\bmod 2)$.

Now we can write $z=2 z_{1}, s y=2 y_{1}$. By (5),

$$
2^{\alpha(x-z)} a^{x}=\left(c^{z_{1}}-p^{y_{1}}\right)\left(c^{z_{1}}+p^{y_{1}}\right)
$$

Let $a=a_{1} a_{2}$ with $\operatorname{gcd}\left(a_{1}, a_{2}\right)=1, a_{1}^{x} \mid c^{z_{1}}+p^{y_{1}}$ and $a_{2}^{x} \mid c^{z_{1}}-p^{y_{1}}$. Then either $a_{1} \geqslant 2 p^{s}+1$ or $a_{2} \geqslant 2 p^{s}+1$. Otherwise, if $a_{1} \leqslant 2 p^{s}-1$ and $a_{2} \leqslant 2 p^{s}-1$, then

$$
a=a_{1} a_{2} \leqslant\left(2 p^{s}-1\right)^{2}<\left(2 p^{s}-1\right)\left(2 p^{s}+1\right)=a
$$

which is impossible. If $a_{1} \geqslant 2 p^{s}+1$, then

$$
a_{1}^{2} \geqslant\left(2 p^{s}+1\right)^{2}=c+4 p^{s}>c+p^{s} .
$$

Further, we have

$$
a_{1}^{x}>\left(a_{1}^{2}\right)^{z_{1}}>\left(c+p^{s}\right)^{z_{1}} \geqslant c^{z_{1}}+p^{s z_{1}}>c^{z_{1}}+p^{y_{1}},
$$

but $a_{1}^{x} \mid c^{z_{1}}+p^{y_{1}}$, a contradiction. If $a_{2} \geqslant 2 p^{s}+1$, we similarly get $a_{2}^{x}>c^{z_{1}}+p^{y_{1}}>c^{z_{1}}-p^{y_{1}}$, but $a_{2}^{x} \mid c^{z_{1}}-p^{y_{1}}$, a contradiction.

Subcase $1.3 \alpha \geqslant 1, \beta \geqslant 1$. Then $\alpha(x-y)>\alpha(z-y), \beta(x-y)>\beta(z-y)$, so $2 y=\alpha(z-y), s y=$ $\beta(z-y)$, thus

$$
\begin{equation*}
2^{\alpha(x-z)} p^{\beta(x-z)} a^{x}=c^{z}-1 . \tag{6}
\end{equation*}
$$

Since $4 \mid c^{z}-1$ and $p^{2 s} \mid c^{z}-1$, we have $\alpha(x-z) \geqslant 2$ and $\beta(x-z) \geqslant 2 s$. Then $\alpha(x-z) \geqslant 3$. Otherwise, if $\alpha(x-z)=2$, then $\alpha=1, x-z=2$ or $\alpha=2, x-z=1$. By $2 y=\alpha(z-y)$, we have $z=3 y$ or $z=2 y$. By $s y=\beta(z-y)$, we have $s=2 \beta$ or $s=\beta$, but $\beta(x-z) \geqslant 2 s$, it is impossible.

Taking modulo 8 in (6), we have $5^{z} \equiv 1(\bmod 8)$, thus $z \equiv 0(\bmod 2)$. Write $z=2 z_{1}$, we have

$$
2^{\alpha(x-z)} p^{\beta(x-z)} a^{x}=\left(c^{z_{1}}-1\right)\left(c^{z_{1}}+1\right) .
$$

Let $a=a_{1} a_{2}$ with $\operatorname{gcd}\left(a_{1}, a_{2}\right)=1, a_{1}^{x} \mid c^{z_{1}}+1$ and $a_{2}^{x} \mid c^{z_{1}}-1$. Then either $a_{1} \geqslant 2 p^{s}+1$ or $a_{2} \geqslant 2 p^{s}+1$. Otherwise, if $a_{1} \leqslant 2 p^{s}-1$ and $a_{2} \leqslant 2 p^{s}-1$, then

$$
a=a_{1} a_{2} \leqslant\left(2 p^{s}-1\right)^{2}<\left(2 p^{s}-1\right)\left(2 p^{s}+1\right)=a
$$

which is impossible. If $a_{1} \geqslant 2 p^{s}+1$, then

$$
a_{1}^{2} \geqslant\left(2 p^{s}+1\right)^{2}=c+4 p^{s}>c+1
$$

Further, we have

$$
a_{1}^{x}>\left(a_{1}^{2}\right)^{z_{1}}>(c+1)^{z_{1}} \geqslant c^{z_{1}}+1
$$

but $a_{1}^{x} \mid c^{z_{1}}+1$, a contradiction. If $a_{2} \geqslant 2 p^{s}+1$, we similarly get $a_{2}^{x}>c^{z_{1}}+1>c^{z_{1}}-1$, but $a_{2}^{x} \mid c^{z_{1}}-1$, a contradiction.

