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Abstract An orthogonal array of strength t, degree k, order v and index λ, denoted by

OAλ(t, k, v), is a λvt × k array on a v symbol set such that each λvt × t subarray contains

each t-tuple exactly λ times. An OAλ(t, k, v) is called simple and denoted by SOAλ(t, k, v)

if it contains no repeated rows. In this paper, it is proved that the necessary conditions for

the existence of an SOAλ(3, 5, v) with λ ≥ 2 are also sufficient with possible exceptions where

v = 6 and λ ∈ {3, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 33}.
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1. Introduction

Let t, k and v be all positive integers with 2 ≤ t ≤ k. An orthogonal array, denoted by

OA(N ; t, k, v), is an N × k array with entries from a finite set V of v symbols such that each

N × t subarray contains each t-tuple based on V equally often as a row. Clearly, the common

frequency with which each of the t-tuples appears as a row in a subarray must be equal to N/vt,

which we will denote by λ and refer to as the index of the array. For this paper, the notation

OAλ(t, k, v) is often used. Here, the number k of columns is called the number of factors or

degree. The number v of symbols is referred to as the order or the number of levels. t is termed

as the strength of the orthogonal array. In arrays such as these, when λ = 1, the notation

OA(t, k, v) is commonly used.

Orthogonal arrays have been extensively studied in the literature. They are of fundamental

importance as ingredients in the construction of other useful combinatorial objects [1,2]. They

are essential in statistics and they have important applications in coding theory, cryptography

and computer science, as well as in drug screening. On this aspect, the interested reader may

refer to [3–5]. It is well known that an OA(2, k, v) is equivalent to k − 2 mutually orthogonal

Latin squares (MOLS) of order v. Most results of orthogonal arrays can be attributed in a large
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degree to intelligent use of combinatorics, Galois fields and finite geometries etc.. Taking the

advantage of finite fields, Bush established the following elegant results.

Lemma 1.1 ([6]) If q is a prime power and t < q, then an OA(t, q + 1, q) exists. Moreover, if

q ≥ 4 is a power of 2, an OA(3, q + 2, q) exists.

Lemma 1.2 ([7]) If OA(t, k, vi)
′s for 1 ≤ i ≤ m all exist, then an OA(t, k,

∏m
i=1 vi) exists.

Recently, the authors Ji and Yin proved the following result.

Lemma 1.3 ([8]) Let v ≥ 4 be an integer. If v ̸≡ 2 (mod 4), then an OA(3, 5, v) exists.

As a consequence, it is easy to see that an OAλ(3, 5, v) with v ≥ 4 and v ̸≡ 2 (mod 4)

exists for λ ≥ 2: just take λ copies of an OA(3, 5, v) and superimpose them. The remaining

cases, namely, v = 3 and v ≡ 2 (mod 4) were settled by Li [9] which conclude the existence of

OAλ(3, 5, v)
′s with λ ≥ 2.

By the definition of an OA, we see that the orthogonal arrays obtained in this way usually

contain repeated rows. This raises the question whether there exist OAs of larger index without

multiple rows from the viewpoint of design theory. Given a positive integer r, an OA of strength

t is said to be an r-simple OAλ(t, k, v) iff any two different rows agree in less than r entries.

Specially, k-simple and (t + 1)-simple orthogonal arrays are called simple and super-simple,

denoted by SOAλ(t, k, v) and SSOAλ(t, k, v), respectively. In other words, if the array of degree

k and strength t contains no repeated rows, it is referred to as an SOAλ(t, k, v); if any t + 1

columns of the array contains every (t+ 1)-tuple of symbols as a row at most once, we refer to

as an SSOAλ(t, k, v) (see [10,11]). The notion of simple and super-simple orthogonal arrays was

presented in Hartman [12] under the name “r-simple transversal designs”. From the definition of

simple orthogonal arrays, we see that the number λvt of rows in an SOAλ(t, k, v) cannot exceed

the total number vk of k-tuple of symbols. This observation implies the necessary conditions for

the existence of an SOAλ(t, k, v) as follows.

