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Abstract In this paper, we determine all maximal graded subalgebras of the general linear

Lie superalgebras containing the standard Cartan subalgebras over a unital supercommutative

superring with 2 invertible.
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1. Introduction

In 1952, Dynkin [1,2] classified the semisimple subalgebras and the maximal subalgebras of

the finite-dimensional simple Lie algebras over the field of complex numbers. In 2003, Shechep-

ochkina [3] also investigated the maximal subalgebras of linear Lie superalgebras over the field

of complex numbers. In 2004, Elduque, Laliena and Saristan [4,5] described the maximal sub-

algebras of associative superalgebras and Jordan superalgebras. In 2012, Wang, Ge and Li

determined the maximal subalgebras containing the standard Cartan subalgebras for the general

linear Lie algebra over a commutative ring. In this paper, we determine all maximal graded sub-

algebras containing the standard Cartan subalgebras for the general linear Lie superalgebras over

a supercommutative superring and the corresponding results for Lie algebras in [6] are covered.

2. Basics

Let us recall certain basic concepts and facts with respect to supercommutative superrings.

A (associative) ring R is called a Z2-graded ring or superring if R = R0̄ ⊕ R1̄ for some additive

subgroups R0̄ and R1̄ of R such that RαRβ ⊆ Rα+β for α, β ∈ Z2. The elements in R0̄ (R1̄) are

called even (odd) and both even and odd elements are called homogenous. For a homogenous

element r ∈ Rα, α ∈ Z2, its Z2-degree is denoted by |r|. We adopt the convention that if |r|
occurs in a formula, the corresponding element r is assumed to be homogeneous. A superring R
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is called supercommutative provided that

ab = (−1)|a||b|ba for all a, b ∈ R.

Note that if 1 ∈ R, then 1 ∈ R0̄; if 2 is invertible, then a21̄ = 0 for all a1̄ ∈ R1̄.

An ideal I of a superring R is called a Z2-graded ideal (or graded ideal for short) provided

that

I = I ∩R0̄ ⊕ I ∩R1̄.

Obviously, {0} and R are graded ideals of R, which are called trivial.

A graded ideal I of a superring R is called a maximal graded ideal, if there exists no

nontrivial graded ideals containing I strictly.

A superring R is called a divisible superring, if 1 ∈ R and all nonzero elements of R are

invertible. In view of the remarks above, we have

Proposition 2.1 A supercommutative divisible superring is a field.

From now on, assume that R is a unital supercommutative superring with 2 invertible.

A left R-module M is called a left R-supermodule, if M = M0̄ ⊕ M1̄ for some additive

subgroups M0̄ and M1̄ such that

RαMβ ⊆ Mα+β for all α, β ∈ Z2.

If we define

xr = (−1)|r||x|rx for all x ∈ M, r ∈ R,

then M is also a right R-supermodule.

A submodule N of R-supermodule M = M0̄⊕M1̄ is called an R-subsupermodule (Z2-graded

submodule) if

N = N ∩M0̄ ⊕N ∩M1̄.

Let M,N,P be R-supermodules. A map φ : M × N → P is called an R-bilinear map of

degree γ if

(1) φ(Mα, Nβ) ⊆ Pα+β+γ ;

(2) φ(x1 + x2, y) = φ(x1, y) + φ(x2, y);

(3) φ(x, y1 + y2) = φ(x, y1) + φ(x, y2);

(4) φ(xr, y) = φ(x, ry), φ(x, yr) = φ(x, y)r,

for all x, x1, x2 ∈ M,y, y1, y2 ∈ N, r ∈ R,α, β, γ ∈ Z2. From the definition, we have

φ(rx, y) = (−1)|r||φ|rφ(x, y) for all r ∈ R, x, y ∈ M.

An R-superalgebra is an R-supermodule A = A0̄+A1̄ with an even R-bilinear map A×A →
A. A subalgebra B of a superalgebra A is called a Z2-graded subalgebra (graded subalgebra), if

B is also a Z2-graded submodule of A.

