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Abstract Let G = (V,E) be a simple graph. For any real function g : V −→ R and a

subset S ⊆ V , we write g(S) =
∑

v∈S g(v). A function f : V −→ [0, 1] is said to be a

fractional dominating function (FDF ) of G if f(N [v]) ≥ 1 holds for every vertex v ∈ V (G).

The fractional domination number γf (G) of G is defined as γf (G) = min{f(V )|f is an FDF

of G }. The fractional total dominating function f is defined just as the fractional dominating

function, the difference being that f(N(v)) ≥ 1 instead of f(N [v]) ≥ 1. The fractional

total domination number γ0
f (G) of G is analogous. In this note we give the exact values of

γf (Cm × Pn) and γ0
f (Cm × Pn) for all integers m ≥ 3 and n ≥ 2.
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1. Introduction

We use Bondy and Murty [1] for terminology and notation not defined here and consider

finite simple graph only.

Let G = (V,E) be a graph. The open neighborhood of a vertex v in G is N(v) = {u ∈
V |uv ∈ E(G)}, while N [v] = N(v) ∪ {v} is the closed neighborhood of v. Cn and Pn denote the

cycle and the path of order n, respectively. If u, v ∈ V (G), then u ∼ v denotes u is adjacent to

v in G.

For any two disjoint graphs G and H, the Cartesian product G×H is defined as follows:

V (G×H) = V (G)× V (H),

E(G×H) = {(u1, v1)(u2, v2)|(u1 = u2 and v1 ∼ v2) or (v1 = v2 and u1 ∼ u2)}.

Let G = (V,E) be a graph. For any real function g : V −→ R and a subset S ⊆ V , we write

g(S) =
∑

v∈S g(v).

Hare [3] and Stewart [4] introduced the following concept of the fractional domination and

the fractional total domination in graphs.
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Let G = (V,E) be a graph. A function f : V −→ [0, 1] is said to be a fractional dominating

function (FDF ) of G if f(N [v]) ≥ 1 holds for every vertex v ∈ V (G). The fractional domination

number γf (G) of G is defined as γf (G) = min{f(V )|f is an FDF of G}.
A fractional total dominating function (FTDF ) f of G is defined similarly, the difference

being that f(N(v)) ≥ 1 instead of f(N [v]) ≥ 1. The fractional total domination number γ0
f (G)

of G is defined as γ0
f (G) = min{f(V )|f is an FTDF of G}.

Fractional packing numbers are defined analogously; a real function f : V (G) −→ [0, 1] is

a fractional packing function of G if f(N [v]) ≤ 1 holds for every vertex v ∈ V (G). A fractional

packing function f is maximal if for every u ∈ V (G) with f(u) < 1, there exists a vertex

v ∈ N [u] such that f(N [v]) = 1. The upper fractional packing number Pf (G) of G is defined as

Pf (G) = max{f(V )|f is a maximal packing function of G}.

Lemma 1.1 ([2]) For any graph G, Pf (G) = γf (G).

Lemma 1.2 ([2]) For any r-regular graph G (r ≥ 1), then

(1) γf (G) = n
r+1 ; (2) γ

0
f (G) = n

r .

For the Cartesian product Pm × Pn, Hare [3] and Stewart [4] gave an exact formula for

γf (P2 × Pn) and some bounds of γf (Pm × Pn) for 3 ≤ m ≤ n.

Lemma 1.3 ([2]) For all integers n ≥ 1, then

(1) when n ≡ 1 (mod 2), γf (P2 × Pn) =
n+1
2 ;

(2) when n ≡ 0 (mod 2), γf (P2 × Pn) =
n2+2n
2(n+1) .

However, there is no known formula of γf (Pm × Pn) for 3 ≤ m ≤ n. It is very difficult to

give the exact value of γf (Pm × Pn). Fisher [5] has tried without success to find such a formula

for γf (P3 × Pn). Up to now, few exact value of γf (Pm × Pn) is known when 3 ≤ m ≤ n.

We are interested in the Cartesian products Cm × Pn. In this note we give exact formulas

of γf (Cm × Pn) and γ0
f (Cm × Pn) for all integers m ≥ 3 and n ≥ 2.

