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Abstract With the help of a Lie algebra, two kinds of Lie algebras with the forms of blocks

are introduced for generating nonlinear integrable and bi-integrable couplings. For illustrating

the application of the Lie algebras, an integrable Hamiltonian system is obtained, from which

some reduced evolution equations are presented. Finally, Hamiltonian structures of nonlinear

integrable and bi-integrable couplings of the integrable Hamiltonian system are furnished

by applying the variational identity. The approach presented in the paper can also provide

nonlinear integrable and bi-integrable couplings of other integrable system.
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1. Introduction

Integrable couplings is an important and attractive topic in the soliton theory. On the

one hand, coupled equations have many applications in various scientific contexts ranging from

physics, biochemistry to mechanics. On the other hand, there are much richer mathematical

structures behind integrable couplings than scalar integrable equations. Moreover, the study

of integrable couplings generalizes the symmetry problem and provides clues toward complete

classification of integrable equations.

Definition 1.1 ([1,2]) For a given integrable system

ut = K(u) = K(x, t, u, ux, uxx, . . .), (1.1)

the following bigger triangular system

ut = K(u) =

(
K(u)

S(u, v)

)
, u =

(
u

v

)
(1.2)

is called an integrable couplings of the system (1.1), if (1.2) is integrable and S(u, v) explicitly

contains u or u-derivatives with respect to x, where the x is the space variable. Especially,

S(u, v) is nonlinear with respect to the sub-vector v, then the system (1.2) is called a nonlinear
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integrable couplings of the system (1.1).

Definition 1.2 ([3]) A bi-integrable coupling of a given integrable system (1.1) is an enlarged

triangular integrable system of the following form

ũt = K̃(ũ) =

 K(u)

S1(u, v)

S2(u, v, w)

 , ũ =

 u

v

w

 . (1.3)

It is notable that S2 depends on the sub-vector w but S1 does not. Further, if S2(u, v, w) is

nonlinear for w, then the system (1.3) is called a nonlinear bi-integrable couplings of the system

(1.1). The semi-direct sums of Lie algebras lay a foundation for constructing integrable couplings.

Definition 1.3 The semi-direct sums g = g
⊎
gc, means that the two Lie sub-algebras g and gc

satisfy [g, gc] ⊆ gc, where [g, gc] = [A,B]|A ∈ g,B ∈ gc, with [·, ·] denoting the Lie bracket of g

and
⊎

standing for semi-direct sum.

Obviously, gc is an ideal Lie sub-algebra of g. The subscript c indicates a contribution to

the construction of coupling systems. We also require the closure property between g and gc

under the matrix multiplication.

Many ways to construct linear and nonlinear integrable couplings are presented, for example,

the perturbation method [1,2], the enlarged spectral problems [4–10], the block type matrix

algebra [11–17]. Recently, Ma [11,12] proposed a general scheme to generate nonlinear integrable

couplings and Zhang [13,14] extended this method.

In this paper, inspired by the previous work, we present two kinds of explicit Lie algebras

for constructing nonlinear integrable and bi-integrable couplings of the integrable hierarchy. We

illustrate the applications of the new Lie algebras by means of an integrable hierarchy, which

can reduce to some evolution equations, including the well-known mKdV equation. Then we

also obtain the Hamiltonian structures of nonlinear integrable and bi-integrable couplings of the

integrable hierarchy by applying the variational identity [18,19], respectively.

2. Lie algebras

We have known the simple Lie algebra A1 with the basis as the following is frequently used

to construct the spectral problems by Tu scheme [20–22].

e =

(
1 0

0 −1

)
, h =

(
0 1

−1 0

)
, f =

(
0 1

1 0

)
,

[e, h] = 2f, [e, f ] = 2h, [h, f ] = 2e.

In this paper we take the linear combination of A1

G = {e1, e2, e3|e1 = −e, e2 = h, e3 = h− f},

[e1, e2] = 2(e3 − e2), [e1, e3] = 2e3, [e2, e3] = 2e1, (2.1)
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and its corresponding loop algebra

G̃ = {e1(n), e2(n), e3(n)|ei(n) = eiλ
n, i = 1, 2, 3}, [ei(m), ej(n)] = [ei, ej ]λ

m+n. (2.2)

We start from the Lie algebra G to generate the higher-dimensional Lie algebra Gh.

