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Abstract We introduce a concept for the majorization order on monomials. With the help of
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1. Introduction

The first successive difference substitution algorithm (SDS) based on the matrix

An =


1 1 · · · 1

1
. . .

...
. . . 1

0 1


originates from proving homogeneous symmetric inequalities. It was developed by Yang in [1–3],

and improved subsequently in [4,5]. In particular, Yao established a new successive difference

substitution algorithm based on the matrix

Gn =


1 1

2 · · · 1
n

1
2

. . .
...

. . . 1
n

0 1
n

 .

His method is named as NEWTSDS, which has many interesting properties [5]. These results

illustrate that SDS may be an effective tool for solving many problems in real algebra.

However, it is still very hard to find necessary and/or sufficient conditions on the termination

of SDS and NEWTSDS. In this paper, we will study the termination of a general successive
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difference substitution algorithm (KSDS) by the majorization order on monomials. Our main

result is as follows:

Main result A necessary condition of positively terminating of KSDS for an input f is that,

for an arbitrary ordering of variables, every monomial of f with negative coefficient is majorized

by at least one monomial of f with positive coefficient.

The paper is organized as follows. In Section 2, we introduce KSDS and present some

background materials. In Section 3, we discuss necessary conditions on the termination of KSDS

using the majorization order on monomials. The future research directions are outlined in Section

4.

2. General successive difference substitution - KSDS

Let α = (α1, . . . , αn) ∈ Nn. We set |α| = α1 + · · · + αn. A form (i.e., a homogeneous

polynomial) f of degree d can be written as

f(x1, . . . , xn) =
∑
|α|=d

Cαx
α1
1 · · ·xαn

n =
∑
|α|=d

CαX
α, Cα ∈ R.

The next definition is given in [5].

Definition 2.1 A form f is said to be trivially positive if the coefficient Cα of every monomial

Xα is nonnegative. It is said to be trivially negative if f(1, 1, . . . , 1) < 0 (i.e., the sum of

coefficients of f is less than zero).

Definition 2.2 A form f(x1, . . . , xn) ∈ R[x1, . . . , xn] is positive semi-definite on Rn
+ if it satisfies

∀ (x1, . . . , xn) ∈ Rn
+, f(x1, . . . , xn) ≥ 0,

where Rn
+ = {(x1, . . . , xn) | x1 ≥ 0, . . . , xn ≥ 0}. We denote by PSD the set of all the positive

semi-definite forms on Rn
+. Furthermore, a positive semi-definite form f is said to be positive

definite on Rn
+ if f > 0 for (x1, . . . , xn) ̸= (0, . . . , 0). The set of all the positive definite forms is

denoted by PD.

There are two obvious results describing the relation between trivially positive (negative)

and PSD:

(1) If a form f is trivially positive, then f ∈ PSD.

(2) If a form f is trivially negative, then f /∈ PSD.

Given positive real numbers q1, . . . , qn, we consider the matrix

Kn =


q1 q2 · · · qn

q2
. . .

...
. . . qn

0 qn

 . (2.1)

Notice that Kn = An if q1 = q2 = · · · = qn = 1, and that Kn = Gn if q1 = 1, q2 =
1
2 , . . . , qi =

1
i , . . . , qn = 1

n . So Kn is a general form of the matrices including An and Gn.
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Suppose that Sn is a symmetric group of degree n. For σ ∈ Sn, let Pσ be an n×n permutation

matrix corresponding to σ. For example, suppose that σ = (1)(23) is a permutation. Then it

corresponds to the matrix

P(1)(23) =

 1 0 0

0 0 1

0 1 0

 ,

in which the second and third rows are permuted from the identity matrix.

Using the notation in [5], we introduce a few terminologies.

Definition 2.3 The n× n matrix Bσ with σ ∈ Sn is defined by

Bσ = PσKn.

As an example, let us consider again σ = (1)(23). Then

B(1)(23) = P(1)(23)K3 =

 q1 q2 q3

0 0 q3

0 q2 q3

 .

Definition 2.4 Let f ∈ R[x1, . . . , xn] and X = (x1, . . . , xn)
T . Define

SDSK(f) =
∪

σ∈Sn

f(BσX).

The set SDSK(f) is called the set of difference substitution for f based on the matrix Kn.