2. Fractional total domination number for Cm × Pn

Theorem 2.1 For all integers m ≥ 3 and n ≥ 2, we have γ0
f (Cm×Pn) =

m
4(n+1) (n

2+n+2⌈n
2 ⌉).

Proof Let G = Cm × Pn, V (G) = {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n}, and

E(G) = {(i, j)(i, j + 1)|1 ≤ i ≤ m, 1 ≤ j ≤ n− 1} ∪ {(i, j)(i+ 1, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n},

where (m+ 1, j) = (1, j) for every integer j (1 ≤ j ≤ n).

Define an FTDF f of G as follows:

Let f((i, j)) = xj (i = 1, 2, . . . ,m) for every integer j (1 ≤ j ≤ n).

Case 1 n = 2k + 1; for some k ∈ N+.

Let x2j = 0 (1 ≤ j ≤ k) and x2j−1 = 1
2 for every integer j (1 ≤ j ≤ k + 1);

It is easy to check that f(N(i, j)) = 1 holds for all vertices (i, j) ∈ V (G), and hence f is an
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FTDF of G, which means

γ0
f (G) ≤ f(V (G)) =

m(n+ 1)

4
. (1)

On the other hand, let g be an FTDF of G such that γ0
f (G) = g(V (G)). By the definition,

for every vertex (i, 2j − 1) ∈ V (G) (1 ≤ i ≤ m, 1 ≤ j ≤ k + 1), we have g(N(i, 2j − 1)) ≥ 1, and

hence 2g(V (G)) =
∑m

i=1

∑k+1
j=1 g(N(i, 2j − 1)) ≥ m(k + 1), i.e.,

γ0
f (G) = g(V (G)) ≥ m(k + 1)

2
=

m(n+ 1)

4
.

Combining with (1), we have γ0
f (G) = m(n+1)

4 , and the theorem holds for all odd n ≥ 3.

Case 2 n = 2k; for some k ∈ N+.

Let x2j =
j

n+ 1
and x2j−1 = n−2j+2

2(n+1) for every integer j (1 ≤ j ≤ k).

It is easy to see that f(N(i, j)) = 1 holds for all vertices (i, j) ∈ V (G), and hence f is an

FTDF of G, which means

γ0
f (G) ≤ f(V (G)) = m

k∑
j=1

(
j

n+ 1
+

n− 2j + 2

2(n+ 1)
) =

mk(n+ 2)

2(n+ 1)
=

m(n2 + 2n)

4(n+ 1)
.

Next we prove that γ0
f (G) ≥ m(n2 + 2n)

4(n+ 1)
.

When n = 2, G is a 3-regular graph. By Lemma 1.2, Theorem 2.1 holds. Next suppose that

n ≥ 4 and n = 2k is even.

Assume, to the contrary, that

γ0
f (G) <

m(n2 + 2n)

4(n+ 1)
. (2)

Let g be such an FTDF of G that γ0
f (G) = g(V (G)), and for each j = 1, 2, . . . , n, let

C(j) = {(i, j)|1 ≤ i ≤ m} ⊆ V (G). Clearly, V (G) =
∪n

2
i=1(C(2i− 1) ∪ C(2i)), thus, there exists

an odd integer r (1 ≤ r ≤ n), so that

g(C(r)) + g(C(r + 1)) ≤ 2

n
g(V (G)) =

2

n
γ0
f (G) <

m(n+ 2)

2(n+ 1)
.

Let g(N(j)) =
∑m

i=1 g(N(i, j)) for every integer j ∈ {1, 2, . . . , n}. Since g(N(i, j)) ≥ 1 holds

for all vertices (i, j) ∈ V (G), we have g(N(j)) ≥ m holds for all integers j ∈ {1, 2, . . . , n}. Note

that r is odd and n = 2k is even. We have

2g(V (G)) + g(C(r)) + g(C(r + 1))

= g(N(1)) + g(N(3)) + · · ·+ g(N(r)) + g(N(r + 1)) + g(N(r + 3)) + · · ·+ g(N(n))

≥ (
n

2
+ 1)m.