Let L = L0̄ ⊕ L1̄ be an R-superalgebra with multiplication [−,−]. Then L is called a Lie

superalgebra over R or R-Lie superalgebra if

(L1) [x, y] = −(−1)|x||y|[y, x],
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(L2) (−1)|z||x|[x, [y, z]] + (−1)|x||y|[y, [z, x]] + (−1)|y||z|[z, [x, y]] = 0,

for all x, y, z ∈ L.

3. Construction of maximal subalgebras

Suppose m and n are positive integers and let glR(m,n) denote the R-supermodule consist-

ing of all (m+ n)× (m+ n) matrices over R. Then

glR(m,n) = glR(m,n)0̄ ⊕ glR(m,n)1̄,

where glR(m,n)0̄ consists of all the even matrices(
A1 B1

C1 D1

)
with

A1 ∈ Mm(R0̄), B1 ∈ Mm,n(R1̄), C1 ∈ Mn,m(R1̄), D1 ∈ Mn(R0̄);

and glR(m,n)1̄ consists of all the odd matrices(
A2 B2

C2 D2

)
with

A2 ∈ Mm(R1̄), B2 ∈ Mm,n(R0̄), C2 ∈ Mn,m(R0̄), D2 ∈ Mn(R1̄).

Then glR(m,n) is an R-Lie superalgebra with respect to the following bracket:

[x, y] = xy − (−1)|x||y|yx, x, y ∈ glR(m,n).

Let eij be the (m + n) × (m + n) matrix having 1 in the (i, j) position and 0 elsewhere.

Then

eij , ekl] = δjkeil − (−1)|eij ||ekl|δliekj .

Obviously, all diagonal matrices of glR(m,n) constitute a graded subalgebra, denoted by

dR(m,n). All upper triangular matrices of glR(m,n) also constitute a graded subalgebra, denoted

by bR(m,n).

Suppose that X is a graded subalgebra of glR(m,n) containing dR(m,n). Then

X = X0̄ ⊕X1̄ = X ∩ glR(m,n)0̄ ⊕X ∩ glR(m,n)1̄.

For X and 1 ≤ i, j ≤ m+ n, define

AX
ij = {a ∈ R | aeij ∈ X}.

Similarly to [7, Lemma 2.1], we have

Lemma 3.1 (1) If x = (xij) ∈ X, then xij ∈ AX
ij . In particular, X =

∑
1≤i,j≤m+n A

X
ij eij .

(2) All AX
ij are graded ideals of R, and

AX
ii = R, AX

ijA
X
jk ⊆ AX

ik,

for i, j, k = 1, . . . ,m+ n.
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Proof It is enough to show that all AX
ij are graded ideals of R and one may finish the proof

as in [7, Lemma 2.1]. When i ̸= j, for a, b ∈ AX
ij and r ∈ R, we have aeij , beij ∈ X. It follows

that aeij − beij = (a − b)eij ∈ X and then a − b ∈ AX
ij . Since raeij = [reii, aeij ] ∈ X, we have

ra ∈ AX
ij and ar = (−1)|a||r|ra ∈ AX

ij . So AX
ij is an ideal of R. Let a ∈ AX

ij and write a = a0̄+a1̄,

where a0̄ ∈ R0̄, a1̄ ∈ R1̄. Then

aeij = a0̄eij + a1̄eij ∈ X.

Since X is a graded subalgebra, we have a0̄eij , a1̄eij ∈ X and then a0̄, a1̄ ∈ AX
ij . Hence, all AX

ij

are graded ideals of R. �
Write

Φ = {1, 2, . . . ,m | m+ 1, . . . ,m+ n},Φ1 = {1, 2, . . . ,m},

and

Φ2 = {m+ 1, . . . ,m+ n}.