It is easy to show the following equivalence relations [5]

f ∈ PSD ⇐⇒ SDSK(f) ⊂ PSD i.e., f /∈ PSD ⇐⇒ ∃g ∈ SDSK(f), g /∈ PSD.

Repeatedly using the above two equivalence relations and Definition 2.1, we have an al-

gorithm for testing positive semi-definite polynomials, which is called the successive difference

substitution algorithm based on the matrix Kn (KSDS) in [5].

Algorithm KSDS

Input: A form f ∈ Q[x1, x2, . . . , xn].

Output: “f ∈ PSD ”or “f /∈ PSD ”.

K1: Let F = {f}.
K2: Compute T :=

∪
g∈F

SDSK(g), Temp:=T \ { tivially positive polynomials of T}.

K21: If Temp=∅, then return “f ∈ PSD”.

K22: Else if there are trivially negative forms in Temp then return “f /∈ PSD ”.

K23: Else let F = Temp and go to step K2.

There is a fundamental question on the algorithm KSDS. Namely, under what conditions

does the algorithm terminate? This question is very hard to answer. Quite recently, Yang and

Yao [4,5] obtained some results about the termination of SDS and NEWTSDS. Their results lead
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to the following definition.

Definition 2.5 The algorithm KSDS is positively terminating if the output is “f ∈ PSD” for

the input f . The algorithm KSDS is negatively terminating if the output is “f /∈ PSD” for the

input f . Otherwise, KSDS is not terminating for f .

According to Definition 2.5, it is easy to get the following assertions.

Lemma 2.6 (1) The algorithm KSDS is positively terminating for an input f if and only if

there exists a positive integer m such that all of the coefficients of the polynomial

f(Bσm · · ·Bσ2Bσ1X), ∀σi ∈ Sn, i = 1, . . . ,m

are positive.

(2) The algorithm KSDS is negatively terminating if and only if there exist m permutations

σ1, . . . , σm ∈ Sn such that

f
(
Bσm · · ·Bσ2Bσ1(1, 1, . . . , 1)

T
)
< 0.

3. Majorization order on monomials and the main result

Given two monomials

Xα = xα1
1 · · ·xαn

n and Xβ = xβ1

1 · · ·xβn
n

with |α| = |β|, we cannot order them unless some further conditions are imposed. For example,

let α = (3, 1, 1), β = (2, 1, 2) and x1 ≥ x2 ≥ x3 ≥ 0, then we have

x3
1x2x3 − x2

1x2x
2
3 = x2

1x2x3(x1 − x3) ≥ 0.

This example inspires us to use a majorization order on monomials for our analysis of the

termination of KSDS.

Before that, we first introduce the majorization between two vectors given in [6–8].

Definition 3.1 Let α = (α1, . . . , αn) and β = (β1, . . . , βn), where α, β ∈ Nn with |α| = |β|. If
k∑

i=1

αi ≥
k∑

i=1

βi for all k ∈ {1, . . . , n− 1},

then we say that α majorizes β, which is denoted as α ≽ β.

Note that “≽” is a partial order. With the help of Definition 3.1, we construct the definition

of majorization order on monomials.

Definition 3.2 (Majorization order on monomials) Let Xα and Xβ be two monomials with

|α| = |β|. Suppose that σ is a permutation on the set {1, 2, . . . , n}. If

(ασ(1), . . . , ασ(n)) ≽ (βσ(1), . . . , βσ(n)) or, briefly, ασ ≽ βσ,

then we say that Xα majorizes Xβ with respect to the permutation σ, which is denoted as

(Xα)σ ≽ (Xβ)σ or Xασ
σ ≽ Xβσ

σ . Here (Xα)σ = x
ασ(1)

σ(1) · · ·xασ(n)

σ(n) = Xασ
σ .
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Our definition of the majorization order on monomials evolves from the definition of the

majorization on symmetric polynomials given in [6–8].

We need a few comments on the notation. Note that Xα, (Xα)σ and Xασ
σ stand for the

same monomial. Furthermore, there is

(Xα)σ ≽ (Xβ)σ ⇐⇒ (Xασ
σ )I ≽ (Xβσ

σ )I ,

where I is the identical permutation and can be omitted. For example

(x3
1x

4
2x3)(21)(3) ≽ (x4

1x
2
2x

2
3)(21)(3) ⇐⇒ x4

2x
3
1x3 ≽ x2

2x
4
1x

2
3 ⇐⇒ (4, 3, 1) ≽ (2, 4, 2).

