
Journal of Mathematical Research with Applications

Mar., 2015, Vol. 35, No. 2, pp. 223–228

DOI:10.3770/j.issn:2095-2651.2015.02.013

Http://jmre.dlut.edu.cn

A Note on the Kolmogorov-Feller Weak Law of
Large Numbers

Yanchun YI1, Dehua QIU2,∗

1. Department of Mathematics and Computional Science, Hengyang Normal University,

Hunan 421008, P. R. China;

2. School of Mathematics and Statistics, Guangdong University of Finance and Economics,

Guangdong 510320, P. R. China

Abstract In this paper, the Kolmogorov-Feller type weak law of large numbers are obtained,

which extend and improve the related known works in the literature.

Keywords Kolmogorov-Feller type weak law of large numbers; negatively associated random

variables; independent identically distributed random variables

MR(2010) Subject Classification 60F15

1. Introduction

The celebrated Kolmogorov-Feller weak law of large numbers (WLLN) provides a necessary

and sufficient condition in the i.i.d. case, the point being that the mean does not exist.

Theorem 1.1 ([1, VII.7]) Let X,X1, X2, . . . be independent identically distributed (i.i.d.) ran-

dom variables with partial sums Sn =
∑n

i=1 Xi, n ≥ 1. Then

Sn − nEXI(|X| ≤ n)

n

P→ 0 as n → ∞

if and only if xP (|X| > x) → 0 as x → ∞.

Gut [2] gave the following example:

Example 1.2 Suppose that X,X1, X2, . . . are independent random variables with common

density

f(x) =

{
1

2x2 , for |x| > 1,

0, otherwise.

The mean does not exist, in this case the Feller condition becomes

nP (|X| > n) = n

∫ ∞

n

1

x2
dx = 1.

But
Sn

n log n

P→ 0 as n → ∞.
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In other words, a weak law exists, but, with another normalization.

Motivated by this example, Gut [2] provided the following general Kolmogorov-Feller weak

law of large numbers.

Theorem 1.3 Let X,X1, X2, . . . be i.i.d. random variables with partial sums Sn, n ≥ 1. Further,

let b(x) be an increasing and regular varying function at infinity with index 1/ρ for some ρ ∈ (0, 1].

Finally, set bn = b(n), n ≥ 1. Then

Sn − nEXI(|X| ≤ bn)

bn

P→ 0 as n → ∞

if and only if nP (|X| > bn) → 0 as n → ∞.

Motivated by Theorem 1.3, we provide the following more general Kolmogorov-Feller type

weak law of large numbers–Theorems 2.4 and 2.5 which extend and improve Theorem 1.3.

A finite family of random variables {Xi, 1 ≤ i ≤ n} is said to be negatively associated (NA)

if for every pair of disjoint subsets A and B of {1, 2, . . . , n},

Cov(f1(Xi, i ∈ A), f2(Xj , j ∈ B)) ≤ 0,

whenever f1 and f2 are coordinatewise increasing and such that the covariance exists. An

infinite family of random variables {Xi, i ≥ 1} is NA if for every positive integer n ≥ 2, {Xi, 1 ≤
i ≤ n} is NA. This definition was introduced by Alam and Saxena [3] and carefully studied

by Block et al. [4] and Joag-Dev and Proschan [5]. NA sequences have many good properties

and extensive applications in multivariate statistical analysis and reliability theory. We refer

to Joag-Dev and Proschan [5] for fundamental properties, Matula [6] for the Kolmogorov type

strong law of large numbers and the three series theorem, Su et al. [7] for a moment inequality,

a weak invariance principle and an example to show that there exists infinite families of non-

degenerate non-independent strictly stationary NA random variables, Shao [8] for the Rosenthal

type maximal inequality and the Kolmogorov exponential inequality, Qiu and Yang [9] for strong

laws of large numbers, and so on.

Throughout this paper, we assume that {X,Xn, n ≥ 1} is a sequence of identically dis-

tributed random variables, {kn, n ≥ 1} is a sequence of positive integers such that limn→∞ kn =

∞, Skn =
∑kn

i=1 Xi, C always stands for a positive constant which may differ from one place to

another.

2. Main results and proofs

In order to prove the main result of this paper, we present the following Lemmas:

Lemma 2.1 Let {X,Xn, n ≥ 1} be a sequence of identically distributed NA random variables.

Then for any t > 0

nP (|X| > t) ≤ −2 ln
(
1− P ( max

1≤j≤n
|Xj | > t)

)
. (2.1)

Proof Since 1− x ≤ e−x, we have

P ( max
1≤j≤n

Xj > t) = 1− P ( max
1≤j≤n

Xj ≤ t) = 1− P (X1 ≤ t,X2 ≤ t, . . . , Xn ≤ t)
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≥ 1−
n∏

j=1

P (Xj ≤ t) = 1− {P (X ≤ t)}n

= 1− {1− P (X > t)}n ≥ 1− exp{−nP (X > t)},

therefore nP (X > t) ≤ − ln(1−P (max1≤j≤n Xj > t)). Replacing the Xj by −Xj and repeating

the above argument will establish

nP (−X > t) ≤ − ln
(
1− P ( max

1≤j≤n
−Xj > t)

)
.

