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1. Introduction and notations

We assume that readers are familiar with the fundamental results and the standard notations

of the Nevanlinna’s value distribution theory of meromorphic functions [8,12,16]. In addition,

we use σ(f) and λ(f) to denote the order and the exponent of convergence of zero sequence of

meromorphic function f(z), respectively. For sufficiently large r ∈ [1,∞), we define logi+1 r =

logi(log r) (i ∈ N) and expi+1 r = exp(expi r) (i ∈ N) and exp0 r = r = log0 r, exp−1 r = log r.

Firstly, we will recall some notations about the finite iterated order of entire functions.

Definition 1.1 ([5,11]) The iterated p-order of an entire function f(z) is defined by

σp(f) = lim
r→∞

logp T (r, f)

log r
= lim

r→∞

logp+1 M(r, f)

log r
.

Definition 1.2 ([11]) The finiteness degree (growth index) of the iterated order of an entire

function f(z) is defined by

i(f) =


0, for f polynomial,

min{j ∈ N : σj(f) < ∞}, for f transcendental for which some

j ∈ N with σj(f) < ∞ exists,

∞, for f with σj(f) = ∞ for all j ∈ N.
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Remark 1.3 By Definition 1.2, we can similarly give the definition of the growth index of the

iterated exponent of convergence of zero-sequence of a meromorphic function f(z) by iλ(f, 0).

Definition 1.4 ([11]) The iterated exponent of convergence of the zero sequence and the iterated

exponent of convergence of distinct zero sequence of an entire function f(z) are defined by

λp(f) = lim
r→∞

logp n(r,
1
f )

log r
= lim

r→∞

logp N(r, 1
f )

log r

and

λp(f) = lim
r→∞

logp n(r,
1
f )

log r
= lim

r→∞

logp N(r, 1
f )

log r
.

For second order linear differential equation

f ′′ +A(z)f = 0 (1.1)

where A(z) is an entire function or meromorphic function of finite order, many authors have

investigated the growth and zeros of non-trivial solutions of (1.1), and obtain many classical

results [1–4,6].

In 1998, Kinnunen investigated equation (1.1) and obtained the following theorems, where

A(z) is an entire function of finite iterated order.

Theorem 1.5 ([11]) Let A(z) be an entire function with i(A) = p (p ∈ N). Let f1, f2 be two

linearly independent solutions of (1.1) and denote E = f1f2. Then iλ(E)≤p+ 1 and

max{λp+1(f1), λp+1(f2)} = λp+1(E) = σp+1(E) ≤ σp(A).

If iλ(E)≤p + 1, then iλ(f1) = p + 1 holds for all solutions of type f = c1f1 + c2f2, where c1, c2

are complex numbers and c1c2 ̸= 0.

Theorem 1.6 ([11]) Let A(z) be an entire function satisfying i(A) = p (p ∈ N), and λp(A) <

σp(A). Then λp+1(f) ≤ σp(A) ≤ λp(f) holds for any non-trivial solution of (1.1).

Theorem 1.7 ([11]) Let A(z) be an entire function with i(A) = p and σp(A) = σ (p ∈ N). Let
f1, f2 be two linearly independent solutions of (1.1), such that max{λp(f1), λp(f2)} < σ. Let

Π(z) ̸≡ 0 be any entire function satisfying either i(Π) < p or i(Π) = p and σp(Π) < σ. Then any

two linearly independent solutions g1 and g2 of the differential equation

f ′′ + (A(z) + Π(z))f = 0 (1.2)

satisfy max{λp(g1), λp(g2)} ≥ σ.

In recent years, some authors investigated the higher order linear differential equation with

entire coefficients of [p, q]-order in the complex plane [13,14]. In this paper, our aim is to investi-

gate the zeros and growth of solutions of (1.1) with entire coefficients of [p, q]-order and improve

Theorems 1.5–1.7.

First, we introduce the definitions of [p, q]-order of meromorphic functions, where p, q are

positive integers satisfying p ≥ q ≥ 1.
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Definition 1.8 ([9,10,13–15]) If f(z) is a meromorphic function, the [p, q]-order of f(z) is defined

by

σ[p,q](f) = lim
r→∞

logp T (r, f)

logq r
.

Especially if f(z) is an entire function, the [p, q]-order of f(z) is defined by

σ[p,q](f) = lim
r→∞

logp T (r, f)

logq r
= lim

r→∞

logp+1 M(r, f)

logq r
.

