A Note on the Kolmogorov-Feller Weak Law of Large Numbers

Yanchun YI 1, Dehua QIU ${ }^{2, *}$
1. Department of Mathematics and Computional Science, Hengyang Normal University, Hunan 421008, P. R. China;
2. School of Mathematics and Statistics, Guangdong University of Finance and Economics, Guangdong 510320, P. R. China

Abstract

In this paper, the Kolmogorov-Feller type weak law of large numbers are obtained, which extend and improve the related known works in the literature.

Keywords Kolmogorov-Feller type weak law of large numbers; negatively associated random variables; independent identically distributed random variables

MR(2010) Subject Classification 60F15

1. Introduction

The celebrated Kolmogorov-Feller weak law of large numbers (WLLN) provides a necessary and sufficient condition in the i.i.d. case, the point being that the mean does not exist.

Theorem 1.1 ([1, VII.7]) Let X, X_{1}, X_{2}, \ldots be independent identically distributed (i.i.d.) random variables with partial sums $S_{n}=\sum_{i=1}^{n} X_{i}, n \geq 1$. Then

$$
\frac{S_{n}-n E X I(|X| \leq n)}{n} \xrightarrow{P} 0 \text { as } n \rightarrow \infty
$$

if and only if $x P(|X|>x) \rightarrow 0$ as $x \rightarrow \infty$.
Gut [2] gave the following example:
Example 1.2 Suppose that X, X_{1}, X_{2}, \ldots are independent random variables with common density

$$
f(x)= \begin{cases}\frac{1}{2 x^{2}}, & \text { for }|x|>1 \\ 0, & \text { otherwise }\end{cases}
$$

The mean does not exist, in this case the Feller condition becomes

$$
n P(|X|>n)=n \int_{n}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x=1
$$

But

$$
\frac{S_{n}}{n \log n} \xrightarrow{P} 0 \text { as } n \rightarrow \infty .
$$

[^0]In other words, a weak law exists, but, with another normalization.
Motivated by this example, Gut [2] provided the following general Kolmogorov-Feller weak law of large numbers.

Theorem 1.3 Let X, X_{1}, X_{2}, \ldots be i.i.d. random variables with partial sums $S_{n}, n \geq 1$. Further, let $b(x)$ be an increasing and regular varying function at infinity with index $1 / \rho$ for some $\rho \in(0,1]$. Finally, set $b_{n}=b(n), n \geq 1$. Then

$$
\frac{S_{n}-n E X I\left(|X| \leq b_{n}\right)}{b_{n}} \xrightarrow{P} 0 \text { as } n \rightarrow \infty
$$

if and only if $n P\left(|X|>b_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Motivated by Theorem 1.3, we provide the following more general Kolmogorov-Feller type weak law of large numbers-Theorems 2.4 and 2.5 which extend and improve Theorem 1.3.

A finite family of random variables $\left\{X_{i}, 1 \leq i \leq n\right\}$ is said to be negatively associated (NA) if for every pair of disjoint subsets A and B of $\{1,2, \ldots, n\}$,

$$
\operatorname{Cov}\left(f_{1}\left(X_{i}, i \in A\right), f_{2}\left(X_{j}, j \in B\right)\right) \leq 0,
$$

whenever f_{1} and f_{2} are coordinatewise increasing and such that the covariance exists. An infinite family of random variables $\left\{X_{i}, i \geq 1\right\}$ is NA if for every positive integer $n \geq 2,\left\{X_{i}, 1 \leq\right.$ $i \leq n\}$ is NA. This definition was introduced by Alam and Saxena [3] and carefully studied by Block et al. [4] and Joag-Dev and Proschan [5]. NA sequences have many good properties and extensive applications in multivariate statistical analysis and reliability theory. We refer to Joag-Dev and Proschan [5] for fundamental properties, Matula [6] for the Kolmogorov type strong law of large numbers and the three series theorem, Su et al. $[7]$ for a moment inequality, a weak invariance principle and an example to show that there exists infinite families of nondegenerate non-independent strictly stationary NA random variables, Shao [8] for the Rosenthal type maximal inequality and the Kolmogorov exponential inequality, Qiu and Yang [9] for strong laws of large numbers, and so on.