Case $2 P(a) \mid n$. By Lemma 2.2, we have $y>z>x$. Then

$$
a^{x}+b^{y} n^{y-x}=c^{z} n^{z-x} .
$$

Since $y-x>z-x>0$, we have $P(n) \mid a$ and $n^{z-x} \mid a^{x}$, which means that $P(n)=P(a)$ and $n^{z-x}=a^{x}$. Thus

$$
\begin{equation*}
b^{y} n^{y-z}=c^{z}-1 \tag{7}
\end{equation*}
$$

It follows that $5^{z} \equiv 1(\bmod 8)$, so $z \equiv 0(\bmod 2)$. Write $z=2 z_{1}$. Since $c \equiv 1(\bmod b), c^{z_{1}}+1 \equiv 2$ $(\bmod b)$, we have $\operatorname{gcd}\left(c^{z_{1}}+1, b\right)=2$. Then by (7), we have $\left.\frac{b^{y}}{2} \right\rvert\, c^{z_{1}}-1$. But

$$
\frac{b^{y}}{2}>\frac{b^{2 z_{1}}}{2}=\frac{(c-a)^{z_{1}}(c+a)^{z_{1}}}{2} \geqslant c^{z_{1}}+a^{z_{1}}>c^{z_{1}}-1
$$

which is impossible.

This completes the proof of Theorem 1.1
Proof of Corollary 1.2 By Lemma 2.1, we may suppose that $n \geqslant 2$ and suppose that (x, y, z) is a solution of (1) with $(x, y, z) \neq(2,2,2)$. By Case 2 of Theorem 1.1 and Lemma 2.2, we may suppose that $y>z>x, P(n) \mid a$ and $P(n)<P(a)$. Since $a=4 \cdot 3^{2 s}-1$ has only two distinct prime divisors and $\operatorname{gcd}\left(2 \cdot 3^{s}-1,2 \cdot 3^{s}+1\right)=1$, we can write $2 \cdot 3^{s}-1=q_{1}^{\alpha_{1}}, 2 \cdot 3^{s}+1=q_{2}^{\alpha_{2}}$, where q_{1} and q_{2} are distinct odd primes and $\alpha_{1}, \alpha_{2} \geqslant 1$. Then we have either $n=q_{1}^{\alpha}$ or $n=q_{2}^{\beta}$ with $\alpha, \beta \geqslant 1$.

If $n=q_{1}^{\alpha}$, then we have

$$
q_{1}^{\alpha_{1} x} q_{2}^{\alpha_{2} x}+\left(4 \cdot 3^{s}\right)^{y} q_{1}^{\alpha(y-x)}=\left(4 \cdot 3^{2 s}+1\right)^{z} q_{1}^{\alpha(z-x)}
$$

Since $\alpha(y-x)>\alpha(z-x)$, we have $\alpha_{1} x=\alpha(z-x)$ and

$$
\begin{equation*}
\left(4 \cdot 3^{s}\right)^{y} q_{1}^{\alpha(y-z)}=\left(4 \cdot 3^{2 s}+1\right)^{z}-q_{2}^{\alpha_{2} x}=\left(4 \cdot 3^{2 s}+1\right)^{z}-\left(2 \cdot 3^{s}+1\right)^{x} \tag{8}
\end{equation*}
$$

If s is even, then $3^{x} \equiv 1(\bmod 4)$ and $5^{z} \equiv 3^{x}(\bmod 8)$, thus x and z are both even. If s is odd, then $5^{z} \equiv 7^{x}(\bmod 8)$, thus x and z are both even. Now write $z=2 z_{1}, x=2 x_{1}$. By (8),

$$
\begin{equation*}
\left(4 \cdot 3^{s}\right)^{y} q_{1}^{\alpha(y-z)}=\left(\left(4 \cdot 3^{2 s}+1\right)^{z_{1}}-\left(2 \cdot 3^{s}+1\right)^{x_{1}}\right)\left(\left(4 \cdot 3^{2 s}+1\right)^{z_{1}}+\left(2 \cdot 3^{s}+1\right)^{x_{1}}\right) \tag{9}
\end{equation*}
$$

Noting that $\operatorname{gcd}\left(\left(4 \cdot 3^{2 s}+1\right)^{z_{1}}-\left(2 \cdot 3^{s}+1\right)^{x_{1}},\left(4 \cdot 3^{2 s}+1\right)^{z_{1}}+\left(2 \cdot 3^{s}+1\right)^{x_{1}}\right)=2$ and

$$
\begin{gathered}
\frac{\left(4 \cdot 3^{s}\right)^{y}}{2}=\frac{b^{y}}{2}>\frac{b^{z}}{2}=\frac{b^{2 z_{1}}}{2}=\frac{2^{z_{1}}(c+a)^{z_{1}}}{2} \geqslant(c+a)^{z_{1}} \geqslant c^{z_{1}}+a^{z_{1}} \\
>\left(4 \cdot 3^{2 s}+1\right)^{z_{1}}+\left(2 \cdot 3^{s}+1\right)^{x_{1}}>\left(4 \cdot 3^{2 s}+1\right)^{z_{1}}-\left(2 \cdot 3^{s}+1\right)^{x_{1}}
\end{gathered}
$$

we deduce that (9) cannot hold.
If $n=q_{2}^{\beta}$, then we have

$$
q_{1}^{\alpha_{1} x} q_{2}^{\alpha_{2} x}+\left(4 \cdot 3^{s}\right)^{y} q_{2}^{\beta(y-x)}=\left(4 \cdot 3^{2 s}+1\right)^{z} q_{2}^{\beta(z-x)} .
$$