And hence, we have

2g(V (G)) ≥ (
n

2
+ 1)m− (g(C(r)) + g(C(r + 1))

≥ (
n

2
+ 1)m− m(n+ 2)

2(n+ 1)
=

m(n2 + 2n)

2(n+ 1)
,
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γ0
f (G) = g(V (G)) ≥ m(n2 + 2n)

4(n+ 1)
.

This contradicts (3). Combining with (2), we have proved that γ0
f (G) = m(n2+2n)

4(n+1) holds for all

even n ≥ 2. The proof of Theorem 2.1 is completed. �

3. Fractional domination number for Cm × Pn

The following two lemmas are useful to obtain our main results.

Lemma 3.1 Let A and B be both matrices of order n ≥ 2, and

A =


3 1 0 0 · · · 0

1 3 1 0 · · · 0

0 1 3 1 · · · 0

· · · · · · · · · · · · · · · 1

0 0 0 · · · 1 3

 , B =


1 1 0 0 · · · 0

1 3 1 0 · · · 0

1 1 3 1 · · · 0

· · · · · · · · · · · · · · · 1

1 0 0 · · · 1 3

 .

Then (1) An = detA = an+1−bn+1

a−b , where a = 3+
√
5

2 and b = 3−
√
5

2 ;

(2) Bn = detB = 1
5 (An +An−1 + (−1)n−1), where let A0 = 1.

Proof We use the induction on n ≥ 1.

When n = 1, clearly, A1 = 3 = a+ b, and B1 = 1, and the result follows.

We suppose that Lemma 3.1 is true for all matrices with determinants of order k ≤ n− 1.

Now we consider the two n × n matrices A and B. Note that a + b = 3 and ab = 1. By the

induction hypothesis, we have

An = 3An−1 −An−2 = (a+ b)
an − bn

a− b
− ab

an−1 − bn−1

a− b
=

an+1 − bn+1

a− b

Bn = An−1 −Bn−1 = An−1 −
1

5
(An−1 +An−2 + (−1)n−2)

=
1

5
(4An−1 −An−2 + (−1)n−1) =

1

5
(An +An−1 + (−1)n−1).

So, Lemma 3.1 is true for all determinants of order n, this proof is completed. �

Lemma 3.2 Let XT = (x1, x2, . . . , xn), and CT = (1, 1, 1, . . . , 1) be an n-dimensional vector

(n ≥ 2). Then the linear equation

AX = C (∗)

has the unique solution (x1, x2, . . . , xn) which satisfies the following two conditions:

(1) x1 = xn = Bn

An
, and xi = xn+1−i (1 ≤ i ≤ ⌈n

2 ⌉);
(2) 0 ≤ xi ≤ 1 (1 ≤ i ≤ n),

where A, An and Bn are defined as in Lemma 3.1.

Proof (1) Since An ̸= 0, the linear equation (∗) has the unique solution (x1, x2, . . . , xn), from the

uniqueness of the solution and the symmetry of A, and by Cramer’ Rule, we have x1 = xn = Bn

An
,

and xi = xn+1−i (1 ≤ i ≤ ⌈n
2 ⌉).
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(2) When 2 ≤ n ≤ 6, it is easy to check that 0 ≤ xi ≤ 1 (1 ≤ i ≤ n). The solution

(x1, x2, . . . , xn) is listed in the proof of Theorem 3.3 (1) for every n ∈ {2, 3, 4, 5, 6}.
Next we suppose n ≥ 7.

Now we prove that xi ≥ 0 holds for every integer i (1 ≤ i ≤ n).

Assume, to the contrary, that there exists an integer i such that xi < 0.

Let r = xj = min{xi|1 ≤ i ≤ n}. Note that a = 3+
√
5

2 , b = 3−
√
5

2 , ab = 1, we have

An = aAn−1 + bn, An−1 = bAn − bn+1. By Lemma 3.1, we have

x1 = xn =
Bn

An
=

1

5An
(An +An−1 + (−1)n−1) =

1 + b

5
+

(−1)n−1 − bn+1

5An
.