Theorem 1.4 An SOAλ(t, k, v) can exist only if λ ≤ vk−t.

A complete solution to the existence of an SOAλ(2, 4, v) and an SOAλ(3, 4, v) was established

by Hartman [12]. Here, we are mainly concerned with the existence of an SOAλ(3, 5, v) with

λ ≥ 2. Let us fix an arbitrary column i of an SOAλ(3, 5, v) and consider the subarray consisting

of rows that have symbol x in this column. This subarray with the i-th column removed is an

SOAλ(2, 4, v). Hence, the existence of an SOAλ(3, 5, v) implies the existence of an SOAλ(2, 4, v).

Motivated by this observation, the goal of this paper is to prove that the necessary conditions

for the existence of an SOAλ(3, 5, v) with λ ≥ 2 are also sufficient with possible exceptions where

v = 6 and λ ∈ {3, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 33}.

2. Constructions of simple orthogonal arrays

In this section, we will present some approaches to construct simple orthogonal arrays.

Given a positive integer n, we use the notation In to stand for the set of the first n positive
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integers in what follows.

Our first construction method involves the notion of difference matrix (DM). Let G be an

abelian group of order v with the operation “+”. A k × λv matrix D with entries from G is

called a difference matrix (DM) based on G, denoted by (v, k, λ)-DM, if it has the property that

for all i and j with 1 ≤ i, j ≤ k, i ̸= j, the vector difference between the ith and jth rows covers

each element of G precisely λ times. Difference matrices were first defined by Bose and Bush

[13], and are a simple but powerful tool for the construction of orthogonal arrays of strength

two. The construction of OAs using DMs is of significance because difference matrices are much

smaller in size than the orthogonal arrays that they induce. Here, we only concern with DMs of

four rows. To obtain simple OAs of strength 3, degree 5, we need to introduce the notion of a

simple DM below.

Suppose that D = (dij) (i ∈ I4, j ∈ Iλv) is a (v, 4, λ)-DM over G. D is said to be simple, if

D further satisfies that: for any j and j′ with 1 ≤ j < j′ ≤ λv, (d2j − d1j , d3j − d2j , d4j − d3j) ̸=
(d2j′ − d1j′ , d3j′ − d2j′ , d4j′ − d3j′).

Example 2.1 The following array is a simple (3, 4, 2)-DM over Z3.

A =


0 0 0 0 0 0

0 0 1 1 2 2

0 1 2 0 1 2

0 2 2 1 0 1


Construction 2.2 If a simple (v, 4, λ)-DM exists, then an SOAλ(3, 5, v) also exists.

Proof Let D = (dij) (i ∈ I4, j ∈ Iλv) be the given simple (v, 4, λ)-DM over G. For each column

(d1j , d2j , d3j , d4j)
T , construct the following v2 rows:

C(j, u, e) = (d1j + u, d2j + u, d3j + u+ e, d4j + u+ e, e), e, u ∈ G.

Then we juxtapose the obtained rows to form a λv3 × 5 array A over G. Employing the

same argument as the proof of Theorem 2.1 in [8], we can verify that the resulted array A is

an OAλ(3, 5, v). By utilizing the simple property of the given DM, it is straightforward to show

that A is simple. �
An orthogonal array OAλ(t, k, v) is said to be completely reducible iff it is the union of λ

orthogonal arrays OA(t, k, v) of index one. We can obtain an SOAλ(t, k, v) from an OA(t, k, v)

in the following way, where 1 ≤ λ ≤ vk−t.

Construction 2.3 ([12]) If an OA(t, k, v) over G exists, then there is also a completely reducible

simple OAvk−t(t, k, v) over G.