Gh = {w1, w2, . . . , w6}, (2.3)

where

w1 =

(
e1 0

0 e1

)
, w2 =

(
e2 0

0 e2

)
, w3 =

(
e3 0

0 e3

)
,

w4 =

(
0 e1

0 e1

)
, w5 =

(
0 e2

0 e2

)
, w6 =

(
0 e3

0 e3

)
.

A direct verification exhibits that

[w1, w2] = 2(w3 − w2), [w1, w3] = 2w3, [w2, w3] = 2w1,

[w4, w5] = 2(w6 − w5), [w4, w6] = 2w6, [w5, w6] = 2w4,

[w2, w4] = 2(w5 − w6), [w3, w4] = −2w6, [w1, w5] = 2(w6 − w5), [w1, w2] = 2(w3 − w2),

[w3, w5] = −2w4, [w1, w6] = 2w6, [w2, w6] = 2w4, [w1, w4] = [w2, w5] = [w3, w6] = 0.

Let Gh1 = {w1, w2, w3}, Gh2 = {w4, w5, w6}. We find that Gh = Gh1

⊎
Gh2, Gh1 is isomorphic

to the Lie algebra G, and is simple, which is a key fact for generating nonlinear integrable

couplings. It is easy to see that again

[Gh1, Gh1] = Gh1, [Gh2, Gh2] = Gh2, [Gh1, Gh2] ⊆ Gh2. (2.4)

So, the Lie sub-algebra Gh1 and Gh2 are simple. Define a loop algebra G̃h corresponding to the

Lie algebra Gh

G̃h = {w1(n), w2(n), . . . , w6(n)}, wi(n) = wiλ
n, [wi(m), wj(n)] = [wi, wj ]λ

m+n. (2.5)

By using the Lie algebra G and Gh, we can construct another new higher-dimensional Lie

algebra Ga.

Ga = {g1, g2, . . . , g9}, (2.6)

where

g1 =

 e1 0 0

0 e1 0

0 0 e1

 , g2 =

 e2 0 0

0 e2 0

0 0 e2

 , g3 =

 e3 0 0

0 e3 0

0 0 e3

 ,

g4 =

 0 e1 0

0 e1 0

0 0 e1

 , g5 =

 0 e2 0

0 e2 0

0 0 e2

 , g6 =

 0 e3 0

0 e3 0

0 0 e3

 ,

g7 =

 0 0 e1

0 0 e1

0 0 e1

 , g8 =

 0 0 e2

0 0 e2

0 0 e2

 , g9 =

 0 0 e3

0 0 e3

0 0 e3

 ,
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which has the following operation relations

[g1, g2] = 2(g3 − g2), [g1, g3] = 2g3, [g2, g3] = 2g1,

[g4, g5] = [g1, g5] = [g4, g2] = 2(g6 − g5), [g7, g9] = [g1, g9] = [g7, g3] = [g4, g9] = [g7, g6] = 2g9,

[g4, g6] = [g1, g6] = [g4, g3] = 2g6, [g7, g8] = [g1, g8] = [g7, g2] = [g4, g8] = [g7, g5] = 2(g9 − g8),

[g5, g6] = [g2, g6] = [g5, g3] = 2g4, [g8, g9] = [g2, g9] = [g8, g3] = [g5, g9] = [g8, g6] = 2g7,

[g1, g4] = [g2, g5] = [g3, g6] = [g1, g7] = [g4, g7] = [g2, g8] = [g5, g8] = [g3, g9] = [g6, g9] = 0.

Let Ga1 = {g1, g2, g3}, Ga2 = {g4, g5, g6}, and Ga3 = {g7, g8, g9}. We find that they satisfy the

condition

Ga = Ga1

⊎
Ga2

⊎
Ga3, [Ga1, Ga2] ⊆ Ga2, [Ga2, Ga3] ⊆ Ga3, [Ga1, Ga3] ⊆ Ga3, (2.7)

and the Lie sub-algebra Ga1, Ga2 and Ga3 are all simple, which is a key fact for generating

nonlinear bi-integrable couplings. A loop algebra G̃a is defined as

G̃a = {g1(n), g2(n), . . . , g9(n)}, gi(n) = giλ
n, [gi(m), gj(n)] = [gi, gj ]λ

(m+n). (2.8)

3. The hierarchy

In this section, we make use of the Lie algebraG and Tu scheme to get an integrable hierarchy

along with Hamiltonian structure, which can reduce to some evolution equation including the

well-known mKdV equation.