Write Φij = Φi ×Φj , where i, j = 1, 2. Let ∅ ̸= △ ( Φ and △− be the complementary set of △
in Φ, i.e., △∩△− = ∅, △∪△− = Φ. Suppose that I is a maximal graded ideal of R and define

M(I,△) =
∑

(i,j)∈△−×△
Ieij +

∑
(i,j)∈Φ×Φ\△−×△

Reij .

It is easy to show that dR(m,n) ⊆ M(I,△) and that M(I,△) is an R-module.

Lemma 3.2 M(I,△) is a maximal graded subalgebra of glR(m,n) containing dR(m,n).

Proof Firstly, we prove that it is an R-subsupermodule, i.e.,

M(I,△) = M(I,△) ∩ glR(m,n)0̄ ⊕M(I,△) ∩ glR(m,n)1̄.

The inclusion “⊇” is obvious. Conversely, for an arbitrary x =
∑

1≤i,j≤m+n

xijeij ∈ M(I,△), write

xij = (xij)0̄ + (xij)1̄ ∈ R0̄ ⊕R1̄.

Then

x =
∑

(i,j)∈Φ11∪Φ22

(xij)0̄eij +
∑

(k,l)∈Φ12∪Φ21

(xkl)1̄ekl +
∑

(i,j)∈Φ11∪Φ22

(xij)1̄eij +
∑

(k,l)∈Φ12∪Φ21

(xkl)1̄ekl.

Since I is a graded ideal, we get x ∈ M(I,△) ∩ glR(m,n)0̄ ⊕M(I,△) ∩ glR(m,n)1̄.

Secondly, we show that it is a subalgebra. For
∑

1≤i,j≤m+n

xijeij and
∑

1≤k,l≤m+n

xklekl in

M(I,△), we have to show that [xijeij , xklekl] ∈ M(I,△). Note that

[xijeij , xklekl] = δjkxijxkleil − (−1)(|xij |+|eij |)(|xkl|+|ekl|)δlixklxijekj .

When (i, l) ∈ △− × △, if j = k ∈ △, then (i, j) ∈ △− × △ and xij ∈ I; if j = k ∈ △−, then

(k, l) ∈ △− ×△ and xkl ∈ I. So, xijxkl ∈ I in the above two cases, furthermore,

[xijeij , xklekl] = xijxkleil ∈ M(I,△).
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When (k, j) ∈ △− × △, if l = i ∈ △, then (k, l) ∈ △− × △ and xkl ∈ I; if l = i ∈ △−, then

(i, j) ∈ △− ×△ and xij ∈ I. So, xklxij ∈ I in the above two cases, furthermore,

[xijeij , xklekl] = −(−1)(|xij |+|eij |)(|xkl|+|ekl|)δlixklxijekj ∈ M(I,△).

Hence, [M(I,△),M(I,△)] ⊆ M(I,△) and M(I,△) is a graded subalgebra of glR(m,n).

Finally, let us prove the maximality. Suppose that X is a graded subalgebra of glR(m,n)

satisfying M(I,△) ( X ⊆ glR(m,n). Write x = (xij) ∈ X \ M(I,△). There exists some

(p, q) ∈ △− ×△ such that xpq /∈ I. By Lemma 3.1, we know xpqepq ∈ X. Since I is a maximal

graded ideal, there exist some r ∈ R and r0 ∈ I such that rxpq + r0 = 1. Furthermore,

epq = [repp, xpqepq] + r0epq ∈ X.

For every i ∈ △−, it follows that (i, p) /∈ △− ×△, then eip ∈ M(I,△) ⊆ X and eiq = [eip, epq] ∈
X. For every j ∈ △, it follows that (q, j) /∈ △− × △, then eqj ∈ M(I,△) ⊆ X and eij =

[eiq, eqj ] ∈ X. So X contains all eij , and this implies that X = glR(m,n). Hence, M(I,△) is a

maximal graded subalgebra of glR(m,n) containing dR(m,n). �
For 1 ≤ s ≤ m+n−1, put △s = {1, 2, . . . , s}. Then M(I,△s) is called a standard maximal

graded subalgebras of glR(m,n) containing dR(m,n), where s = 1, 2, . . . , m+ n− 1.