Construction 2.4 If an SSOAλ(t, k, v) with k ≥ t + 2 over G exists, then an SOAλµ(t, k, v)

over G also exists, where 1 ≤ µ ≤ vk−t−1.

Proof Let A be an SSOAλ(t, k, v) with k ≥ t + 2 over G. Suppose that B is an OA(k − t −
1, k − t − 1, v), which is formed by listing all (k − t − 1)-tuples based on G. Let a and b be a
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k-tuple and (k − t− 1)-tuple over G, respectively. Their sum will be the tuple c = a+ b over G

with the entries:

ci =

{
ai, if i ∈ Ik \ Ik−t−1,

ai + bi, if i ∈ Ik−t−1.

For a certain row Bi of B, the sum Ci of A + Bi shall be the array of degree k and size

λvt consisting of all the tuples a + Bi as rows, where a is any row in A. A permutation of

symbols in an orthogonal array produces an orthogonal array with the same parameter. Thus,

Ci is an OAλ(t, k, v). Now, under the assumption k ≥ t + 2, we may take µ disjoint rows

Bi (i = 1, 2, · · · , µ) from B and form µ OAλ(t, k, v)
′s, Ci (i = 1, 2, . . . , µ), where 1 ≤ µ ≤ vk−t−1.

Write C for the juxtaposition of these derived OAs from upper to bottom. Then C is an

OAλµ(t, k, v) over G. We only need to prove that C is simple. Let c = a+ b and c′ = a′ + b′ be

two distinct rows in C. If a = a′, then b ̸= b′ and thus, it is simple. Conversely, if a and a′ are

distinct, they agree in less than t+1 entries. Hence, c and c′ have less than k− t− 1+ t+1 = k

entries in common. The proof is completed. �
The following example illustrates the idea in Construction 2.4.

Example 2.5 The transpose of the following array is an SSOA2(3, 5, 2) over Z2, which was

first presented in [10].

A0 =

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

Let B be an OA(1, 1, 2), i.e., B is a 2× 1 array with the entries in the first and second row being

0 and 1, respectively. Then we construct the following two arrays A1 and A2:

A1 =

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

A2 =

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

It can be checked that the superimposition M =
(AT

1

AT
2

)
is an SOA4(3, 5, 2) over Z2. �

To continue with, suppose that a = (a1, a2, . . . , ak) and b = (b1, b2, . . . , bk), we define

a⊗ b = ((a1, b1), (a2, b2), . . . , (ak, bk)). Let A and B be two arrays of degree k, size m and n, and

orders v and h, respectively. Then A ⊗ B shall be the array of degree k, size mn and order vh

consisting of all the k-tuple a⊗ b as rows,whereby a is any row in A, and b in B.

Let A1 and A2 be an SOAλ1(t, k, v) and an SOAλ2(t, k, v) over the same symbol set, respec-

tively. A1 and A2 are termed compatible if their superimposition is an SOAλ1+λ2(t, k, v). We

say that w simple OAs over the same symbol set are compatible if they are pairwise compatible.

Suppose that A is an OAλ(t, k, v). If the rows of A can be partitioned into µ subarrays such that
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each subarray contains no identical rows, then we call A a µ-row-divisible OAλ(t, k, v). Clearly,

a simple OA is 1-row-divisible. The notion of “compatible” and “row-divisible” for super-simple

OAs was first proposed in [10]. Here, we only consider the simple orthogonal arrays.

From the proof of Construction 2.4, we see that the resulted µ OAλ(t, k, v)
′s contained to-

gether are compatible. If we superimpose these arrays, then an SOAλµ(t, k, v) can be obtained.

To be more precise, we have the following result.

Lemma 2.6 If an SSOAλ(t, k, v) with k ≥ t+2 over G exists, then µ compatible SOAλ(t, k, v)
′s

over G exists, where 2 ≤ µ ≤ vk−t−1.