It is easy to see that, with respect to the permutation σ = (1)(2)(3), the monomials x3
1x

4
2x3

and x4
1x

2
2x

2
3 do not majorize each other. So the majorization order on monomials is a partial

order. Moreover, the following three basic properties hold.

Lemma 3.3 For a given permutation σ ∈ Sn and α, β, γ ∈ Nn with |α| = |β| = |γ|, we have

(1) (Xα)σ ≽ (Xα)σ.

(2) (Xα)σ ≽ (Xβ)σ ∧ (Xβ)σ ≽ (Xα)σ =⇒ Xα = Xβ .

(3) (Xα)σ ≽ (Xβ)σ ∧ (Xβ)σ ≽ (Xγ)σ =⇒ (Xα)σ ≽ (Xγ)σ.

Proof Straightforward. �

Lemma 3.4 Let σ ∈ Sn be a given permutation. For the monomial Xα and Xβ with |α| = |β|,
we have Xα ≥ Xβ under the condition xσ(1) ≥ · · · ≥ xσ(n) ≥ 0 if and only if (Xα)σ ≽ (Xβ)σ.

Proof ⇒. Let xσ(1) = · · · = xσ(j) = 2, and let xσ(j+1) = · · · = xσ(n) = 1. Then

2ασ(1)+ασ(2)+···+ασ(j) ≥ 2βσ(1)+βσ(2)+···+ασ(j) .

Thus

ασ(1) + ασ(2) + · · ·+ ασ(j) ≥ βσ(1) + βσ(2) + · · ·+ ασ(j).

Let j = 1, 2, . . . , n− 1 successively. Then we immediately have

(ασ(1), . . . , ασ(n)) ≽ (βσ(1), . . . , βσ(n)).

⇐. It is trivial if xi = 0 for some i = 1, . . . , n. So we assume that xi ̸= 0 for all i = 1, . . . , n.

Then

Xα

Xβ
=

n−1∏
i=1

( xσ(i)

xσ(i+1)

)∑i
j=1(ασ(j)−βσ(j))

≥ 1. �

Lemma 3.5 Let M = (pij) be an n × n matrix, in which pij > 0 if i ≤ j else pij = 0. For a

monomial xα1
1 xα2

2 · · ·xαn
n , consider linear substitution (x1, . . . , xn)

T = M(t1, . . . , tn)
T , namely,

(p11t1 + p12t2 + · · ·+ p1ntn)
α1(p22t2 + · · ·+ p2ntn)

α2 · · · (pnntn)αn

=
∑

|(j1,...,jn)|=|α|

C(j1,...,jn)t
j1
1 tj22 · · · tjnn .

Then C(j1,...,jn) ̸= 0 ⇐⇒ (tα1
1 · · · tαn

n )I ≽ (tj11 · · · tjnn )I .



234 Jia XU and Yong YAO

Proof ⇒. Consider the expansion∑
|(j1,...,jn)|=|α|

C(j1,...,jn)t
j1
1 tj22 · · · tjnn .

If C(j1,...,jn) ̸= 0, then we have the following results:

The term tj11 can be obtained by expanding (p11t1 + p12t2 + · · ·+ p1ntn)
α1 . It follows that

j1 ≤ α1. Analogously, tj22 can be obtained by expanding (p11t1 + p12t2 + · · · + p1ntn)
α1 or

(p22t2+ · · ·+p2ntn)
α2 and therefore j2 ≤ (α1− j1)+α2, namely, j1+ j2 ≤ α1+α2. By the same

token, we have

(j1, . . . , jn) ≼ (α1, . . . , αn).

Namely, (tα1
1 · · · tαn

n )I ≽ (tj11 · · · tjnn )I .

⇐. It is easy to see that the converse implications are also true. �

Theorem 3.6 Suppose that

f(x1, . . . , xn) =
∑
|α|=d

Cαx
α1
1 · · ·xαn

n =
∑
|α|=d

CαX
α, where Cα ̸= 0.

is a homogeneous polynomial of degree d in R[x1, . . . , xn]. For a term CλX
λ of f , if the monomial

Xλ is not majorized by any other monomial of f with respect to σ ∈ Sn then the coefficient of

the monomial (Xσ)
λ of f(BσK

m−1
n X) is (qλ1

σ(1) · · · q
λn

σ(n))
mCλ.