Considering the spectral problem{
φx = Uφ,U = −e1(1) + qe2(0) + re3(0),

φt = V φ, V = ae1(0) + be2(0) + ce3(0),
(3.1)

and solving the stationary equation

Vx = [U, V ], (3.2)

we obtain the recursive relations
amx = 2qcm − 2rbm,

bm+1 =
1

2
bmx − qam,

cm+1 = −1

2
(bmx + cmx)− ram.

(3.3)

Setting a0 = α, b0 = 0, c0 = 0, one infers from (3.3)

b1 = −αq, c1 = αr, a1 = 0, b2 = −α

2
qx, c2 =

α

2
(qx + rx),

a2 =
α

2
q2 + qr, b3 = −α

4
qxx − α

2
q3 + αq2r, . . . . (3.4)

Denote

V
(n)
+ =

n∑
m=0

ame1(n−m) + bme2(n−m) + cme3(n−m) = V (n),
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we can obtain the following the integrable hierarchy

utn =

(
q

r

)
tn

=

(
0 −1

1 0

)(
−2(bn+1 + cn+1)

−2bn+1

)
= JGm+1, (3.5)

which satisfy the zero curvature equation

Ut − V (n)
x + [U, V (n)] = 0. (3.6)

Taking n = 2, α = 2 in (3.5) gives rise to{
qt2 = −qxx − 2q3 + 4rq2,

rt2 = qxx + rxx − 2q3 + 4qr2 − 2q2r;
(3.7)

taking n = 3, α = 2 in (3.5) gives rise to
qt3 = −1

2
qxxx − 3q2qx + 2qrqx + 4q2rx,

rt3 =
1

2
rxxx + 3q2rx + 6qrrx.

(3.8)

If set q = r, the second equation of (3.8) is just the well-known mKdV equation, so (3.8) can be

called one coupled equation of mKdV.

In the following, we construct the Hamiltonian structure of (3.5) by means of the trace

identity [20]. A direct calculation reads

⟨V, ∂U
∂q

⟩ = −2b− 2c, ⟨V, ∂U
∂r

⟩ = −2b, ⟨V, ∂U
∂λ

⟩ = −2a. (3.9)

Substituting above formulae into trace identity and comparing the coefficients of λ−n−1 yields(
δ
δq
δ
δr

)
(−2an+1) = (−n+ γ)

(
−2bn − 2cn

−2bn

)
. (3.10)

Setting n = 1 leads to γ = 0. Therefore, we obtain the Hamiltonian structure of (3.5)

utn =

(
q

r

)
tn

= J
δHn+1

δu
, Hn =

2an+1

n
. (3.11)

Obviously, J is a Hamiltonian operator. We can verify that the integrable hierarchy (3.5) is

integrable in the sense of Liouville.

4. Nonlinear integrable couplings

As for nonlinear integrable couplings, many interesting results have been obtained [11–

16,23–25]. In this section, we start from the Lie algebra Gh to generate the nonlinear integrable

coupling of (3.5).

Apply the loop algebra G̃h and take the linear forms as follows{
φx = Uφ,U = −w1(1) + qw2(0) + rw3(0) + u1w5(0) + u2w6(0),

φt = V φ, V = aw1(0) + bw2(0) + cw3(0) + dw4(0) + fw5(0) + hw6(0).
(4.1)
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Solving the auxiliary equation (3.2) yields

amx = 2qcm − 2rbm,

bm+1 =
1

2
bmx − qam,

cm+1 = −1

2
(bmx + cmx)− ram,

dmx = 2(q + u1)hm − 2(v + u2)fm + 2u1cm − 2u2bm,

fm+1 =
1

2
fmx − (q + r)dm − u1am,

hm+1 = −1

2
(fmx + hmx)− (r + u2)dm − u2am,

(4.2)