Throughout this paper, we assume that $\left\{X, X_{n}, n \geq 1\right\}$ is a sequence of identically distributed random variables, $\left\{k_{n}, n \geq 1\right\}$ is a sequence of positive integers such that $\lim _{n \rightarrow \infty} k_{n}=$ $\infty, S_{k_{n}}=\sum_{i=1}^{k_{n}} X_{i}, C$ always stands for a positive constant which may differ from one place to another.

2. Main results and proofs

In order to prove the main result of this paper, we present the following Lemmas:
Lemma 2.1 Let $\left\{X, X_{n}, n \geq 1\right\}$ be a sequence of identically distributed NA random variables. Then for any $t>0$

$$
\begin{equation*}
n P(|X|>t) \leq-2 \ln \left(1-P\left(\max _{1 \leq j \leq n}\left|X_{j}\right|>t\right)\right) \tag{2.1}
\end{equation*}
$$

Proof Since $1-x \leq e^{-x}$, we have

$$
P\left(\max _{1 \leq j \leq n} X_{j}>t\right)=1-P\left(\max _{1 \leq j \leq n} X_{j} \leq t\right)=1-P\left(X_{1} \leq t, X_{2} \leq t, \ldots, X_{n} \leq t\right)
$$

$$
\begin{aligned}
& \geq 1-\prod_{j=1}^{n} P\left(X_{j} \leq t\right)=1-\{P(X \leq t)\}^{n} \\
& =1-\{1-P(X>t)\}^{n} \geq 1-\exp \{-n P(X>t)\}
\end{aligned}
$$

therefore $n P(X>t) \leq-\ln \left(1-P\left(\max _{1 \leq j \leq n} X_{j}>t\right)\right)$. Replacing the X_{j} by $-X_{j}$ and repeating the above argument will establish

$$
n P(-X>t) \leq-\ln \left(1-P\left(\max _{1 \leq j \leq n}-X_{j}>t\right)\right)
$$

Hence, (2.1) holds.
Lemma 2.2 Let $X, X_{1}, X_{2}, \ldots, X_{n}$ be identically distributed NA random variables. Then for any $t>0$

$$
\begin{equation*}
P\left(\max _{1 \leq j \leq n}\left|S_{j}\right|>t\right) \geq 1-e^{-\frac{1}{2} n P(|X|>2 t)} \tag{2.2}
\end{equation*}
$$

Proof By Lemma 2.1 and $P\left(\max _{1 \leq j \leq n}\left|S_{j}\right|>t\right) \geq P\left(\max _{1 \leq j \leq n}\left|X_{j}\right|>2 t\right)$, (2.2) holds.
Lemma 2.3 Let $X, X_{1}, X_{2}, \ldots, X_{n}$ be symmetric i.i.d. random variables. Then for any $t>0$

$$
\begin{equation*}
P\left(\left|S_{n}\right|>t\right) \geq \frac{1}{2}\left(1-e^{-\frac{1}{2} n P(|X|>t)}\right) \tag{2.3}
\end{equation*}
$$

Proof Note that independent random variables are NA random variables, by Lemma 2.1 and 5.7.b of [10], (2.3) holds.