If f(z) is a rational function, then σ[p,q](f) = 0 for any p ≥ q ≥ 1. By Definition 1.8, we have

that σ[1,1] = σ(f), σ[2,1] = σ2(f) and σ[p+1,1] = σp+1(f).

Remark 1.9 ([9,10]) If a meromorphic function f(z) satisfies 0 < σ[p,q](f) < ∞, then we have

(i) σ[p−n,q](f) = ∞ (n < p), σ[p,q−n](f) = 0 (n < q), σ[p+n,q+n](f) = 1 (n < p) for

n = 1, 2, . . . .

(ii) If [p′, q′] is any pair of integers satisfying q′ = p′ + q− p and p′ < p, then σ[p′,q′](f) = 0

if 0 < σ[p,q](f) < 1 and σ[p′,q′](f) = ∞ if 1 < σ[p,q](f) < ∞.

(iii) σ[p′,q′](f) = ∞ for q′ − p′ > q − p and σ[p′,q′](f) = 0 for q′ − p′ < q − p.

Definition 1.10 ([9,10]) A meromorphic function f(z) is said to have index-pair [p, q], if 0 <

σ[p,q](f) < ∞ and σ[p−1,q−1](f) is not a nonzero finite number.

Remark 1.11 ([9,10]) If σ[p,p](f) is never greater than 1 and σ[p′,p′](f) = 1 for some integer

p′ ≥ 1, then the index-pair of f(z) is defined as [m,m] where m = inf{p′ : σ[p′,p′](f) = 1}. If

σ[p,q](f) is never nonzero finite and σ[p′′,1](f) = 0 for some integer p′′ ≥ 1, then the index-pair

of f(z) is defined as [n, 1] where n = inf{p′′ : σ[p′′,1](f) = 0}. If σ[p,q](f) is always infinite, then

the index-pair of f(z) is defined to be [∞,∞].

Remark 1.12 ([9,10]) If a meromorphic function f(z) has the index-pair [p, q], then σ = σ[p,q](f)

is called its [p, q]-order. For example, set f1(z) = ez, f2(z) = ee
z

, by Remark 1.11, we have that

the index-pair of f1(z) is [1, 1] and the index-pair of f2(z) is [2, 1].

Definition 1.13 ([13,14]) The [p, q] exponent of convergence of the zero-sequence and the [p, q]

exponent of convergence of the distinct zero-sequence of a meromorphic function f(z) are defined

respectively by

λ[p,q](f) = lim
r→∞

logp n(r,
1
f )

logq r
= lim

r→∞

logp N(r, 1
f )

logq r

and

λ[p,q](f) = lim
r→∞

logp n(r,
1
f )

logq r
= lim

r→∞

logp N(r, 1
f )

logq r
.

Remark 1.14 It is easy to know λ[p,q](f) ≤ λ[p,q](f) ≤ σ[p,q](f).

2. Main results

In this section, we give our results of this paper.
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Theorem 2.1 Let A(z) be a transcendental entire function with σ[p,q](A) ≥ 0. Let f1, f2 be

two linearly independent solutions of (1.1) and denote E = f1f2. Then

max{λ[p+1,q](f1), λ[p+1,q](f2)} = λ[p+1,q](E) = σ[p+1,q](E) ≤ σ[p,q](A).

If σ[p+1,q](E) < σ[p,q](A), then λ[p+1,q](f) = σ[p,q](A) holds for all solutions of type f = c1f1 +

c2f2, where c1, c2 are complex numbers and c1c2 ̸= 0.

Theorem 2.2 Let A(z) be an entire function with λ[p,q](A) < σ[p,q](A). Then any non-trivial

solution of (1.1) satisfies λ[p+1,q](f) ≤ σ[p,q](A) ≤ λ[p,q](f).

Theorem 2.3 Let A(z) be a transcendental entire function with σ[p,q](A) = σ > 0. Let f1 and

f2 be two linearly independent solutions of (1.1) such that max{λ[p,q](f1), λ[p,q](f2)} < σ. Let

Π(z) ̸≡ 0 be an entire function with σ[p,q](Π) < σ. Then any two linearly independent solutions

g1 and g2 of (1.2) satisfy max{λ[p,q](g1), λ[p,q](g2)} ≥ σ.