Proof According to (2.1), we know that Km
n is an upper triangular matrix and the diagonal

elements are qm1 , . . . , qmn . Let

Km
n =


qm1 p12 · · · p1n

qm2 . . . p2n
. . .

...

0 qmn

 , where pij > 0, 1 ≤ i < j ≤ n.

Let

X ′ =


x′
1

x′
2

...

x′
n

 = Km
n X =


qm1 x1 + p12x2 + · · ·+ p1nxn

qm2 x2 + · · ·+ p2nxn

· · ·
qmn xn

 . (3.1)

By Definition 2.3 and (3.1), we have the following result.

f(BσK
m−1
n X) = f(PσK

m
n X) = f(PσX

′) = f(x′
σ(1), . . . , x

′
σ(n)) =

∑
|α|=d

Cα(X
′
σ)

α. (3.2)

Notice that the monomial Xλ is not majorized by any other monomial of f with respect to

σ. By Lemmas 3.3 and 3.5, the monomial (Xσ)
λ of f(BσK

m−1
n X) is only generated by expanding

(X ′
σ)

λ. By (3.2), we get that the coefficient of (Xσ)
λ is (qλ1

σ(1) · · · q
λn

σ(n))
mCλ. �

By Lemma 2.6 and Theorem 3.6, we immediately have the following main result.

Theorem 3.7 A necessary condition of positively terminating of KSDS for an input form f is
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that, for an arbitrary ordering of variables, every monomial of f with a negative coefficient is

majorized by at least one monomial of f with a positive coefficient.

Proof We argue by contradiction. Suppose that there is a term CλX
λ (Cλ < 0) of f , in which

Xλ is not majorized by any other monomial of f with respect to σ. Then, by Theorem 3.6, the

coefficient of Xλ
σ is always negative after expanding the polynomial f(BσK

m−1
n X). This is a

contradiction with Lemma 2.6. �
For example, let us consider the cyclic polynomial

f = x4
1x

2
2 − x3

1x2x
2
3 + x4

2x
2
3 − x2

1x
3
2x3 + x2

1x
4
3 − x1x

2
2x

3
3.

Note that the monomial x3
1x2x

2
3 in f has a negative coefficient, which is not majorized by any

other monomials x4
1x

2
2, x4

2x
2
3, x2

1x
4
3 in f with positive coefficients in the ordering x1, x3, x2.

Choose the following matrix A3, and let the permutation σ = (1)(23).

A3 =

 1 1 1

0 1 1

0 0 1

 , P(1)(23) =

 1 0 0

0 0 1

0 1 0

 .

Expanding the polynomial f(P(1)(23)A
m
3 X), we see that the coefficient of x3

1x
2
2x3 is always

−1 by Theorem 3.6. So SDS (based on A3) is not positively terminating for the input f . By

other methods, we can prove that ∀X ∈ R3
+, f ≥ 0. So SDS is not negatively terminating either.

On the other hand, using Jordan normal form, we can compute P(1)(23)A
m
3

P(1)(23)A
m
3 =

 1 m m(m− 1)/2

0 0 1

0 1 m

 .

The coefficient of x3
1x

2
2x3 is still −1 by expanding f(P(1)(23)A

m
3 X). Thus, the results obtained

by the above two methods are compatible.

4. Conclusion

There are many interesting questions arising from the family of successive difference substi-

tutions. For example, what is a necessary and sufficient condition for the positive termination of

the algorithm KSDS? What is a necessary and sufficient condition for the negative termination

of KSDS? Some research directions are listed below:

(1) Yang and Yao proved that a necessary and sufficient condition on the negative termi-

nation of SDS and NEWTSDS is f /∈ PSD (see [4,5]). So we put forward a conjecture for KSDS.

Conjecture The algorithm KSDS is negatively terminating if and only if f /∈ PSD.

(2) For the positive termination of NEWTSDS, Yao has proved the following result in [5].

Theorem 4.1 Let f(X) ∈ R[x1, . . . , xn]. If (∀X ∈ Rn
+, X ̸= 0) f(X) > 0, then there exists
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m > 0 such that the coefficients of

f(Bσ1Bσ2 · · ·BσmX), ∀σi ∈ Sn (Bσi = PσiGn)

are all positive.

In other words, NEWTSDS is positively terminating for a form in PD. However, it appears

more difficult to study the positive termination of KSDS.
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