Since $\beta(y-x)>\beta(z-x)$, we have $\alpha_{2} x=\beta(z-x)$ and

$$
\begin{equation*}
\left(4 \cdot 3^{s}\right)^{y} q_{2}^{\beta(y-z)}=\left(4 \cdot 3^{2 s}+1\right)^{z}-q_{1}^{\alpha_{1} x}=\left(4 \cdot 3^{2 s}+1\right)^{z}-\left(2 \cdot 3^{s}-1\right)^{x} \tag{10}
\end{equation*}
$$

It follows that x is even since $(-1)^{x} \equiv 1(\bmod 3)$ and z is even since $5^{z} \equiv 1(\bmod 8)$. Now write $z=2 z_{1}, x=2 x_{1}$. By (10),

$$
\begin{equation*}
\left(4 \cdot 3^{s}\right)^{y} q_{2}^{\beta(y-z)}=\left(\left(4 \cdot 3^{2 s}+1\right)^{z_{1}}-\left(2 \cdot 3^{s}-1\right)^{x_{1}}\right)\left(\left(4 \cdot 3^{2 s}+1\right)^{z_{1}}+\left(2 \cdot 3^{s}-1\right)^{x_{1}}\right) \tag{11}
\end{equation*}
$$

Noting that $\operatorname{gcd}\left(\left(4 \cdot 3^{2 s}+1\right)^{z_{1}}-\left(2 \cdot 3^{s}-1\right)^{x_{1}},\left(4 \cdot 3^{2 s}+1\right)^{z_{1}}+\left(2 \cdot 3^{s}-1\right)^{x_{1}}\right)=2$ and
$\frac{b^{y}}{2}>\frac{b^{2 z_{1}}}{2} \geqslant(c+a)^{z_{1}} \geqslant c^{z_{1}}+a^{z_{1}}>\left(4 \cdot 3^{2 s}+1\right)^{z_{1}}+\left(2 \cdot 3^{s}-1\right)^{x_{1}}>\left(4 \cdot 3^{2 s}+1\right)^{z_{1}}-\left(2 \cdot 3^{s}-1\right)^{x_{1}}$, we deduce that (11) cannot hold.

This completes the proof of Corollary 1.2
Acknowledgements We thank the referees for their valuable suggestions which improved the presentation of this paper.

References

[1] Moujie DENG. A note on the Dionphantine equation $(n a)^{x}+(n b)^{y}=(n c)^{z}$. Bull. Aust. Math. Soc., 2014, 89(2): 316-321.
[2] L. JÉSMANOWICZ. Several remarks on Pythagorean numbers. Wiadom. Mat. (2), 1955/1956, 1: 196-202.
[3] Maohua LE. A note on Jeśmanowicz' conjecture concerning Pythagorean triples. Bull. Aust. Math. Soc., 1999, 59(3): 477-480.
[4] Wenduan LU. On the Pythagorean numbers $4 n^{2}-1,4 n$ and $4 n^{2}+1$. Acta Sci. Natur. Univ. Szechuan, 1959, 2: 39-42. (in Chinese)
[5] T. MIYAZAKI. Generalizations of classical results on Jeśmanowicz' conjecture concerning pythagorean triples. J. Number Theory, 2013, 133(2): 583-595.
[6] T. MIYAZAKI, A. TOGBÉ. The Diophantine equation $(2 a m-1)^{x}+(2 m)^{y}=(2 a m+1)^{z}$. Int. J. Number Theory, 2012, 8(8): 2035-2044.
[7] W. SIERPINSKI. On the equation $3^{x}+4^{y}=5^{z}$. Wiadom. Mat. (2), 1955/1956, 1: 194-195.
[8] Min TANG, Zhijuan YANG. Jeśmanowicz' conjecture revisited. Bull. Aust. Math. Soc., 2013, 88(3): 486-491.
[9] Min TANG, Jianxin WENG. Jeśmanowicz' conjecture with Fermat numbers. Taiwanese J. Math., 2014, 18(3): 925-930.
[10] Zhijuan YANG, Min TANG. On the Diophantine equation $(8 n)^{x}+(15 n)^{y}=(17 n)^{2}$. Bull. Aust. Math. Soc., 2012, 86(2): 348-352.

[^0]: Received August 26, 2014; Accepted November 24, 2014
 Supported by the Research Culture Fundation of Anhui Normal University (Grant Nos. 2012xmpy009; 2014xmp y11) and the Natural Science Foundation of Anhui Province (Grant No. 1208085QA02).

 * Corresponding author

 E-mail address: cuifangsun@163.com (Cuifang SUN); chengzhimath@126.com (Zhi CHENG)