Now we present the main result of this paper.
Theorem 2.4 Let $\left\{X, X_{n}, n \geq 1\right\}$ be a sequence of identically distributed NA random variables, $\left\{b_{n}, n \geq 1\right\}$ be a sequence of increasing positive reals.
(i) The following statements are equivalent:

$$
\begin{align*}
& k_{n} P\left(|X|>b_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty, \tag{2.4}\\
& \frac{\max _{1 \leq j \leq k_{n}}\left|X_{j}\right|}{b_{n}} \xrightarrow{P} 0 \text { as } n \rightarrow \infty . \tag{2.5}
\end{align*}
$$

(ii) If

$$
\begin{equation*}
\frac{k_{n}}{b_{n}^{2}}=o(1), \quad \frac{k_{n}}{b_{n}^{2}} \sum_{i=1}^{n} \frac{b_{i}^{2}-b_{i-1}^{2}}{k_{i-1}}=O(1) \tag{2.6}
\end{equation*}
$$

where $b_{0}=0, k_{0}=1$, then (2.4), (2.5) and the following statement are equivalent:

$$
\begin{equation*}
\frac{\max _{1 \leq j \leq k_{n}}\left|S_{j}-j E X I\left(|X| \leq b_{n}\right)\right|}{b_{n}} \xrightarrow{P} 0 \text { as } n \rightarrow \infty . \tag{2.7}
\end{equation*}
$$

Proof (i) $(2.4) \Longrightarrow(2.5)$ is obvious. By Lemma 2.1, we have that $(2.5) \Longrightarrow(2.4)$.
(ii) $(2.4) \Longrightarrow(2.7)$. For $1 \leq j \leq k_{n}, n \geq 1$, set

$$
Y_{j}^{(n)}=-b_{n} I\left(X_{j}<-b_{n}\right)+X_{j} I\left(\left|X_{j}\right| \leq b_{n}\right)+b_{n} I\left(X_{j}>b_{n}\right)
$$

Note that for $\forall \varepsilon>0$

$$
\left(\max _{1 \leq j \leq k_{n}}\left|S_{j}-j E X I\left(|X| \leq b_{n}\right)\right|>\varepsilon b_{n}\right)
$$

$$
\begin{aligned}
= & \left(\max _{1 \leq j \leq k_{n}}\left|S_{j}-j E X I\left(|X| \leq b_{n}\right)\right|>\varepsilon b_{n} \text { and }\left|X_{i}\right| \leq b_{n} \text { for all } i \leq k_{n}\right) \cup \\
& \left(\max _{1 \leq j \leq k_{n}}\left|S_{j}-j E X I\left(|X| \leq b_{n}\right)\right|>\varepsilon b_{n} \text { and }\left|X_{i}\right|>b_{n} \text { for at least one } i \in\left\{1,2, \ldots, k_{n}\right\}\right) \\
\subseteq & \left(\max _{1 \leq j \leq k_{n}}\left|\sum_{i=1}^{j}\left(Y_{i}^{(n)}-E Y_{i}^{(n)}-b_{n} P\left(X_{i}<-b_{n}\right)+b_{n} P\left(X_{i}>b_{n}\right)\right)\right|>\varepsilon b_{n}\right) \cup \\
& \left(\bigcup_{i=1}^{k_{n}}\left(\left|X_{i}\right|>b_{n}\right)\right) .
\end{aligned}
$$

By (2.4)

$$
P\left(\bigcup_{i=1}^{k_{n}}\left(\left|X_{i}\right|>b_{n}\right)\right) \leq \sum_{i=1}^{k_{n}} P\left(\left|X_{i}\right|>b_{n}\right)=k_{n} P\left(|X|>b_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Since $Y_{1}^{(n)}-E Y_{1}^{(n)}, Y_{2}^{(n)}-E Y_{2}^{(n)}, \ldots, Y_{k_{n}}^{(n)}-E Y_{k_{n}}^{(n)}$ are NA random variables for every $n \geq 1$, by (2.4), Theorem 2 of Shao [8], (2.6) and Toeplitz Lemma [11], for n large enough, we have

