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1. Introduction

The celebrated Kolmogorov-Feller weak law of large numbers (WLLN) provides a necessary

and sufficient condition in the i.i.d. case, the point being that the mean does not exist.

Theorem 1.1 ([1, VIL.7]) Let X, X1, X2, ... be independent identically distributed (i.i.d.) ran-
dom variables with partial sums S, = >, X;,n > 1. Then

Sp—nEXI(|X|<n) p
—0 as n— o©

n
if and only if tP(|X| > z) — 0 as © — oo.
Gut [2] gave the following example:

Example 1.2 Suppose that X, X1, Xo,... are independent random variables with common
density
Az, for |z| > 1
foy=q B T L
0, otherwise.
The mean does not exist, in this case the Feller condition becomes
o0
P(X|>n) = —dz =1.
But g
" 50 as n— oo
nlogn
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In other words, a weak law exists, but, with another normalization.
Motivated by this example, Gut [2] provided the following general Kolmogorov-Feller weak

law of large numbers.

Theorem 1.3 Let X, X1, X5, ... bei.i.d. random variables with partial sums S,,,n > 1. Further,
let b(z) be an increasing and regular varying function at infinity with index 1/p for some p € (0, 1].
Finally, set b, = b(n),n > 1. Then
Sp —nEXI(|X| <by)
bn
if and only if nP(|X| > b,) — 0 as n — oo.

P
=0 as n— oo

Motivated by Theorem 1.3, we provide the following more general Kolmogorov-Feller type
weak law of large numbers—Theorems 2.4 and 2.5 which extend and improve Theorem 1.3.

A finite family of random variables {X;,1 < i < n} is said to be negatively associated (NA)
if for every pair of disjoint subsets A and B of {1,2,...,n},

COV(fl(Xiai S A)v.fQ(va.] S B)) S 07

whenever f; and fo are coordinatewise increasing and such that the covariance exists. An
infinite family of random variables {X;,7 > 1} is NA if for every positive integer n > 2, {X;,1 <
i < n} is NA. This definition was introduced by Alam and Saxena [3] and carefully studied
by Block et al.[4] and Joag-Dev and Proschan [5]. NA sequences have many good properties
and extensive applications in multivariate statistical analysis and reliability theory. We refer
to Joag-Dev and Proschan [5] for fundamental properties, Matula [6] for the Kolmogorov type
strong law of large numbers and the three series theorem, Su et al. [7] for a moment inequality,
a weak invariance principle and an example to show that there exists infinite families of non-
degenerate non-independent strictly stationary NA random variables, Shao [8] for the Rosenthal
type maximal inequality and the Kolmogorov exponential inequality, Qiu and Yang [9] for strong
laws of large numbers, and so on.

Throughout this paper, we assume that {X, X,,,n > 1} is a sequence of identically dis-
tributed random variables, {k,,n > 1} is a sequence of positive integers such that lim, _, k, =
00, Sk, = Zf;l X;, C always stands for a positive constant which may differ from one place to

another.

2. Main results and proofs
In order to prove the main result of this paper, we present the following Lemmas:

Lemma 2.1 Let {X, X,,,n > 1} be a sequence of identically distributed NA random variables.
Then for any t > 0
< — _ .
nP(|X|>t) < —2In(1 P(lrél]agn|X]| > t)). (2.1)

x

Proof Since 1 —z < e™", we have

P(max X; >¢)=1—P(max X; <t)=1-P(X; <t, Xy, <t,....X, <t)
1<5<n 1<5<n
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21_ﬁP(Xj <t)=1-{P(X <0)}"
=1- {1 —P(X >1)}" > 1 —exp{-—nP(X > 1)},

therefore nP(X > t) < —In(1 — P(maxi<j<, X; > t)). Replacing the X; by —X; and repeating
the above argument will establish
_ < _ _ —-X. )
nP(-X >t) < —In(1 P(lrgnjaégn X; > t))
Hence, (2.1) holds. O

Lemma 2.2 Let X, Xy, Xo,..., X, be identically distributed NA random variables. Then for
anyt >0

P(max |5] > ) > 1~ e~ 2nPUX]>20), (2.2)

Proof By Lemma 2.1 and P(maxi<;<n |Sj| > t) > P(maxi<j<n | X;| > 2t), (2.2) holds. O

Lemma 2.3 Let X, X1, Xo,..., X, be symmetric i.i.d. random variables. Then for any t > 0

1

P(|S,| > t) > %(1 — e P(XI>0), (2.3)

Proof Note that independent random variables are NA random variables, by Lemma 2.1 and
5.7.b of [10], (2.3) holds. O

Now we present the main result of this paper.

Theorem 2.4 Let {X, X,,,n > 1} be a sequence of identically distributed NA random variables,
{bn,n > 1} be a sequence of increasing positive reals.

(i) The following statements are equivalent:

k,P(|X| > b,) -0 as n — oo, (2.4)
—maxlgfk" 1| 5 0asn — oo. (2.5)
(ii) If
B o), By Mo oq) 26)
n n =1 ¢

where by = 0, ko = 1, then (2.4), (2.5) and the following statement are equivalent:

Sj — JEXI(|X]| < bn)|
by

maxi<;j<k, P
== —0 as n— oo. (2.7)

Proof (i) (2.4)=(2.5) is obvious. By Lemma 2.1, we have that (2.5)=(2.4).
(ii) (2.4)=(2.7). For 1 < j < k,,n > 1, set

Y™ = bl (X; < ~by) + XG1(1X;] < ba) + b I(X; > by).
Note that for Ve > 0

(1g}zg}§ |5j = JEXI(|X] < bn)| > ebn)
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:(&nax |S; — jEXI(|X]| <by)| > eb, and |X;| <b, forall i<k,)U
<<

