Journal of Mathematical Research with Applications
May, 2015, Vol. 35, No. 3, pp. 279-284
DOI:10.3770/j.issn:2095-2651.2015.03.005
Http://jmre.dlut.edu.cn

Fractional Domination of the Cartesian Products in
Graphs
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Abstract Let G = (V,E) be a simple graph. For any real function g : V — R and a
subset S C V, we write g(S) = > cg9(v). A function f : V — [0,1] is said to be a
fractional dominating function (FDF') of G if f(N[v]) > 1 holds for every vertex v € V(G).
The fractional domination number ¢ (G) of G is defined as v;(G) = min{f(V)|f is an FDF
of G }. The fractional total dominating function f is defined just as the fractional dominating
function, the difference being that f(N(v)) > 1 instead of f(N[v]) > 1. The fractional
total domination number 'y? (G) of G is analogous. In this note we give the exact values of
v#(Cm X Pp) and 'y?(Cm X Pp) for all integers m > 3 and n > 2.
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1. Introduction

We use Bondy and Murty [1] for terminology and notation not defined here and consider
finite simple graph only.

Let G = (V,E) be a graph. The open neighborhood of a vertex v in G is N(v) = {u €
V0uv € E(G)}, while N[v] = N(v) U {v} is the closed neighborhood of v. C,, and P, denote the
cycle and the path of order n, respectively. If u,v € V(G), then u ~ v denotes u is adjacent to
v in G.

For any two disjoint graphs G and H, the Cartesian product G x H is defined as follows:
V(Gx H)=V(G) x V(H),
E(G x H) = {(u1,v1)(ug,v2)|(u; = ug and vy ~ vy) or (v1 = vg and uj ~ ug)}.

Let G = (V, E) be a graph. For any real function g : V. — R and a subset S C V, we write

g(S) = ZUES g<v)'
Hare [3] and Stewart [4] introduced the following concept of the fractional domination and

the fractional total domination in graphs.
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Let G = (V, E) be a graph. A function f: V — [0, 1] is said to be a fractional dominating
function (FDF') of G if f(N[v]) > 1 holds for every vertex v € V(G). The fractional domination
number v¢(G) of G is defined as v¢(G) = min{f(V)|f is an FDF of G}.

A fractional total dominating function (FTDF) f of G is defined similarly, the difference
being that f(N(v)) > 1 instead of f(N[v]) > 1. The fractional total domination number 7%(G)
of G is defined as fy?(G) = min{f(V)|f is an FTDF of G}.

Fractional packing numbers are defined analogously; a real function f : V(G) — [0,1] is
a fractional packing function of G if f(N[v]) <1 holds for every vertex v € V(G). A fractional
packing function f is maximal if for every u € V(G) with f(u) < 1, there exists a vertex
v € N[u] such that f(N[v]) = 1. The upper fractional packing number P;(G) of G is defined as
P;(G) = max{f(V)|f is a maximal packing function of G}.

Lemma 1.1 ([2]) For any graph G, Ps(G) = v¢(G).

Lemma 1.2 ([2]) For any r-regular graph G (r > 1), then
(1) 74(G) = 13 (2) 19(G) = 2.
For the Cartesian product P,, x P,, Hare [3] and Stewart [4] gave an exact formula for

v¢ (P2 x P,) and some bounds of v¢(P,, x P,) for 3 <m < n.

Lemma 1.3 ([2]) For all integers n > 1, then
(1) when n=1 (mod2),vs(P, x P,) = 2,
_ n’+2n
(2) whenn =0 (mod2),vs(P x Py) = 5525
However, there is no known formula of 'yf(Pm x P,) for 3 < m < n. It is very difficult to

give the exact value of v¢(P,, x P,). Fisher [5] has tried without success to find such a formula
for v¢(Ps x P,). Up to now, few exact value of v¢(P,, x P,) is known when 3 <m <n.

We are interested in the Cartesian products C,, x P,. In this note we give exact formulas
of v¢(Cp x P,) and 7?(Cm x P,) for all integers m > 3 and n > 2.
2. Fractional total domination number for C,, x P,
Theorem 2.1 For all integers m > 3 and n > 2, we have 4(Cy, X P,) = ﬁ(n2 +n+2[5]).
Proof Let G=C,, x P,,V(G) ={(:,7)|[1 <i<m,1 <j<n}, and
E(G) ={(i,)(6,j+ 1)1 <i<m,1<j<n—-1}U{(/)(i+1,7)1 <i<m,1<j<n},

where (m + 1,j) = (1,7) for every integer j (1 < j <n).
Define an FTDF' f of G as follows:
Let f((i,4)) =z; (i=1,2,...,m) for every integer j (1 < j <n).