Hence, (2.1) holds. �

Lemma 2.2 Let X,X1, X2, . . . , Xn be identically distributed NA random variables. Then for

any t > 0

P ( max
1≤j≤n

|Sj | > t) ≥ 1− e−
1
2nP (|X|>2t). (2.2)

Proof By Lemma 2.1 and P (max1≤j≤n |Sj | > t) ≥ P (max1≤j≤n |Xj | > 2t), (2.2) holds. �

Lemma 2.3 Let X,X1, X2, . . . , Xn be symmetric i.i.d. random variables. Then for any t > 0

P (|Sn| > t) ≥ 1

2

(
1− e−

1
2nP (|X|>t)

)
. (2.3)

Proof Note that independent random variables are NA random variables, by Lemma 2.1 and

5.7.b of [10], (2.3) holds. �
Now we present the main result of this paper.

Theorem 2.4 Let {X,Xn, n ≥ 1} be a sequence of identically distributed NA random variables,

{bn, n ≥ 1} be a sequence of increasing positive reals.

(i) The following statements are equivalent:

knP (|X| > bn) → 0 as n → ∞, (2.4)

max1≤j≤kn |Xj |
bn

P→ 0 as n → ∞. (2.5)

(ii) If

kn
b2n

= o(1),
kn
b2n

n∑
i=1

b2i − b2i−1

ki−1
= O(1), (2.6)

where b0 = 0, k0 = 1, then (2.4), (2.5) and the following statement are equivalent:

max1≤j≤kn |Sj − jEXI(|X| ≤ bn)|
bn

P→ 0 as n → ∞. (2.7)

Proof (i) (2.4)=⇒(2.5) is obvious. By Lemma 2.1, we have that (2.5)=⇒(2.4).

(ii) (2.4)=⇒(2.7). For 1 ≤ j ≤ kn, n ≥ 1, set

Y
(n)
j = −bnI(Xj < −bn) +XjI(|Xj | ≤ bn) + bnI(Xj > bn).

Note that for ∀ε > 0

( max
1≤j≤kn

|Sj − jEXI(|X| ≤ bn)| > εbn)
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= ( max
1≤j≤kn

|Sj − jEXI(|X| ≤ bn)| > εbn and |Xi| ≤ bn for all i ≤ kn)∪

( max
1≤j≤kn

|Sj − jEXI(|X| ≤ bn)| > εbn and |Xi| > bn for at least one i ∈ {1, 2, . . . , kn})

⊆
(

max
1≤j≤kn

∣∣∣ j∑
i=1

(
Y

(n)
i − EY

(n)
i − bnP (Xi < −bn) + bnP (Xi > bn)

)∣∣∣ > εbn

)
∪

( kn∪
i=1

(|Xi| > bn)
)
.

By (2.4)

P
( kn∪

i=1

(|Xi| > bn)
)
≤

kn∑
i=1

P (|Xi| > bn) = knP (|X| > bn) → 0 as n → ∞.

Since Y
(n)
1 − EY

(n)
1 , Y

(n)
2 − EY

(n)
2 , . . . , Y

(n)
kn

− EY
(n)
kn

are NA random variables for every n ≥ 1,

by (2.4), Theorem 2 of Shao [8], (2.6) and Toeplitz Lemma [11], for n large enough, we have

P
(

max
1≤j≤kn

∣∣∣ j∑
i=1

(
Y

(n)
i − EY

(n)
i − bnP (Xi < −bn) + bnP (Xi > bn)

)∣∣∣ > εbn

)
≤ P

(
max

1≤j≤kn

∣∣∣ j∑
i=1

(
Y

(n)
i − EY

(n)
i

)∣∣∣+ knbnP (|X| > bn) > εbn

)
≤ P

(
max

1≤j≤kn

∣∣∣ j∑
i=1

(
Y

(n)
i − EY

(n)
i

)∣∣∣ > εbn/2
)

≤ 4ε−2b−2
n

kn∑
i=1

E|Y (n)
i |2 ≤ C

kn
b2n

{
E|X|2I(|X| ≤ bn) + b2nP (|X| > bn)

}
= C

kn
b2n

n∑
i=1

E|X|2I(bi−1 < |X| ≤ bi) + CknP (|X| > bn)

≤ C
kn
b2n

n∑
i=1

b2i {P (|X| > bi−1)− P (|X| > bi)}+ CknP (|X| > bn)

≤ C
kn
b2n

n∑
i=1

(b2i − b2i−1)P (|X| > bi−1) + CknP (|X| > bn)

= C
kn
b2n

n∑
i=1

b2i − b2i−1

ki−1
ki−1P (|X| > bi−1) + CknP (|X| > bn) → 0, n → ∞.