Lemma 3.3 M(I,△) is a standard maximal graded subalgebras if and only if bR(m,n) ⊆
M(I,△).

Proof Suppose that M(I,△) is standard with △ = △s = {1, 2, . . . , s}, where 1 ≤ s ≤ m+n−1.

For every 1 ≤ i ≤ j ≤ m + n, we have that (i, j) /∈ △− × △, then eij ∈ M(I,△). Hence,

bR(m,n) ⊆ M(I,△).
Now suppose that M(I,△) is not standard. Write

△ = {j1, j2, . . . , js} ⊆ Φ, where j1 < j2 < · · · < js.

Since M(I,△) is not standard, there exists some 1 ≤ k ≤ s such that k < jk. Let p be the

minimal one such that k < jk. It follows that j1 = 1, j2 = 2, . . . , jp−1 = p − 1, jp > p. Then

ep,jp ∈ bR(m,n) ⊆ M(I,△), which contradicts the fact that ep,jp /∈ M(I,△) for p ∈ △− and

jp ∈ △. �

4. Main results

We begin with the following lemma.

Lemma 4.1 Let F be a field of characteristic not 2, and X be a graded subalgebra of glF(m,n).

Then X is a maximal graded subalgebra of glF(m,n) containing dF(m,n) if and only if there

exists ∅ ̸= △ ( Φ such that X = M(0,△).

Proof According to Lemma 3.2, for any ∅ ̸= △ ⊆ Φ, X = M(0,△) is a maximal graded

subalgebra of glF(m,n) containing dF(m,n).

Now suppose that X is a maximal graded subalgebra of glF(m,n) containing dF(m,n).
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According to Lemma 3.1, we have

X =
∑

1≤i,j≤m+n

AX
ij eij ,

where the AX
ij are all graded ideals of F. Since F is a field, AX

ij = 0 or AX
ij = F. Note that

X ( glF(m,n). There must exist p ̸= q such that AX
pq = 0. Put

△ = {j ∈ Φ | AX
pj = 0}.

Since p /∈ △ and q ∈ △, it follows that ∅ ̸= △ ( Φ. For above-mentioned △, it is easy to show

that M(0,△) is a maximal graded subalgebra of glF(m,n) containing dF(m,n). Because both X

and M(0,△) are of maximality, we have to show that X ⊆ M(0,△). By the maximality of X and

M(0,△), in order to conclude the proof, we have to show that AX
ij = 0 for all (i, j) ∈ △− ×△.

If there exists some (i0, j0) ∈ △− × △ such that AX
i0j0

̸= 0, then we have AX
i0j0

= R. Since

(p, i0) /∈ △− ×△, it follows that AX
pi0

= R. According to Lemma 3.1, we have

AX
pi0A

X
i0j0 ⊆ AX

pj0 = R,

which contradicts the fact that AX
pj0

= 0 for (p, j0) ∈ △− ×△. Hence X = M(0,△). �

Theorem 4.2 Let X be a graded subalgebra of glR(m,n). Then X is a maximal graded

subalgebra of glR(m,n) containing dR(m,n) if and only if there exist ∅ ̸= △ ( Φ and a maximal

ideal I of R such that X = M(I,△).

Proof According to Lemma 3.2, the sufficiency is obvious. Now, we show the necessity. Suppose

that X is a maximal graded subalgebra of glR(m,n) containing dR(m,n). According to Lemma

3.1, we have

X =
∑

1≤i,j≤m+n

AX
ij eij ,

where the AX
ij are all graded ideals of R. Note that X ( glR(m,n). There must exist p ̸= q

such that AX
pq ̸= R. Let I be a maximal ideal I of R containing AX

pq and π be the canonical

homomorphism from R to R/I. Define σ to be the map from glR(m,n) to glR/I(m,n) such that

σ((xij)) = (x̄ij), where x̄ij = π(xij).