Note that 1
3 ≤ b = 3−

√
5

2 ≤ 2
5 and An ≥ 6, we have 0 ≤ x1 ≤ 1

3 . It is easy to see from the

linear equation AX = C that x2 = xn−1 = 1 − 3x1 ≥ 0, and hence 3 ≤ j ≤ n − 2. Since

xj−1 + 3xj + xj+1 = 1, we have xj−1 ≥ 1−3r
2 or xj+1 ≥ 1−3r

2 .

If xj−1 ≥ 1−3r
2 , since xj−2 + 3xj−1 + xj = 1, and note that r ≤ 0, we have xj−2 =

1− 3xj−1 − r ≤ 1− 3
2 (1− 3r)− r = 7

2r −
1
2 < r, this contradicts the choice of r.

If xj+1 ≥ 1−3r
2 , similarly, since xj + 3xj+1 + xj+2 = 1, we have xj+2 = 1 − 3xj+1 − r ≤

1− 3
2 (1− 3r)− r = 7

2r −
1
2 < r, this contradicts the choice of r as well.

Thus, xi ≥ 0 holds for every integer i (1 ≤ i ≤ n), implying that xi ≤ 1 holds for every

integer i (1 ≤ i ≤ n). We have completed the proof of Lemma 3.2. �

Theorem 3.3 For all integers m ≥ 3 and n ≥ 2, then

(1) γf (Cm × P2) =
1
2m, γf (Cm × P3) =

5
7m, γf (Cm × P4) =

10
11m, γf (Cm × P5) =

10
9 m,

γf (Cm × P6) =
38
29m;

(2) When n ≥ 7, γf (Cm × Pn) =
(5n+2)An+2An−1+2(−1)n−1

25An
m,

where An = (3+
√
5)n+1−(3−

√
5)n+1

2n+1·
√
5

for each integer n ≥ 1.

Proof Let G = Cm × Pn, and V (G) and E(G) be the same as in the proof of Theorem 2.1.

Next we define a maximal packing function f of G such that f(N [v]) = 1 holds for every

vertex v ∈ V (G).

For every vertex (i, j) ∈ V (G), define f((i, j)) = xi (i = 1, 2, . . . , n; j = 1, 2, . . . ,m). S(n) =∑n
i=1 xi, clearly, f(V (G)) = mS(n).

(1) When n = 2; let (x1, x2) = ( 14 ,
1
4 ), S(2) =

1
2 ;

when n = 3; let (x1, x2, x3) = ( 27 ,
1
7 ,

2
7 ), S(3) =

5
7 ;

when n = 4; let (x1, x2, x3, x4) = ( 3
11 ,

2
11 ,

2
11 ,

3
11 ), S(4) =

10
11 ;

when n = 5; let (x1, x2, x3, x4, x5) = ( 5
18 ,

3
18 ,

4
18 ,

3
18 ,

5
18 ), S(5) =

10
9 ;

when n = 6; let (x1, x2, x3, x4, x5, x6) = ( 8
29 ,

5
29 ,

6
29 ,

6
29 ,

5
29 ,

8
29 ), S(6) =

38
29 .

It is easy to see that f(N [v]) = 1 holds for every vertex v ∈ V (G), and hence f is a maximum

packing function. By Lemma 1.1, these five equalities in Theorem 3.3 hold.

(2) When n ≥ 7, let (x1, x2, . . . , xn) be the unique solution of the linear equation (∗). It is
easy to see from Lemma 3.2 that f is a maximum packing function of G. And

4(x1 + xn) + 5(x2 + x3 + · · ·+ xn−1) = CTAX = CTC = n.
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By Lemmas 3.1 and 3.2, we have

S(n) =
n∑

i=1

xi =
n+ x1 + xn

5
=

n

5
+

2Bn

5An
=

(5n+ 2)An + 2An−1 + 2(−1)n−1

25An
.

By Lemma 1.1,

γf (G) = Pf (G) = f(V (G)) = mS(n) =
(5n+ 2)An + 2An−1 + 2(−1)n−1

25An
m,

where An = an+1−bn+1

a−b = (3+
√
5)n+1−(3−

√
5)n+1

2n+1·
√
5

.

We have completed the proof of Theorem 3.3. �
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