−V
(n)
+x + [U, V

(n)
+ ] = −2bn+1w2(0) + 2(bn+1 + cn+1)w3(0)− 2fn+1w5(0) + 2(fn+1 + hn+1)w6(0),

(4.3)

and if set a0 = α, d0 = β, b0 = c0 = f0 = h0 = 0, one infers from (4.2)

b1 = −αq, c1 = αr, a1 = 0, b2 = −α

2
qx, c2 =

α

2
(qx + rx), a2 =

α

2
q2 + qr, f1 = −β(q + u1)− αu1,

h1 = −β(r + u2)− αu2, f2 = −β

2
(qx + u1x)−

α

2
u1x, h2 =

β

2
(rx + u2x + qx + u1x) +

α

2
(u2x + u1x),

d2 = β((r + u2)(u+ u1) +
1

2
(u2 + u2

1) + uu1) + α(u1(q + r) + u2(u+ u1) +
1

2
u2
1), . . . .

Set V (n) = V
(n)
+ . Then the zero curvature equation (3.6) determines the Lax integrable system

as follows

utn =

(
utn

vtn

)
=

(
K(u)

S(u, v)

)
, (4.5)

where

utn =

(
q

r

)
tn

=

(
bnx − 2qan

cnx + 2(q + r)an

)
, (4.6)

vtn =

(
u1

u2

)
tn

=

(
fnx − 2(q + u1)dn − 2u1an

hnx + 2(q + r + u1 + u2)dn + 2(u1 + u2)an

)
. (4.7)

Taking n = 2 in (4.7) gives rise to

u1t2 =
−β

2
(qxx + u1xx)−

α

2
u1xx − 2β((r + u2)(q + u1)

2 +
1

2
(q + u1)(q

2 + u2
1) + qu1(q + u1))−

2α(u1(q + r)(q + u1) + u2(q + u1)
2 +

1

2
u2
1(q + u1) + u1(

1

2
q2 + qr)),

u2t2 =
β

2
(rxx + u2xx + qxx + u1xx) +

α

2
(u1xx + u2xx) + 2β(q + r + u1 + u2)((r + u2)(q + u1)+

1

2
(q2 + u2

1) + qu1) + 2α(q + r + u1 + u2)(u1(q + r) + u2(q + u1) +
1

2
u2
1)+

2α(u1 + u2)(
1

2
q2 + qr).

(4.8)

Comparing the structures of (4.5) with (3.5) and according to the definition of integrable

couplings, we can conclude that (4.5) are integrable couplings of the system (3.5). Moreover,
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(4.8) is a nonlinear coupled system in u1, u2 and along with the variable coefficient functions q, r

which satisfy (3.7). Hence (4.5) is a nonlinear integrable coupled of the (3.5).

If set α = 0, β = 2, u1t2 = u2t2 = 0. (4.8) can be reduced to
qxx + u1xx + 4(q + u1)((r + u2)(u+ u1) +

1

2
(q + u1)

2) = 0,

rxx + u2xx + 4(r + u2)((r + u2)(u+ u1) +
1

2
(q + u1)

2) = 0,

(4.9)

which is a new nonlinear coupled partial equation with variable coefficients q(x, t), and r(x, t).

In what follows, we investigate the Hamiltonian structure of the nonlinear integrable cou-

pling (4.5) by applying the variational identity. For a = Σ6
i=1aiwi, b = Σ6

j=1bjwj ∈ G2, the

commutator [a, b]T can be obtained

[a, b]T = (a1, a2, . . . , a6)Rh(b), (4.10)

where

Rh(b) =



0 −2b2 2(b2 + b3) 0 −2b5 2(b5 + b6)

2b3 2b1 −2b1 2b6 2b4 −2b4

−2b2 0 −2b1 −2b5 0 −2b4

0 0 0 0 −2(b2 + b5) 2(b2 + b3 + b5 + b6)

0 0 0 2(b3 + b6) 2(b1 + b4) −2(b1 + b4)

0 0 0 −2(b2 + b5) 0 −2(b1 + b4)


.