$$
\begin{aligned}
& P\left(\max _{1 \leq j \leq k_{n}}\left|\sum_{i=1}^{j}\left(Y_{i}^{(n)}-E Y_{i}^{(n)}-b_{n} P\left(X_{i}<-b_{n}\right)+b_{n} P\left(X_{i}>b_{n}\right)\right)\right|>\varepsilon b_{n}\right) \\
& \quad \leq P\left(\max _{1 \leq j \leq k_{n}}\left|\sum_{i=1}^{j}\left(Y_{i}^{(n)}-E Y_{i}^{(n)}\right)\right|+k_{n} b_{n} P\left(|X|>b_{n}\right)>\varepsilon b_{n}\right) \\
& \quad \leq P\left(\max _{1 \leq j \leq k_{n}}\left|\sum_{i=1}^{j}\left(Y_{i}^{(n)}-E Y_{i}^{(n)}\right)\right|>\varepsilon b_{n} / 2\right) \\
& \quad \leq 4 \varepsilon^{-2} b_{n}^{-2} \sum_{i=1}^{k_{n}} E\left|Y_{i}^{(n)}\right|^{2} \leq C \frac{k_{n}}{b_{n}^{2}}\left\{E|X|^{2} I\left(|X| \leq b_{n}\right)+b_{n}^{2} P\left(|X|>b_{n}\right)\right\} \\
& \quad=C \frac{k_{n}}{b_{n}^{2}} \sum_{i=1}^{n} E|X|^{2} I\left(b_{i-1}<|X| \leq b_{i}\right)+C k_{n} P\left(|X|>b_{n}\right) \\
& \quad \leq C \frac{k_{n}}{b_{n}^{2}} \sum_{i=1}^{n} b_{i}^{2}\left\{P\left(|X|>b_{i-1}\right)-P\left(|X|>b_{i}\right)\right\}+C k_{n} P\left(|X|>b_{n}\right) \\
& \quad \leq C \frac{k_{n}}{b_{n}^{2}} \sum_{i=1}^{n}\left(b_{i}^{2}-b_{i-1}^{2}\right) P\left(|X|>b_{i-1}\right)+C k_{n} P\left(|X|>b_{n}\right) \\
& \quad=C \frac{k_{n}}{b_{n}^{2}} \sum_{i=1}^{n} \frac{b_{i}^{2}-b_{i-1}^{2}}{k_{i-1}} k_{i-1} P\left(|X|>b_{i-1}\right)+C k_{n} P\left(|X|>b_{n}\right) \rightarrow 0, n \rightarrow \infty
\end{aligned}
$$

Therefore, (2.7) holds.
$(2.7) \Longrightarrow(2.4)$. By Lemma 2.2 and $P(|X-m(X)|>\varepsilon) \leq 4 P(|X-a|>\varepsilon / 2)$ for every constant a and $\varepsilon>0$, we have

$$
\begin{aligned}
& P\left(\max _{1 \leq j \leq k_{n}}\left|S_{j}-j E X I\left(|X| \leq b_{n}\right)\right|>\varepsilon b_{n}\right) \geq 1-e^{-\frac{1}{2} k_{n} P\left(\left|X-E X I\left(|X| \leq b_{n}\right)\right|>2 \varepsilon b_{n}\right)} \\
& \quad \geq 1-e^{-\frac{1}{8} k_{n} P\left(|X|>4 \varepsilon b_{n}+|m(X)|\right)},
\end{aligned}
$$

where $m(X)$ denotes the median of X. Therefore, (2.4) holds by (2.7).

Theorem 2.5 Let $\left\{X, X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. random variables, $\left\{b_{n}, n \geq 1\right\}$ be a sequence of increasing positive reals. Then
(i) (2.4) and (2.5) are equivalent.
(ii) If (2.6) holds, then (2.4), (2.5), (2.7) and the following statement are equivalent:

$$
\begin{equation*}
\frac{S_{k_{n}}-k_{n} E X I\left(|X| \leq b_{n}\right)}{b_{n}} \xrightarrow{P} 0 \text { as } n \rightarrow \infty . \tag{2.8}
\end{equation*}
$$