It is easy to show that σ is a surjective homomorphism of Lie superalgebras with kerσ = glI(m,n)

and σ(X) ( glR/I(m,n). Let M be a maximal graded subalgebra of glR/I(m,n) satisfying

σ(X) ( M ⊆ glR/I(m,n). Then

X + glI(m,n) ( σ−1(M) ⊆ glR(m,n).

By the maximality of X, we know that σ−1(M) = glR(m,n). Then M = glR/I(m,n). So σ(X) is

a maximal graded subalgebra of glR/I(m,n). According to Lemma 4.1, there exists ∅ ̸= △ ( Φ

such that σ(X) = M(0̄,△). Then

X + glI(m,n) = M(0,△) + glI(m,n).
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Furthermore,

X ⊆ X + glI(m,n) = M(0,△) + glI(m,n) = M(I,△).

By the maximality of X, we have X = M(I,△). �
Note that if the number of graded ideals of R is finite, then we can determine the number

of maximal graded subalgebras of glR(m,n).

Corollary 4.3 glR(m,n) has z(R)(2m+n−2) maximal graded subalgebras containing dR(m,n),

where z(R) is the number of graded ideals of R.

Proof According to Theorem 4.2, we know that the number of maximal graded subalgebras

of glR(m,n) containing dR(m,n) only depends on the number of graded ideals of R and the

number of choices of nontrivial subsets of △. The number of choices of nontrivial subsets of △
is

∑m+n−1
k=1 Ck

n = 2m+n − 2. Thus the assertion holds. �
Finally, we show that each maximal graded subalgebra is conjugate under a permutation

matrix (the matrix having the only nonzero element 1 in each row and each column) to a standard

one.

Theorem 4.4 Let X be a maximal graded subalgebra of glR(m,n) containing dR(m,n). Then

there exists a permutation matrix P such that X = PM(I,△s)P
−1.

Proof According to Theorem 4.2, we can suppose X = M(I,△), where ∅ ̸= △ ( Φ and I is a

maximal graded ideal of R. Define

Ψ(X) = {(i, j) | 1 ≤ i < j ≤ m+ n, eij ∈ X}.

The number of elements in Ψ(X) is denoted by N(X). We use induction on N(X) to prove the

result.

When N(X) = 1
2 (m + n)(m + n − 1), we have eij ∈ X for any 1 ≤ i < j ≤ m + n. Then

bR(m,n) ⊆ M(I,△). According to Lemma 3.3, M(I,△) is standard.
Now let us prove the assertion when N(X) = u + 1 assuming that it holds for 0 ≤ u <

1
2 (m+ n)(m+ n− 1).

When N(X) = u, there must exist some (i0, j0) such that ei0j0 /∈ X, where 1 ≤ i0 < j0 ≤
m + n. Furthermore, there must exist some 1 ≤ p ≤ m + n − 1 such that ep,p+1 /∈ X. In fact,

if ei,i+1 ∈ X for any 1 ≤ i ≤ m + n − 1, then we have eij ∈ X for any 1 ≤ i < j ≤ m + n,

which contradicts our assumption that ei0j0 /∈ X. From ep,p+1 /∈ X = M(I,△) it follows that

ep+1,p ∈ X. We now consider the action of the inner automorphism IntEp,p+1:

IntEp,p+1(dR(m,n)) = dR(m,n);

IntEp,p+1(X) = E−1
p,p+1XEp,p+1;

IntEp,p+1(ep,p+1) = ep+1,p.

It is easy to show that the number of elements in Ψ(E−1
p,p+1XEp,p+1) is exactly u+1. According to

the induction assumption, there exists some permutation matrix P such that P−1E−1
p,p+1XEp,p+1P
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= M(I,△s). Then

X = Ep,p+1PM(I,△s)P
−1E−1

p,p+1.

Let Q = Ep,p+1P . Then Q is a permutation matrix and

X = QM(I,△s)Q
−1,

where M(I,△s) is standard. �
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