3. Preliminary lemmas

Lemma 3.1 ([14]) Let Aj(z) (j = 0, 1, . . . , k − 1) be entire functions satisfying

max{σ[p,q](Aj)|j ̸= 0} < σ[p,q](A0) < ∞.

Then every non-trivial solution f(z) of the differential equation

f (k) +Ak−1(z)f
(k−1) + · · ·+A0(z)f = 0 (3.1)

satisfies σ[p+1,q](f) = σ[p,q](A0).

Lemma 3.2 Let f1(z), f2(z) be two entire function of [p, q]-order, and denote E = f1f2. Then

λ[p,q](E) = max{λ[p,q](f1), λ[p,q](f2)}.

Proof Let n(r, E) denote the number of the zeros of E(z) in disk = {z : |z| ≤ r}, and so on

for f1 and f2. Since for any given r > 0 we have n(r, E) ≥ n(r, f1) and n(r, E) ≥ n(r, f2), by

Definition 1.13 we have

λ[p,q](E) ≥ max{λ[p,q](f1), λ[p,q](f2)}.

On the other hand, since the zero of E(z) must be the zero of f1 or f2, for any given r > 0, we

have

n(r, E) = n(r, f1) + n(r, f2) ≤ 2max{n(r, f1), n(r, f2)}. (3.2)

Therefore, by Definition 1.13, we have

λ[p,q](E) ≤ max{λ[p,q](f1), λ[p,q](f2)}.

Thus we complete the proof of Lemma 3.2. �

Lemma 3.3 Let f(z) be a meromorphic function with [p, q]-order and σ[p,q](f) = σ, and let

k ≥ 1 be an integer. Then for any ε > 0,

m(r,
f (k)

f
) = O{expp−1{(σ + ε) logq r}} (3.3)
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holds outside of an exceptional set E1 of finite linear measure.

Proof Let k ≥ 1. Since σ = σ[p,q](f) < ∞, we have for all sufficiently large r,

T (r, f) < expp{(σ + ε) logq r}. (3.4)

By the lemma of the logarithmic derivative, we have

m(r,
f (k)

f
) = O{log T (r, f) + log r}, r ̸∈ E1

where E1 ⊂ (1,∞) is a set of finite linear measure, not necessarily the same at each occurrence.

Hence we have

m(r,
f ′

f
) = O{expp−1{(σ + ε) logq r}}, r ̸∈ E1. (3.5)

Next, assume that we have

m(r,
f (k)

f
) = O{expp−1{(σ + ε) logq r}}, r ̸∈ E1 (3.6)

for some k ∈ N. Since N(r, f (k)) ≤ (k + 1)N(r, f), there holds

T (r, f (k)) ≤ m(r, f (k)) +N(r, f (k)) ≤ m(r,
f (k)

f
) +m(r, f) + (k + 1)N(r, f)

≤ (k + 1)T (r, f) +O{expp−1{(σ + ε) logq r}}, r ̸∈ E1. (3.7)

By (3.5), we again obtain

m(r,
f (k+1)

f (k)
) = O{expp−1{(σ + ε) logq r}}, r ̸∈ E1, (3.8)

and hence,

m(r,
f (k+1)

f
) ≤ m(r,

f (k+1)

f (k)
) +m(r,

f (k)

f
) = O{expp−1{(σ + ε) logq r}}, r ̸∈ E1. � (3.9)

Lemma 3.4 ([12]) Let g : [0,∞) −→ R and h : [0,∞) −→ R be monotone increasing functions

such that g(r) ≤ h(r) outside of an exceptional set E of finite linear measure. Then for any

α > 1, there exists r0 > 0, such that g(r) ≤ h(αr) for all r > r0.

Lemma 3.5 ([7]) Let f(z) be a transcendental meromorphic function not of the form eαz+β .

Then

T (r,
f

f ′ ) ≤ 3N(r, f) + 7N(r,
1

f
) + 4N(r,

1

f ′′ ) + S(r,
f

f ′ ). (3.10)

Similarly to the Hadamard theorem for entire functions and Lemma 1.8 in [11, p.390], we have

the following results.