Construction 2.7 LetAi be a µi-row-divisible OAλi(t, k, v), i ∈ Im. Suppose thatB1,1, B1,2, . . . ,

B1,µ1
, B2,1, . . . , B2,µ2

, . . . , Bm,1, . . . , Bm,µm
are compatible SOAui

(t, k, h)′s, where 1 ≤ i ≤
∑m

i=1 µi

and u1 = · · · = uµ1 = r1, uµ1+1 = · · · = uµ1+µ2 = r2, . . . , u∑m−1
i=1 +1 = · · · = u∑m

i=1
= rm. Then

there exists an SOAρ(t, k, vh) with ρ =
∑m

i=1 λiri.

Proof By assumption, let Ai be a µi-row-divisible OAλi(t, k, v) with the partition: Ai,1, Ai,2, . . . ,

Ai,µi , where 1 ≤ i ≤ m. For each i ∈ Im, consider the array Cij = Ai,j ⊗ Bi,j (j ∈ Iµi) and

denote their union by Ci. From the usual weighting method in design theory, it is easily verified

that each Ci is an OAλiri(t, k, vh).

Write C = (CT
1 |CT

2 | · · · |CT
m)T . Clearly, it is an OAρ(t, k, vh), where ρ =

∑m
i=1 λiri. It is

easy to check that C is simple, and we omit the proof here. �
By taking m = 1, µ1 = µ and r1 = λ2 in Construction 2.7, we obtain the following con-

struction.

Construction 2.8 Let v, k and t be all integers satisfying k ≥ t ≥ 2. If a µ-row-divisible

OAλ1(t, k, v) and µ compatible SOAλ2(t, k, h)’s all exist, then so does an SOAλ1λ2(t, k, hv). In

particular, if an SOAλ1(t, k, v) and an SOAλ2(t, k, h) both exist, then so does an SOAλ1λ2(t, k, hv).

By taking λ1 = λ and λ2 = 1 in Construction 2.8, we obtain the following construction.

Construction 2.9 Suppose that both an SOAλ(t, k, v) and an OA(t, k, h) exist. Then there

exists an SOAλ(t, k, vh).

We will mainly use the following working corollary of Construction 2.7.

Corollary 2.10 Let v2 be a positive integer such that v2 compatible OA(3, 5, v2)
′s exist. Let

v = v1v2 and λ be an arbitrary integer satisfying 2 ≤ λ ≤ v2. Suppose that there are two

non-negative integers m1 and m2 and two positive integers λ1 and λ2 such that the following

conditions are all satisfied:

(1) 1 ≤ m1µ1 +m2µ2 ≤ v2;

(2) m1λ1 +m2λ2 = λ;

(3) a µ1-row-divisible OAλ1(3, 5, v1) and a µ2-row-divisible OAλ2(3, 5, v1) both exist.

Then there exists an SOAλ(3, 5, v).

Proof First, we form an miµi-row-divisible OAmiλi(3, 5, v1) by taking mi copies of a µi-row-
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divisible OAλi(3, 5, v1), where i = 1, 2. The superimposition of the resulted new row-divisible

OAs is then to produce an (m1µ1 +m2µ2)-row-divisible OAm1λ1+m2λ2(t, k, v1). Set µ = m1µ1 +

m2µ2. Then µ ≤ v2. The existence of v2 compatible OA(3, 5, v2)
′s implies the existence of µ

compatible OA(3, 5, v2)
′s. The conclusion then follows from Construction 2.8. �

3. Main results

We are now in the position to establish our results on the existence of simple orthogonal

arrays of degree 5, strength 3, index λ ≥ 2. We will construct some µ-row-divisible OAλ(3, 5, v)
′s

of small orders, which is crucial in applying Corollary 2.10. First of all, we record some of the

known results.

Lemma 3.1 ([10,14]) Let v and λ be two positive integers with λ ≤ v. Then

(1) An SSOA3(3, 5, v) exists if and only if v ≥ 3 except possibly when v = 6;

(2) An SSOA2(3, 5, v) exists if and only if v ≥ 2 except definitely v = 3.