Case 1 n =2k+1; for some k € N*.
Let 29; =0 (1 < j <k) and 291 = % for every integer j (1 < j <k + 1);
Tt is easy to check that f(N(¢,7)) = 1 holds for all vertices (i,7) € V(G), and hence f is an
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FTDF of G, which means
(n+1)

WG < V(@) = = (1)
On the other hand, let g be an FTDF of G such that v}(G) = g(V(G)). By the definition,
for every vertex (4,2 — 1) € V(GQ) (1 <i<m,1<j<k+1), we have g(N(i,2j — 1)) > 1, and
hence 2g(V(G)) = Y1y 550 g(N (6,25 — 1)) > m(k + 1), ie
m(k+1)  m(n+1)
2 4
Combining with (1), we have Y}(G) = m+t1) " and the theorem holds for all odd n > 3.

4

Case 2 n = 2k; for some k € NT.

J n—2j+2
n+1 2(n+1)
It is easy to see that f(N(i,7)) = 1 holds for all vertices ( j) € V(G), and hence f is an

FTDF of G, which means

Let z9;, = and zg;_1 = for every integer j (1 <j < k).
J J

mk(n+2)  m(n®+ 2n)
2n+1)  4(n+1)

) =

m(n? + 2n)

4n+1) °
When n = 2, G is a 3-regular graph. By Lemma 1.2, Theorem 2.1 holds. Next suppose that

Next we prove that 'y?(G) >

n >4 and n = 2k is even.

Assume, to the contrary, that

2
0 m(n® + 2n)
G)< ———= 2
77(G) 4(n+1) 2)

Let ¢ be such an FTDF of G that 752(G) = g(V(@)), and for each j = 1,2,...,n, let
C(j) ={@,5)|1 <i<m} CV(G). Clearly, V(G) = U2, (C(2i — 1) UC(2i)), thus, there exists
an odd integer r (1 <r < n), so that

[\)

Let g(N(j)) = > it g(N (i, j)) for every integer j € {1,2,...,n}. Since g(N(i,j)) > 1 holds
for all vertices (i,7) € V(G), we have g(N(j)) > m holds for all integers j € {1,2,...,n}. Note
that r is odd and n = 2k is even. We have
V(@) +9(C(r)) +9(C(r+ 1))
gIN() +9(NB)) + -+ g(N(r) +g(N(r +1)) + g(N(r +3)) +--- + g(N(n))
> (5 +1)m

And hence, we have

9(C(r) + 9(Clr +1)) £ Zg(V(G)) = %

29(V (@) 2 (5 + Dm = (9(C(r) + g(C(r + 1))

n - m(n+2) m(n? + 2n)
2 2n+1)  2(n+1) "’




282 Baogen XU

2
0 m(n® + 2n)
G)=g9gV(G) > ——+=
(@) = a(V(©) = M
This contradicts (3). Combining with (2), we have proved that WQ(G) = % holds for all
even n > 2. The proof of Theorem 2.1 is completed. [J
3. Fractional domination number for C,, x P,
The following two lemmas are useful to obtain our main results.
Lemma 3.1 Let A and B be both matrices of order n > 2, and
3 1 0 o --- 0 1 1 0 0
1 3 1 0 0 1 3 1 0
A= 0 1 3 1 0|, B= 1 1 3 0
1 .. 1
0 0 o --- 1 3 1 0 0 1 3
Then (1) A, = det A = %, where a = % and b = 3_2‘/5;

(2) B, =detB=1(A,+ Ap_1+(—1)"""), where let Ag = 1.

Proof We use the induction on n > 1.

When n =1, clearly, Ay =3 =a+ b, and B; = 1, and the result follows.

We suppose that Lemma 3.1 is true for all matrices with determinants of order £ < n — 1.
Now we consider the two n x n matrices A and B. Note that a + b = 3 and ab = 1. By the

induction hypothesis, we have

a — b anfl _ bnfl an+1 _ bn+1
Ap =3Ap_ 1 — Ap_y = - -
3 ! 2=(a+b) a—b ab a—b a—b
1
Bn == An—l - Bn—l == An—l - E(An—l + An—2 + (71)77,72)

1 1
= (@A~ A+ (F1)"7Y) = S (An+ Au + (C1)T,

So, Lemma 3.1 is true for all determinants of order n, this proof is completed. [

Lemma 3.2 Let X7 = (z1,29,...,7,), and CT = (1,1,1,...,1) be an n-dimensional vector
(n > 2). Then the linear equation
AX =C (%)
has the unique solution (x1, 2, ..., x,) which satisfies the following two conditions:
(1) x1 =2, = ﬁ:, and x; = Tpq1- (1 <@ < [5]);
(2) 0<z; <1 (1<i<n),
where A, A,, and B,, are defined as in Lemma 3.1.