Lemma 3.6 An entire function f(z) with [p, q] index can be represented by the form f(z) =

U(z)eV (z), where U(z) and V (z) are entire functions such that

λ[p,q](f) = λ[p,q](U) = σ[p,q](U), σ[p,q](f) = max{σ[p,q](U), σ[p,q](e
V )}. (3.11)

4. Proofs of Theorems
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Proof of Theorem 2.1 We denote σ[p,q](A) = σ. By Lemma 3.1 we have

σ[p+1,q](f1) = σ[p+1,q](f2) = σ.

Therefore,

σ[p+1,q](E) ≤ max{σ[p+1,q](f1), σ[p+1,q](f2)} = σ.

By Lemma 3.2, we know

max{λ[p+1,q](f1), λ[p+1,q](f2)} = λ[p+1,q](E) ≤ σ[p+1,q](E). (4.1)

It remains to show that λ[p+1,q](E) = σ[p+1,q](E). Assume that λ[p+1,q](E) < σ[p+1,q](E). We

obtain that all zeros of E are simple and that [12, pp.76-77]

E2 = C2
(
(
E′

E
)2 − 2

E′′

E
− 4A

)−1
. (4.2)

Hence,

2T (r, E) = T
(
r, (

E′

E
)2 − 2

E′′

E
− 4A

)
+O(1)

≤ O
(
N(r,

1

E
) +m(r,

E′

E
) +m(r,

E′′

E
) +m(r,A)

)
. (4.3)

By Lemma 3.3, we have

m(r,
E′

E
) = O{expp{(σ + ε) logq r}}, m(r,

E′′

E
) = O{expp{(σ + ε) logq r}}, r ̸∈ E.

Since N(r, 1
E ) = N(r, 1

E ) = O{expp+1{β logq r}} holds for some β < σ[p+1,q](E), we obtain

T (r, E) = O
(
N(r,

1

E
) + expp{(σ + ε) logq r}

)
, r ̸∈ E1. (4.4)

By (4.4), we have T (r, E) = O{expp+1{β logq r}} (r ̸∈ E) and by Lemma 3.4, we obtain

σ[p+1,q](E) ≤ β < σ[p+1,q](E), this is a contradiction. Hence, λ[p+1,q](E) = σ[p+1,q](E).

If σ[p+1,q](E) < σ[p,q](A), let us assume λ[p+1,q](f) < σ[p,q](A) for any solution of type

f = c1f1 + c2f2 (c1c2 ̸= 0). We denote E = f1f2 and F = ff1, then

λ[p+1,q](E) < σ[p,q](A), λ[p+1,q](F ) < σ[p,q](A).

Since F = (c1f1 + c2f2)f1 = c1f
2
1 + c2E, by (4.4), we have

T (r, f1) = O(T (r, F ) + T (r, E)) = O
(
N(r,

1

F
) +N(r,

1

E
) + expp{(σ + ϵ) logq r}

)
.

Since λ[p+1,q](E) < σ[p,q](A), λ[p+1,q](F ) < σ[p,q](A), we have

N(r,
1

F
) < expp+1{β logq r}, N(r,

1

E
) < expp+1{β logq r}, r → ∞,

for some β < σ[p,q](A). Thus we obtain σ[p+1,q](f1) ≤ β < σ[p,q](A), this is a contradiction

by Lemma 3.1. Hence we have that λ[p+1,q](f) = σ[p,q](A) holds for all solutions of type f =

c1f1 + c2f2, where c1c2 ̸= 0. �

Proof of Theorem 2.2 By Lemma 3.1 we have λ[p+1,q](f) ≤ σ[p+1,q](f) = σ[p,q](A). It

remains to show that σ[p,q](A) ≤ λ[p,q](f). We assume that σ[p,q](A) > λ[p,q](f). Since A(z) is
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transcendental, the non-trivial solution of (1.1) is transcendental entire function of infinite order.

Hence, by Lemma 3.5, we have for sufficiently large r

T (r,
f

f ′ ) = O
(
N(r,

1

f
) +N(r,

1

f ′′ )
)
, r ̸∈ E1. (4.5)

By λ[p,q](A) < σ[p,q](A) and the assumption λ[p,q](f) < σ[p,q](A), form (4.5), we have for suffi-

ciently large r

T (r,
f

f ′ ) = O{expp{β logq r}}, r ̸∈ E1 (4.6)

for some β < σ[p,q](A). Hence,

σ[p,q](
f

f ′ ) = σ[p,q](
f ′

f
) ≤ β < σ[p,q](A).