Proof From the proof of Theorem 2.4, it is enough to prove that $(2.7) \Longrightarrow(2.8)$ and $(2.8) \Longrightarrow(2.4)$. $(2.7) \Longrightarrow(2.8)$ is obvious. We prove that $(2.8) \Longrightarrow(2.4)$. By the weak symmetrization inequalities [10] and Lemma 2.3, we have

$$
\begin{aligned}
& 2 P\left(\left|S_{k_{n}}-k_{n} E X I\left(|X| \leq b_{n}\right)\right|>\varepsilon b_{n}\right) \geq P\left(\left|S_{k_{n}}^{S}\right|>2 \varepsilon b_{n}\right) \\
& \quad \geq \frac{1}{2}\left(1-e^{-\frac{1}{2} k_{n} P\left(\left|X^{S}\right|>2 \varepsilon b_{n}\right)}\right) \geq \frac{1}{2}\left(1-e^{-\frac{1}{4} k_{n} P\left(|X|>2 \varepsilon b_{n}+|m(X)|\right)}\right),
\end{aligned}
$$

where X^{S} denotes the symmetrized version of $X, S_{k_{n}}^{S}=X_{1}^{S}+X_{2}^{S}+\cdots+X_{k_{n}}^{S}, m(X)$ denotes the median of X. Therefore, (2.4) holds by (2.8).

Remark 2.6 Suppose that $b(x)$ is an increasing and regular varying function at infinity with index $1 / \rho$ for some $\rho \in(0,1]$, and set $b_{n}=b(n), k_{n}=n, n \geq 1$. Then (2.6) holds. Therefore, Theorem 1.3 is obtained from Theorem 2.5.

We present two examples to illustrate Theorem 2.5.
Example 2.7 In Example 1.2, we take $b_{n}=n, k_{n}=[\sqrt{n}]$, where $[x]$ denotes the greatest integer not exceeding x. Thus,

$$
k_{n} P\left(|X|>b_{n}\right)=[\sqrt{n}] \int_{n}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x=\frac{[\sqrt{n}]}{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

and $\frac{k_{n}}{b_{n}^{2}}=o(1)$ and

$$
\frac{k_{n}}{b_{n}^{2}} \sum_{i=1}^{n} \frac{b_{i}^{2}-b_{i-1}^{2}}{k_{i-1}} \leq \frac{[\sqrt{n}]}{n^{2}}\left\{1+\sum_{i=2}^{n} \frac{2 i}{[\sqrt{i-1}]}\right\} \leq 4 \frac{[\sqrt{n}]}{n^{2}} \sum_{i=1}^{n} \sqrt{i} \leq 4
$$

Therefore, by Theorem 2.5, we have

$$
\frac{\max _{1 \leq j \leq[\sqrt{ } n}\left|S_{j}-j E X I(|X| \leq n)\right|}{n} \xrightarrow{P} 0 \text { as } n \rightarrow \infty .
$$

Example 2.8 Suppose that X, X_{1}, X_{2}, \ldots are independent random variables with common density

$$
f(x)=\left\{\begin{array}{lc}
\frac{2(\ln 3)^{2}}{x(\ln x)^{3}}, & \text { for } x>3 \\
0, & \text { otherwise }
\end{array}\right.
$$

The mean does not exist. Let $k_{n}=n$. If we take $b_{n}=b(n), n \geq 1$, where $b(x)$ is an arbitrary increasing and regular varying function with index $1 / \rho$ for some $\rho \in(0,1]$, then

$$
n P\left(|X|>b_{n}\right)=n \int_{b_{n}}^{\infty} \frac{2(\ln 3)^{2}}{x(\ln x)^{3}} \mathrm{~d} x=C \frac{n}{\left(\ln b_{n}\right)^{2}} \rightarrow \infty \text { as } n \rightarrow \infty
$$

therefore, in this case, by Theorem 1.3

$$
\frac{S_{n}-n E X I\left(|X| \leq b_{n}\right)}{b_{n}} \stackrel{P}{\rightarrow} 0 \text { as } n \rightarrow \infty .
$$