Therefore, (2.7) holds.

(2.7)=⇒(2.4). By Lemma 2.2 and P (|X − m(X)| > ε) ≤ 4P (|X − a| > ε/2) for every

constant a and ε > 0, we have

P ( max
1≤j≤kn

|Sj − jEXI(|X| ≤ bn)| > εbn) ≥ 1− e−
1
2knP (|X−EXI(|X|≤bn)|>2εbn)

≥ 1− e−
1
8knP (|X|>4εbn+|m(X)|),

where m(X) denotes the median of X. Therefore, (2.4) holds by (2.7). �
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Theorem 2.5 Let {X,Xn, n ≥ 1} be a sequence of i.i.d. random variables, {bn, n ≥ 1} be a

sequence of increasing positive reals. Then

(i) (2.4) and (2.5) are equivalent.

(ii) If (2.6) holds, then (2.4), (2.5), (2.7) and the following statement are equivalent:

Skn − knEXI(|X| ≤ bn)

bn

P→ 0 as n → ∞. (2.8)

Proof From the proof of Theorem 2.4, it is enough to prove that (2.7)=⇒(2.8) and (2.8)=⇒(2.4).

(2.7)=⇒(2.8) is obvious. We prove that (2.8)=⇒(2.4). By the weak symmetrization inequalities

[10] and Lemma 2.3, we have

2P (|Skn − knEXI(|X| ≤ bn)| > εbn) ≥ P (|SS
kn
| > 2εbn)

≥ 1

2

(
1− e−

1
2knP (|XS |>2εbn)

)
≥ 1

2

(
1− e−

1
4knP (|X|>2εbn+|m(X)|)),

where XS denotes the symmetrized version of X,SS
kn

= XS
1 +XS

2 + · · ·+XS
kn
,m(X) denotes the

median of X. Therefore, (2.4) holds by (2.8). �

Remark 2.6 Suppose that b(x) is an increasing and regular varying function at infinity with

index 1/ρ for some ρ ∈ (0, 1], and set bn = b(n), kn = n, n ≥ 1. Then (2.6) holds. Therefore,

Theorem 1.3 is obtained from Theorem 2.5.

We present two examples to illustrate Theorem 2.5.

Example 2.7 In Example 1.2, we take bn = n, kn = [
√
n], where [x] denotes the greatest integer

not exceeding x. Thus,

knP (|X| > bn) = [
√
n ]

∫ ∞

n

1

x2
dx =

[
√
n ]

n
→ 0 as n → ∞

and kn

b2n
= o(1) and

kn
b2n

n∑
i=1

b2i − b2i−1

ki−1
≤ [

√
n ]

n2

{
1 +

n∑
i=2

2i

[
√
i− 1]

}
≤ 4

[
√
n]

n2

n∑
i=1

√
i ≤ 4.

Therefore, by Theorem 2.5, we have

max1≤j≤[
√
n] |Sj − jEXI(|X| ≤ n)|

n

P→ 0 as n → ∞.

Example 2.8 Suppose that X,X1, X2, . . . are independent random variables with common

density

f(x) =

{
2(ln 3)2

x(ln x)3 , for x > 3,

0, otherwise.

The mean does not exist. Let kn = n. If we take bn = b(n), n ≥ 1, where b(x) is an arbitrary

increasing and regular varying function with index 1/ρ for some ρ ∈ (0, 1], then

nP (|X| > bn) = n

∫ ∞

bn

2(ln 3)2

x(lnx)3
dx = C

n

(ln bn)2
→ ∞ as n → ∞,
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therefore, in this case, by Theorem 1.3

Sn − nEXI(|X| ≤ bn)

bn

P9 0 as n → ∞.

But, if we take b(x) = exp (x), bn = b(n), then

nP (|X| > bn) = n

∫ ∞

bn

2(ln 3)2

x(lnx)3
dx = C

1

n
→ 0 as n → ∞

and kn

b2n
= n

e2n = o(1). Since f(x) = ex/x2, x ∈ [2,∞) is an increasing function, we have

kn
b2n

n∑
i=1

b2i − b2i−1

ki−1
=

n

b2n

{b22
2

+
b23
2 · 3

+ · · ·+
b2n−1

(n− 1)(n− 2)
+

b2n
n− 1

}
≤4

n

b2n

{ b22
22

+
b23
32

+ · · ·+
b2n−1

(n− 1)2
+

b2n
n− 1

}
≤4

n

b2n

{b2n
n

+
b2n

n− 1

}
< 17.

Therefore, by Theorem 2.5, we have

max1≤j≤n |Sj − jEXI(|X| ≤ en)|
en

P→ 0 as n → ∞.

In other words, a weak law exists, but, with another normalization.
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