Solving the matrix equation

R(b)F = −(R(b)F )T , FT = F, (4.11)

yields that

Fh =



η1 0 0 η2 0 0

0 −η1 −η1 0 −η2 −η2

0 −η1 0 0 −η2 0

η2 0 0 η2 0 0

0 −η2 −η2 0 −η2 −η2

0 −η2 0 0 −η2 0


,

A direct calculation reads

⟨V, ∂U
∂q

⟩ = −η1(b+ c)− η2(f + h), ⟨V, ∂U
∂r

⟩ = −η1b− η2f, ⟨V,
∂U

∂λ
⟩ = −η1a− η2d,

⟨V, ∂U
∂u1

⟩ = −η2(b+ c+ f + h), ⟨V, ∂U
∂u2

⟩ = −η2(b+ f). (4.12)

Inserting the above formulas into the variational identity and comparing the coefficients of λ−n−1

yields
δ
δq
δ
δr
δ

δu1

δ
δu2


∫ x

(−η1an+1 − η2dn+1)dx = (−n+ γ)


−η1(bn + cn)− η2(fn + hn)

−η1bn − η2fn

−η2(bn + cn + fn + hn)

−η2(bn + fn)

 . (4.13)
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Setting n = 1 leads to γ = 0. Therefore, we obtain the Hamiltonian structure of (4.5)
q

r

u1

u2


tn

=


0 −2

η1−η2
0 −2

η2
2−η1η2

2
η1−η2

0 2
η2
2−η1η2

0

0 2
η1−η2

0 2
η2
2−η1η2

−2
η1−η2

0 −2
η2
2−η1η2

0


δHn+1

δu
, Hn =

∫ x η1an+1 + η2dn+1

n
dx.

(4.14)

5. Nonlinear Bi-integrable couplings

Bi-integrable couplings were proposed by Ma [3]. In this section, with the help of the Lie

algebra Ga, we can derive a nonlinear bi-integrable coupling of (3.5).

Taking the linear forms as follows
φx = Uφ,U = −g1(1) + qg2(0) + rg3(0) + u1g5(0) + u2g6(0) + u3g8(0) + u4g9(0),

φt = V φ, V =
∞∑

m=0

(
9∑

i=1

Vjmgj(−m)),
(5.1)

and solving the auxiliary equation (3.2) yields
V7mx = 2(u+ u1 + u3)V9m − 2(v + u2 + u4)V8m + 2u3(V3m + V6m)− 2u4(V2m + V5m),

V8,m+1 =
1

2
V8mx − (u+ u1 + u3)V7m − u3(V1m + V4m),

V9,m+1 =
1

2
(V8mx + V9mx − (v + u2 + u4)V7m − u4(V1m + V4m),

(5.2)

−V
(n)
+x + [U, V

(n)
+ ] =− 2V2,n+1g2(0) + 2(V2,n+1 + V3,n+1)g3(0)− 2V5,n+1g5(0) + 2(V5,n+1+

V6,n+1)g6(0)− 2V8,n+1g8(0) + 2(V8,n+1 + V9,n+1)g9(0). (5.3)

If set V10 = α1, V40 = α2, V70 = α3, V20 = V30 = V50 = V60 = V40 = V80 = V90 = 0, one infers

from (5.2)

V81 = −α3(q + u1 + u3)− (α1 + α2)u3, V91 = −α3(r + u2 + u4)− (α1 + α2)u4,

V82 =
−α3

2
(qx + u1x + u3x)−

(α1 + α2)

2
u3x,

V72 = α3((q + u1 + u3)(q + u1 + u3 + r + u2 + u4)−
1

2
(q + u1 + u3)

2),

V92 =
α3

2
(qx + u1x + u3x + rx + u2x + u4x) +

(α1 + α2)

2
(u3x + u4x). (5.4)

Set V (n) = V
(n)
+ . Then the zero curvature equation determines the Lax integrable system as

follows

ũtn =

 utn

vtn

wtn

 =

 K(u)

S1(u, v)

S2(u, v, w)

 , (5.5)
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where

utn =

(
q

r

)
tn

=

(
V2nx − 2qV1n

V3nx + 2(q + r)V1n

)
, (5.6)

vtn =

(
u1

u2

)
tn

=

(
V5nx − 2(q + u1)V2n − 2u1V1n

V6nx + 2(q + r + u1 + u2)V4n + 2(u1 + u2)V1n

)
, (5.7)

wtn =

(
u3

u4

)
tn

=

(
V8nx − 2(q + u1 + u3)V7n − 2u3(V1n + V4n)

V9nx + 2(q + r + u1 + u2 + u3 + u4)V7n + 2(u3 + u4)(V1n + V4n)

)
.