Let C be a vk×k array consisting of all the k-tuples over G of order v. It is obvious that C is

an OA(k, k, v) and hence, it is an OAvk−t(t, k, v) for t ≤ k. Furthermore, suppose that C can be

partitioned into two subarrays A and B. If A is an OAλ(t, k, v), then B is an OAvk−t−λ(t, k, v).

The conclusion also holds for the simple orthogonal arrays, which state it as follows.

Lemma 3.2 If an SOAλ(t, k, v) with λ < vk−t exists, then an SOAvk−t−λ(t, k, v) also exists.

The next results are about the existence of an SOAλ(3, 5, v) for v ∈ {2, 3, 6} .

Lemma 3.3 An SOAλ(3, 5, 2) exists if and only if λ ≤ 4 except definitely λ = 1, 3.

Proof The non-existence of an OA(3, 5, 2) was given in [5]. Thus, by Lemma 3.2, there is no

SOA3(3, 5, 2). An SSOA2(3, 5, 2) was given in Lemma 3.1. Hence, an SOA2(3, 5, 2) exists since

the super-simple property of an OA yields the simple property. An SOA4(3, 5, 2) was given in

Example 2.5. �

Lemma 3.4 A 2-row-divisible OA3(3, 5, 2) over Z2 exists.

Proof A 2-row-divisible OA3(3, 5, 2) over Z2 with the partition can be formed by transposing

the following two arrays:

1 0 1 1 1 0 0 0 1 0 1 1

0 0 1 1 0 0 1 1 0 0 0 1

0 0 1 0 1 1 0 1 0 0 1 0

1 0 1 0 0 1 1 0 0 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1


,



0 1 0 1 0 1 0 0 0 1 0 1

1 1 1 0 0 1 0 0 1 1 1 0

1 1 0 0 1 1 0 1 0 0 1 1

1 0 0 1 0 1 0 1 1 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1


. �

Lemma 3.5 There exists an SOAλ(3, 5, 3) for λ = 2 or 4 over Z3.

Proof In view of Construction 2.2, we only need to construct a simple (3, 4, 2)-DM over Z3 and

(3, 4, 4)-DM over Z3. A simple (3, 4, 2)-DM was given in Example 2.1. A simple (3, 4, 4)-DM
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over Z3 is constructed as follows:

A =


0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 2 2 0 0 1 1 2 2

0 1 2 0 1 2 0 1 2 0 1 2

0 2 2 1 0 1 1 0 0 2 1 2

 �

Lemma 3.6 An SOAλ(3, 5, 3) exists if and only if λ ≤ 9 except definitely λ = 1, 8.

Proof An SSOA3(3, 5, 3) was given in Lemma 3.1, it is clearly an SOA3(3, 5, 3). By Lemma 3.5,

an SOAλ(3, 5, 3) exists for λ = 2, 4. Applying Lemma 3.2 yields an SOA9−λ(3, 5, 3) for λ = 2, 3, 4.

The non-existence of an OA(3, 5, 3) was given in [2]. This result implies the non-existence of an

SOA8(3, 5, 3). An SOA9(3, 5, 3) is as well as an OA(5, 5, 3), which is formed by listing all the

5-tuple over Z3. �

Lemma 3.7 An SOAλ(3, 5, 6) exists if and only if λ ≤ 36 except definitely λ = 1, 35 and

possibly when λ ∈ {3, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 33}.