But, if we take $b(x)=\exp (x), b_{n}=b(n)$, then

$$
n P\left(|X|>b_{n}\right)=n \int_{b_{n}}^{\infty} \frac{2(\ln 3)^{2}}{x(\ln x)^{3}} \mathrm{~d} x=C \frac{1}{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

and $\frac{k_{n}}{b_{n}^{2}}=\frac{n}{e^{2 n}}=o(1)$. Since $f(x)=e^{x} / x^{2}, x \in[2, \infty)$ is an increasing function, we have

$$
\begin{aligned}
\frac{k_{n}}{b_{n}^{2}} \sum_{i=1}^{n} \frac{b_{i}^{2}-b_{i-1}^{2}}{k_{i-1}} & =\frac{n}{b_{n}^{2}}\left\{\frac{b_{2}^{2}}{2}+\frac{b_{3}^{2}}{2 \cdot 3}+\cdots+\frac{b_{n-1}^{2}}{(n-1)(n-2)}+\frac{b_{n}^{2}}{n-1}\right\} \\
& \leq 4 \frac{n}{b_{n}^{2}}\left\{\frac{b_{2}^{2}}{2^{2}}+\frac{b_{3}^{2}}{3^{2}}+\cdots+\frac{b_{n-1}^{2}}{(n-1)^{2}}+\frac{b_{n}^{2}}{n-1}\right\} \\
& \leq 4 \frac{n}{b_{n}^{2}}\left\{\frac{b_{n}^{2}}{n}+\frac{b_{n}^{2}}{n-1}\right\}<17 .
\end{aligned}
$$

Therefore, by Theorem 2.5, we have

$$
\frac{\max _{1 \leq j \leq n}\left|S_{j}-j E X I\left(|X| \leq e^{n}\right)\right|}{e^{n}} \xrightarrow{P} 0 \text { as } n \rightarrow \infty .
$$

In other words, a weak law exists, but, with another normalization.
Acknowledgements We thank the referees for their time and comments.

References

[1] W. FELLER. An introduction to probability theory and its applications (II). Second edition, John Wiley \& Sons, Inc., New York-London-Sydney, 1971.
[2] A. GUT. An extension of the Kolmogorov-Feller weak law of large numbers with an application to the St. Petersburg game. J. Theoret. Probab., 2004, 17(3): 769-779.
[3] K. ALAM, K. M. L. SAXENA. Positive dependence in multivariate distributions. Comm. Statist. A-Theory Methods, 1981, 10(12): 1183-1196.
[4] H. W. BLOCK, T. H. SAVITS, M. SHAKED. Some concepts of negative dependence. Ann. Probab., 1982, 10(3): 765-772.
[5] K. JOAG-DEV, F. PROSCHAN. Negative association of random variables, with applications. Ann. Statist., 1983, 11(1): 286-295.
[6] P. MATULA. A note on the almost sure convergence of sums of negatively dependent random variables. Statist. Probab. Lett., 1992, 15(3): 209-213.
[7] Chun SU, Lincheng ZHAO, Yuebao WANG. Moment inequalities and weak convergence for negatively associated sequences. Sci. China Ser. A, 1997, 40(2): 172-182.
[8] Qiman SHAO. A comparison theorem on maximal inequalities between negatively associated and independent random variables. J. Theoret. Probab., 2000, 13(2): 343-356.
[9] Dehua QIU, Xiangqun YANG. Strong laws of large numbers for weighted sums of identically distributed NA random variables. J. Math. Res. Exposition, 2006, 26(4): 778-784.
[10] Zhengyan LIN, Zhidong BAI. Probability Inequalities. Science Press, Beijing, 2010.
[11] M. LOÈVE. Probability Theory (I). 4th ed. Springer-Verlag, New York, 1977.

[^0]: Received December 13, 2013; Accepted January 16, 2015
 Supported by the National Natural Science Foundation of China (Grant Nos. 11271161; 61300204).

 * Corresponding author

 E-mail address: qiudhua@sina.com (Dehua QIU)