(5.8)

When n = 2, (5.8) reduces to the following evolution equation

u3t2 =V82x − 2(q + u1 + u3)V72 − 2u3(α2((r + u2)(q + u1) +
1

2
(q2 + u2

1) + qu1)+

α1(
1

2
q2 + qr + u1(q + r) + u2(q + u1) +

1

2
u2
1)),

u4t2 =V92x + 2(q + r + u1 + u2 + u3 + u4)V72 + 2(u3 + u4)(α2((r + u2)(q + u1)+

1

2
(q2 + u2

1) + qu1) + α1(
1

2
q2 + qr + u1(q + r) + u2(q + u1) +

1

2
u2
1)),

(5.9)

where V72, V82, V92 are presented in (5.4). Comparing the structures of (5.5) with (4.5) and

(3.5) and according to the definition of bi-integrable couplings, we can conclude that (5.5) is

bi-integrable couplings of the system (3.5). Of course, (5.5) is also integrable couplings of the

system (4.5) and (3.5). Especially, let α2 = α3 = 0, α1 = 2. We get the reduced bi-integrable

coupling of (3.7).

qt2 =− qxx − 2q3 + 4rq2,

rt2 =qxx + rxx − 2q3 + 4qr2 − 2q2r;

u1t2 =− u1xx − 4(u1(q + r)(q + u1) + u2(q + u1)
2 +

1

2
u2
1(q + u1) + u1(

1

2
q2 + qr)),

u2t2 =u1xx + u2xx4(q + r + u1 + u2)(u1(q + r) + u2(q + u1) +
1

2
u2
1) + 4(u1 + u2)(

1

2
q2 + qr);

u3t2 =− u3xx − 4(q + u+u3)((u3 + u4)(q + r + u1 + u2 + u3 + u4)− u4(r + u2 + u3 + u4)−
1

2
u2
3)− 2u3(q

2 + 2qr + 2u1(q + r) + 2u2(q + u1) + u2
1),

u4t2 =u3xx + u4xx + 4(q + r + u1 + u2 + u3 + u4)((u3 + u4)(q + r + u1 + u2 + u3 + u4)−

u4(r + u2 + u3 + u4)−
1

2
u2
3) + 2(u3 + u4)(q

2 + 2qr + 2u1(q + r) + 2u2(q + u1) + u2
1).

(5.10)

It is easy to see that (5.10) is a nonlinear coupled system in u3, u4 and along with the variable

coefficient functions q, r, u1, u2 which satisfy (3.7) and (4.8). Hence (5.5) is a nonlinear bi-

integrable coupling of the (3.5).

In what follows, we investigate the Hamiltonian structure of the nonlinear integrable cou-

pling (5.5) by applying the variational identity. For a = Σ9
i=1aigi, b = Σ9

j=1gjwj ∈ Ga, the

commutator [a, b]T can be obtained

[a, b]T = (a1, a2, . . . , a9)Ra(b), (5.11)
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where

Ra(b) =

 R11 R12 R13

0 R22 R23

0 0 R33

 , R11 =

 0 −2b2 2(b2 + b3)

2b3 2b1 −2b1

−2b2 0 −2b1

 ,

R12 =

 0 −2b5 2(b5 + b6)

2b6 2b4 −2b4

−2b5 0 −2b4

 , R13 =

 0 −2b8 2(b8 + b9)

2b9 2b7 −2b7

−2b8 0 −2b7

 ,

R22 =

 0 −2(b2 + b5) 2(b2 + b3 + b5 + b6)

2(b3 + b6) 2(b1 + b4) −2(b1 + b4)

−2(b2 + b5) 0 −2(b1 + b4)

 , R23 =

 0 −2b8 2(b8 + b9)

2b9 2b7 −2b7

−2b8 0 −2b7

 ,

R33 =

 0 −2(b2 + b5 + b8) 2(b2 + b3 + b5 + b6 + b8 + b9)

2(b3 + b6 + b9) 2(b1 + b4 + b7) −2(b1 + b4 + b7)

−2(b2 + b5 + b8) 0 −2(b1 + b4 + b7)

 .