(&nax |S; —jEXI(|X]| <by)| > ¢eb, and |X;| > b, for at least one i € {1,2,...,k,})

J
C (ér}%’;in > (V" — Y™ — b, P(X; < —by) + by P(X; > bn))’ > ebn)u
kn
(UJaxil > b).
=1
By (2.4)
kn kn
P( x| > bn)> <3 P(Xi| > ba) = ku P(IX| > by) = 0 as 0 — 0o,

=1 =1

Since Yl(") - EYI(")7 YQ(n) - EY2(n), cee Yk(:) - EYk(:) are NA random variables for every n > 1,
by (2.4), Theorem 2 of Shao [8], (2.6) and Toeplitz Lemma [11], for n large enough, we have

P( max
1<5<kn
=1

(V™ — BY™ — b, P(X; < —by) + b, P(X; > bn))‘ > sbn>

J
(n) (n)
< P(lggg}in Z; (v - Ry, )‘ ¥ Enbp P(IX] > by) > ebn)
J
< P max |3 (" = BY")| > eb,/2)
15 <k | &

< de ‘Qb‘QZE\Y (m)2 <c {E\X|2 (1X| < by) + b2 P(IX] > by)}
=1

kn
=05 ZE|X\21(bi_1 < |X| < b))+ Ck, P(IX| > by)
n =1

k n
< Oy Y VHP(X] > bimy) = P(X] > bi)} + Cha P(IX] > bn)
no=1
kn <o
<Cb2 (b7 — JP(|X| > bi—1) + Ck, P(|X| > by)
i=1
N )
—C Tkl 1P(IX| > bi—1) + Ck, P(|X| > b,) = 0, n— oo.
i=1 i—1
Therefore, (2.7) holds.
(2.7)=(2.4). By Lemma 2.2 and P(|X — m(X)| > ¢) < 4P(|X — a| > ¢/2) for every
constant a and ¢ > 0, we have
P( max |S; — JEXI(X] <by)| > eby) > 1~ e~ 3Fn PUX—EXI(|X|<bn)|>2¢bn)
1<5<k,

— 1k, P(|X|>4eby, X
> 1 — ¢ Bk P(X|>debutm(X)))

where m(X) denotes the median of X. Therefore, (2.4) holds by (2.7). O
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Theorem 2.5 Let {X,X,,,n > 1} be a sequence of i.i.d. random variables, {b,,n > 1} be a
sequence of increasing positive reals. Then
(i) (2.4) and (2.5) are equivalent.
(ii) If (2.6) holds, then (2.4), (2.5), (2.7) and the following statement are equivalent:
St — kn EXI(|X| < by)
bn

L oasn— oo (2.8)

Proof From the proof of Theorem 2.4, it is enough to prove that (2.7)==-(2.8) and (2.8)=-(2.4).
(2.7)==(2.8) is obvious. We prove that (2.8)=-(2.4). By the weak symmetrization inequalities

[10] and Lemma 2.3, we have

1 1

2P(|Sk, — kn EXI(|X| < by)| > €b,) > P(IS{ | > 2eby,)
> 7(1 _ eféknP(|XS\>25bn)) > 7(1 _ ef%knP(lX\>25bn+|m(X)\))
- 2

)

2

where X denotes the symmetrized version of X, S;fn =X+ X5+ + X,fn, m(X) denotes the
median of X. Therefore, (2.4) holds by (2.8). O

Remark 2.6 Suppose that b(z) is an increasing and regular varying function at infinity with
index 1/p for some p € (0,1], and set b, = b(n),k, = n,n > 1. Then (2.6) holds. Therefore,
Theorem 1.3 is obtained from Theorem 2.5.

We present two examples to illustrate Theorem 2.5.

Example 2.7 In Example 1.2, we take b, = n, k, = [\/n], where [z] denotes the greatest integer
not exceeding x. Thus,

knP(|X|>bn)[\/ﬁ]/ooxl2dx[\{;n]%()asn%oo

n

and % = o(1) and

kn = 0F b7y _ [V 2 V7] <
- ¢ Lt 3 1 <4 < 4.
2 kg - o { +;W—1]} n? ;‘ﬁ*

Therefore, by Theorem 2.5, we have
maxlgjg[\/ﬁ] |SJ —_]EXI(|X| S n)|

n

P
—0asn — oo.

Example 2.8 Suppose that X, X7, Xs,... are independent random variables with common

density

n 2
flz) = ign i))s, for x> 3,
0, otherwise.

The mean does not exist. Let k, = n. If we take b, = b(n),n > 1, where b(z) is an arbitrary

increasing and regular varying function with index 1/p for some p € (0, 1], then

< 2(In 3)? n
nP(|X]| > b,) = n/b J;(lnm)?’dx = C(lnbn)Q — 00 as n — 00,
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therefore, in this case, by Theorem 1.3
Sp —nEXI(|X|<b,) p
A -+ 0 as n — oo.
n

But, if we take b(x) = exp (z), b, = b(n), then

> 2(In 3)?2 1
nP(|X|>bn):n/ ﬂdx:Cf%Oasnﬁoo
b, r(nwz)3 n

and % = 4= =o(1). Since f(z) = e”/x* x € [2,00) is an increasing function, we have

ko N~ b7 =07, n b3 b3 by by
Bl b w2 tas Tt oy a1l
n b3 b2 b2 b2
<4224 73 4. n—l n
AR s s o
n b2 b2
<4 fn g n 17.
- b%{n+n—1}<

Therefore, by Theorem 2.5, we have

maxigj<a |5 — JEXI(X[<eMl B o0

en

In other words, a weak law exists, but, with another normalization.
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