Proof The well-known non-existence of a pair of MOLSs of size 6 implies that neither an

OA(3,5,6) can exist. Thus, an SOA35(3, 5, 6) does not exist. Clearly, an OA(5, 5, 6) is exactly an

SOA36(3, 5, 6). Next, we consider the case where λ ̸∈ {3, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 33}. As

mentioned early, it remains to consider the indices 2 ≤ λ ≤ 18 and λ ̸∈ {3, 7, 11, 13, 15, 17}. For
λ ∈ {4, 6, 8, 10, 12, 14, 16, 18}, an SOAλ(3, 5, 6) is obtainable by applying Construction 2.8 with

(λ1, λ2) ∈ {(2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (4, 4), (2, 9)}. The required ingredient SOAs al-

l exist from Lemmas 3.3 and 3.6. An SSOA2(3, 5, 6) was given in Lemma 3.1, it is also an

SOA2(3, 5, 6). An OA5(3, 5, 6) was given in [10], it is easy to check that it is simple. For

an SOA9(3, 5, 6), the conclusion follows from applying Construction 2.8 with a 2-row-divisible

OA3(3, 5, 2) and 2 compatible SOA3(3, 5, 3)
′s. A 2-row-divisible OA3(3, 5, 2) was given in Lemma

3.4 while the existence of 2 compatible SOA3(3, 5, 3)
′s are constructed from Lemmas 2.6 and 3.1.

�
Now, we will turn to determine the existence spectrum of an SOAλ(3, 5, v) with λ ≥ 2.

First, combining Lemma 1.3 and Construction 2.3, we can prove the following existence result.

Lemma 3.8 Let v ≥ 4 be an integer. If v ̸≡ 2 (mod 4), then an SOAλ(3, 5, v) exists if and

only if λ ≤ v2.

Next, it remains to solve the existence of an SOAλ(3, 5, v) with λ ≥ 2 and v ≡ 2 (mod 4).

Lemma 3.9 Let v ≥ 10 be an integer. If v ≡ 2 (mod 4), then an SOAλ(3, 5, v) with λ ≥ 2

exists if and only if λ ≤ v2.

Proof The necessity follows from Lemma 1.4. For the sufficiency, let v = 4t + 2 = 2(2t + 1),

where 2t + 1 ≥ 5. Since 2t + 1 is odd and 2t + 1 ≥ 4, an OA(3, 5, 2t + 1) exists by Lemma 1.3.

Hence, applying Construction 2.3 with an OA(3, 5, 2t + 1) gives rise to a completely reducible
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simple OA(2t+1)2(3, 5, 2t + 1). This means that (2t + 1)2 compatible OA(3, 5, 2t + 1)′s exist.

Furthermore, superimposing the λ compatible OA(3, 5, 2t + 1)′s forms an SOAλ(3, 5, 2t + 1),

where 1 ≤ λ ≤ (2t+ 1)2.

By Lemma 3.2, it only needs to consider the case where 2 ≤ λ ≤ v2/2 = 2(2t + 1)2.

If λ is even, then an SOAλ(3, 5, v) exists by employing Construction 2.8 with the ingredients

SOA2(3, 5, 2) and SOAλ/2(3, 5, 2t + 1). Otherwise, assume that λ is odd. Apply Corollary 2.10

with v1 = 2, v2 = 2t + 1 and (λ1, λ2) = (2, 3). From Lemmas 3.3 and 3.4, we know that an

SOA2(3, 5, 2) and 2-row-divisible OA3(3, 5, 2) both exist. It is left to show that the system of

equations {
2m1 + 3m2 = λ,

m1 + 2m2 ≤ (2t+ 1)2,

is solvable in non-negative integers m1 and m2 for any given λ with 3 ≤ λ ≤ 2(2t + 1)2 − 1. It

now turns out that

(m1,m2) = (
λ− 3

2
, 1)

is one solution of the above system of equations. �
Summarizing the results in Lemmas 3.3 and 3.6–3.9, we will establish our main result of

this paper.

Theorem 3.10 The necessary conditions for the existence of an SOAλ(3, 5, v) with λ ≥ 2 are

also sufficient with definite exceptions:

(1) v = 2 and λ = 3; (2) v = 3 and λ = 8; (3) v = 6 and λ = 35;

and possible exceptions where v = 6 and λ ∈ {3, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 33}.
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