Proof (1) Since A,, # 0, the linear equation (x) has the unique solution (x1, z3, ..., z,), from the
uniqueness of the solution and the symmetry of A, and by Cramer’ Rule, we have z; = z,, = %,
and Tj; = Tp41—i (1 <1< ’7%1)
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(2) When 2 < n < 6, it is easy to check that 0 < x; < 1 (1 < i < n). The solution
(x1,xa,...,2,) is listed in the proof of Theorem 3.3 (1) for every n € {2,3,4,5,6}.

Next we suppose n > 7.

Now we prove that x; > 0 holds for every integer i (1 <14 < n).

Assume, to the contrary, that there exists an integer ¢ such that x; < 0.

Let r = z; = min{z;|1 < ¢ < n}. Note that a = 3+‘f b = 3= f, ab = 1, we have
A, =al,_1+b", A,_1 =bA, — b, By Lemma 3.1, we have
1 1+b6 (=1t —pntt

(A 4 A, 4 (—1)Y =
5An( +An 4+ (=D 5 T 54,

B
mlzxn:T:

Note that % <b= 3_2‘/5 < % and A, > 6, we have 0 < z7 < % It is easy to see from the

linear equation AX = C that o = z,_1 = 1 —3x; > 0, and hence 3 < j < n — 2. Since
1—3r
2

1—
2
If zj_4 > 1_23T, since xj_2 + 3z;_1 + =; = 1, and note that » < 0, we have z;_» =

1-3z;_1—r<1-3(1-3r)—r=2Ir—1 <r, this contradicts the choice of r.

If 2549 > 1_237', similarly, since z; 4+ 3z,41 + xj12 = 1, we have zj10 =1 — 3z —r <

1—3(1—3r)—r=Z%Zr— L1 <r, this contradicts the choice of r as well.

Thus, z; > 0 holds for every integer i (1 < i < n), implying that x; < 1 holds for every

Tj—1+3x; +xj41 =1, we have z;_1 >

integer i (1 < i < n). We have completed the proof of Lemma 3.2. [J

Theorem 3.3 For all integers m > 3 and n > 2, then
(1) 7§(Cp x P2) = 5m, §(Cp X P3) = 2m, v7(Cpy X Py) = 19m, 7;(Cry X P5) = P2m,
FYf(Cm X PG) = %Sm;
(2) Whenn>T7,~(Cpy x P,) = G020 An 20142021

25A,
_ BB (3B
- 2n+1,\/5

Proof Let G =C,, x P,, and V(G) and E(G) be the same as in the proof of Theorem 2.1.

Next we define a maximal packing function f of G such that f(N[v]) = 1 holds for every
vertex v € V(QG).

For every vertex (i, ) € V(G), define f((i,5)) =x; (i =1,2,...,n;5 =1,2,...,m). S(n) =
Sy, clearly, f(V(G)) = mS(n),

(1) When n = 2; let (;vl,xg) =(1,1),5(2) = 3;

)n—l

m,

for each integer n > 1.

where A,

when n = 3; let (x1,22,23) = (2, 1,2),5(3) = 2;
when n = 4; let (x17:r2,x3,x4):( v% % %)75(4)_ }(1)7
when n = 5; let (x1, 22,3, 74, 25) = (&, 15> 15> 15 1), S (0) = 2

_ e 8 5 6 6 5 8 _ 38
when n = 6; let (1, 2,73, 74,%5,76) = (555 59, 39+ 35> 5390 39)> O (6) = 55-

It is easy to see that f(N[v]) = 1 holds for every vertex v € V(G), and hence f is a maximum
packing function. By Lemma 1.1, these five equalities in Theorem 3.3 hold.

(2) When n > 7, let (x1,2,...,z,) be the unique solution of the linear equation (x). It is
easy to see from Lemma 3.2 that f is a maximum packing function of G. And

d(zy 4+ xp) +5(@2 s+ +x,) =CTAX =CTC =
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By Lemmas 3.1 and 3.2, we have

N~ ntaita, n 2B,  (5n+2)A, +24, 1 +2(-1)"!
S(n) = ;x - 5 =554, 254, '

By Lemma 1.1,

(5n +2) Ay, + 24,1 +2(—1)""!

¢ (G) = P¢(G) = f(V(G)) =mS(n) = 254,

m,

n+17bn+1 o (3+\/g)n+1_(3_\/g)n+l
a—b - on+1../5 .
We have completed the proof of Theorem 3.3. [J

where A, = 2
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