Solving the matrix equation (4.11), yields that

Fa =



η1 0 0 η2 0 0 η3 0 0

0 −η1 −η1 0 −η2 −η2 0 −η3 −η3

0 −η1 0 0 −η2 0 0 −η3 0

η2 0 0 η2 0 0 η3 0 0

0 −η2 −η2 0 −η2 −η2 0 −η3 −η3

0 −η2 0 0 −η2 0 0 −η3 0

η3 0 0 η3 0 0 η3 0 0

0 −η3 −η3 0 −η3 −η3 0 −η3 −η3

0 −η3 0 0 −η3 0 0 −η3 0



.

A direct calculation reads

⟨V, ∂U
∂q

⟩ = −η1(V2 + V3)− η2(V5 + V6)− η3(V8 + V9), ⟨V,
∂U

∂r
⟩ = −η1V2 − η2V5 − η3V8,

⟨V, ∂U
∂λ

⟩ = −η1V1 − η2V4 − η3V7, ⟨V,
∂U

∂u1
⟩ = −η2(V2 + V3 + V5 + V6)− η3(V8 + V9),

⟨V, ∂U
∂u2

⟩ = −η2(V2 + V5)− η3V8, ⟨V,
∂U

∂u3
⟩ = −η3(V2 + V3 + V5 + V6 + V8 + V9),

⟨V, ∂U
∂u4

⟩ = −η3(V2 + V5 + V8). (5.12)

Inserting the above formulas into the variational identity and comparing the coefficients of λ−n−1

yields

δ

δũ

∫ x

(−η1V1,n+1 − η2V4,n+1 − η3V7,n+1)dx
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= (−n+ γ)



−η1(V2n + V3n)− η2(V5n + V6n)− η3(V8n + V9n)

−η1V2n − η2V5n − η3V8n

−η2(V2n + V3n + V5n + V6n)− η3(V8n + V9n)

−η2(V2n + V5n)− η3V8n

−η3(V2n + V3n + V5n + V6n + V8n + V9n)

−η3(V2n + V5n + V8n)


. (5.13)

Employing the initial values gives γ = 0. Thus, the Hamiltonian structure of the bi-integrable

coupling (5.5) can be written

ũtn =



q

r

u1

u2

u3

u4


tn

= J̃
δH̃n+1

δũ
, H̃n =

∫ x η1V1,n+1 + η2V4,n+1 + η3V7,n+1

n
dx, (5.14)

where

J̃ =



0 −2
η1−η2

0 2
η1−η2

0 0
2

η1−η2
0 −2

η1−η2
0 0 0

0 2
η1−η2

0 2(η1−η3)
(η1−η2)(η3−η2)

0 −2
(η3−η2)

−2
η1−η2

0 −2(η1−η3)
(η1−η2)(η3−η2)

0 2
(η3−η2)

0 0 0 2
η2−η3

0 2η2

η3(η3−η2)

0 0 −2
η2−η3

0 −2η2

η3(η3−η2)
0


. (5.15)

6. Conclusions

Making use of a new Lie algebra, which is the linear combination form of the simple Lie

algebra A1, two kinds of higher-dimensional Lie algebras are introduced, which are much con-

venient in generating nonlinear integrable and bi-integrable couplings. By employing the new

Lie algebra and Tu scheme an integrable Hamiltonian hierarchy is obtained, from which some

reduced evolution equations are given. Then, starting from the two kinds of higher-dimensional

Lie algebras the nonlinear integrable and bi-integrable couplings of the integrable Hamiltonian

hierarchy are worked out, respectively. Moreover their corresponding Hamiltonian structures are

generated by the variational identity. Actually, using the method of constructing Lie algebras

presented in the paper can generate nonlinear integrable and bi-integralbe couplings of other

soliton hierarchies.
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