Since

−A(z) = (
f ′

f
)′ + (

f ′

f
)2, (4.7)

we obtain σ[p,q](A) ≤ σ[p,q](
f ′

f ) < σ[p,q](A), this is a contradiction. Thus σ[p,q](A) ≤ λ[p,q](f). �

Proof of Theorem 2.3 Similarly to the proof of Theorem 3.1 in [4], we denote E = f1f2 and

F = g1g2. Let us assume

λ[p,q](F ) = max{λ[p,q](g1), λ[p,q](g2)} < σ.

By Lemma 3.1, we have σ[p+1,q](E) ≤ max{σ[p+1,q](f1), σ[p+1,q](f2)} = σ, and hence, by Lemma

3.3, for any integer k ≥ 1 and for any ε > 0, we have

m(r,
E(k)

E
) = O{expp{(σ + ε) logq r}}, r ̸∈ E1.

Furthermore, by the assumption λ[p,q](E) < σ, we have N(r, 1
E ) = O{expp{β logq r}} for some

β < σ, and the [p, q]-order of the function A(z) implies that

T (r,A) = O{expp{(σ + ε) logq r}}, r → ∞.

By (4.4), we obtain

T (r, E) = O{expp{(σ + ε) logq r}}

and hence, σ[p,q](E) ≤ σ. On the other hand, by

4A = (
E′

E
)2 − 2

E′′

E
− 1

E2
, (4.8)

we have that σ[p,q](A) = σ ≤ σ[p,q](E), hence σ[p,q](E) = σ. By the same reasoning for the

function F , we have

4(A+Π) = (
F ′

F
)2 − 2

F ′′

F
− 1

F 2
(4.9)

and σ[p,q](F ) = σ. Since λ[p,q](E) < σ, λ[p,q](F ) < σ, by Lemma 3.6, we may write

E = QeP , F = ReS , (4.10)
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where P,Q,R, S are entire functions satisfying σ[p,q](Q) = λ[p,q](E) < σ, σ[p,q](R) = λ[p,q](F ) <

σ and σ[p,q](e
P ) = σ[p,q](e

S) = σ. Substituting (4.10) into (4.8) and (4.9), we have

4A = − 1

Q2e2P
+G1(z), (4.11)

4(A+Π) = − 1

R2e2S
+G2(z), (4.12)

where G1(z) and G2(z) are meromophc functions satisfying σ[p,q](Gj) < σ (j = 1, 2). Subtracting

(4.12) from (4.11) gives
1

R2e2S
− 1

Q2e2P
= G3(z), (4.13)

where G3(z) is a meromophic function satisfying σ[p,q](G3) < σ. From (4.13), we have

e−2S +H1e
−2P = H2, (4.14)

where H1,H2 are meromorphic functions satisfying σ[p,q](Hj) < σ (j = 1, 2), and H1 = −R2

Q2 .

Derivating (4.14), we have

−2S′e−2S + (H ′
1 − 2PH1)e

−2P = H3, (4.15)

where H3 is a meromophic function with σ[p,q](H3) < σ. Eliminating e−2S by (4.14) and (4.15),

we have

(H ′
1 − 2(P ′ − S′)H1)e

−2P = H4, (4.16)

where H4 is a meromorphic function satisfying σ[p,q](H4) < σ. Since σ[p,q](e
S) = σ, by (4.16) we

have H ′
1 − 2(P ′ − S′)H1 ≡ 0, thus we have H1 = ce2(P−S), c ̸= 0. Hence,

E2

F 2
=

Q2

R2
e2(P−S) = −1

c
. (4.17)

From (4.8), (4.9), (4.17), we have

4(A+Π+
1

c
A) = (

F ′

F
)2 − 2

F ′′

F
+

1

c
(
E′

E
)2 − 2

c

E′′

E
.

By Lemma 3.3, we obtain

T (r,A(1 +
1

c
) + Π) = m(r,A(1 +

1

c
) + Π) = O{expp−1{(σ + ε) logq r}}, r → ∞.

This implies σ[p,q](A(1 +
1
c ) + Π) = 0. Hence c = −1. Since E2 = F 2, we have

E′

E
=

F ′

F
,

E′′

E
=

F ′′

F
.

From (4.8) and (4.9), we see that Π(z) ≡ 0, this is a contradiction. The proof of the theorem is

completed. �
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