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Abstract For a multiobjective bilevel programming problem (P ) with an extremal-value

function, its dual problem is constructed by using the Fenchel-Moreau conjugate of the func-

tions involved. Under some convexity and monotonicity assumptions, the weak and strong

duality assertions are obtained.
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1. Introduction

Recently, both researchers and practitioners have paid an increasing amount of attention

to bilevel programming problems. This class of programming problems offers a very suitable

modeling framework for a number of practical problems [1,2]. Many papers have been published

in the last two decades studying either single objective or multiobjective bilevel programming

problems [3–14]. Bard [3] studied a linear bilevel programming problem and developed first order

necessary optimality conditions for it. Dempe [4,5] gave some necessary optimality conditions

under the assumption that the solution set of the lower level problem is a singleton. Ye and

Zhu [6] derived optimality conditions for the general bilevel programming problems without the

assumption that the solution set of the lower level problem is a singleton. Ye [7] considered a

nondifferentiable bilevel programming problem and gave some optimality conditions for it by

using the value function approach. Suneja and Kohli [10] derived some sufficient optimality

conditions for a bilevel programming problem and established various duality results associating

the primal problem with two dual problems. Aboussoror et al. [11,12] considered the bilevel

programs with extremal value function, and obtained the global optimality conditions and the

Fenchel-Lagrange duality results.

The multiobjective bilevel optimization problems have also been studied in the literature.

For a nonsmooth multiobjective bilevel programming problem, the necessary optimality condi-

tions were given in [13] by combining the value function and KKT condition of the lower level

problem in the constraints. In [14], a numerical method for solving nonlinear multiobjective

Received March 16, 2014; Accepted March 3, 2015

Supported by the National Natural Science Foundation of China (Grant No. 11171250).

* Corresponding author

E-mail address: wanghjshx@126.com (Haijun WANG); zhangrf2006@126.com (Ruifang ZHANG)



312 Haijun WANG and Ruifang ZHANG

bilevel problems without convexity assumptions was given. There are also many interesting ap-

plications of multiobjective bilevel optimization problems, such as medical engineering ([14]),

city bus transportation system financed by the public authorities illustrated in [21] and water

resources optimal allocation [22], etc.

In this paper we consider the following multiobjective bilevel programming problem with

an extremal-value function

(P ) v −min F (x, v(x)),

s.t. x ∈ X,

G(x, v(x)) ≤Rq
+
0,

where v(x) is the optimal value of the lower level problem

(Px) min
y∈A

f(x, y)

and F = (F1, . . . , Fp)
T : Rn × R → Rp, G = (G1, . . . , Gq)

T : Rn × R → Rq, f : Rn × Rm → R,

A ⊂ Rm is a nonempty compact convex set, X ⊂ Rn is nonempty convex set. We always assume

that Fi (i = 1, . . . , p) and Gj (j = 1, . . . , q) are convex functions and Rn+1
+ -increasing, and that

f is a convex function.

Despite some duality results having been obtained in [10,12] for single objective bilevel pro-

gramming problems, and an increasing amount attention having been paid to the multiobjective

bilevel programming problems, there are not many papers studying the duality theory for multi-

objective bilevel programming problems. Thias paper aims at developing the duality theory for

the above multiobjective bilevel optimization problem by extending the approach in [12]. First,

we associate the primal problem (P ) to a scalar problem by using a parameter λ ∈ Rp. To

the scalar problem we derive the duality results and some optimality conditions for it by using

the conjugate duality approach [15–19]. Then a dual problem to (P ) is constructed, and some

duality results are proved.

This paper is organized as follows. In Section 2 we recall some notations, definitions and

some well-known results. In Section 3 we construct a dual problem to (P ) by using the scalar

method, and prove the weak and strong duality theorems between the primal problem and its

dual problem. In Section 4, we give an example to illustrate the strong duality assertion and

propose a practical model which may be solved by using our results.

2. Preliminary

In this section, we recall some notations and some known facts which can be found in [20].

For any x, y ∈ Rn, we define x ≤Rn
+
y (or y ≥Rn

+
x) if y − x ∈ Rn

+. Let X be a subset of

Rn. The relative interior of the set X is denoted by riX. The support function σX :Rn → R =

R∪{±∞} of X is defined by σX(x∗) = supx∈X x∗Tx. The indicator function δX : Rn → R of X

is defined by δX(x) = 0 if x ∈ X, and δX(x) = +∞ if x ̸∈ X.

For a function g : Rn → R, the effective domain of g is given by dom(g) = {x ∈ Rn : g(x) <
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+∞}. We say that g is proper if dom(g) ̸= ∅ and g(x) > −∞ for all x ∈ Rn, and that g is

Rn
+-increasing if y − x ∈ Rn

+ implies g(x) ≤ g(y). The conjugate function g∗X : Rn → R of g

relative to the set X is defined by g∗X(x∗) = sup{x∗Tx − g(x) : x ∈ X}. Note that if X = Rn,

the conjugate function of g relative to the set X is just the (Fenchel-Moreau) conjugate function

of g, denoted by g∗. By definition, the Young-Fenchel inequality holds:

g∗(x∗) + g(x) ≥ x∗Tx, for all x∗, x ∈ Rn.

It is well known that for a nonnegative real number λ,

(λg)∗(x∗) =

{
λg∗(x

∗

λ ), if λ > 0,

δ{0}(x
∗), if λ = 0.

In this paper we adopt the conventions that 0 × (±∞) = 0 and a × (±∞) = ±∞ for all

a > 0 as in [20].

Lemma 2.1 ([20]) Let gi : R
n → R (i = 1, . . . ,m) be proper convex functions. If

∩m
i=1 ri(dom(gi))

is nonempty, then

(i) (
∑m

i=1 gi)
∗(x∗) = inf{

∑m
i=1 g

∗
i (x

∗
i ) : x

∗ =
∑m

i=1 x
∗
i };

(ii) for all x∗ ∈ Rn, the infimum in (i) is attained.

Lemma 2.2 ([16]) Let h = (h1, . . . , hn)
T with hi : R

m → R (i = 1, . . . , n) be convex functions,

and g : Rn → R be proper convex and Rn
+-increasing function. If h(∩n

i=idomhi) ∩ int(domg) ̸=
∅，then

(g ◦ h)∗(x∗) = inf
r∈Rn

+

{
g∗(r) + (

n∑
i=1

rihi)
∗(x∗)

}
,

where for any x∗ ∈ Rm the infimum is attained.

For the multiobjective bilevel optimization problem (P ), some definitions of solution can

be introduced, such as feasible solution, efficient solution, properly efficient solution and weakly

efficient solution.

Definition 2.3 An element x̄ ∈ X is said to be a feasible solution of (P ), if v(x̄) is the optimal

value of the lower level problem (Px̄) and G(x̄, v(x̄)) ≤Rq
+
0.

We will denote the set of the feasible solution of (P ) as Ω, that is Ω = {x ∈ X|G(x, v(x)) ≤Rq
+

0 and v(x) is the optimal value of (Px)}.

Definition 2.4 An element x̄ ∈ Ω is said to be an efficient solution of the problem (P ), if

there is no x ∈ Ω such that F (x, v(x)) ≤Rp
+
F (x̄, v(x̄)) with Fi(x, v(x)) < Fi(x̄, v(x̄)) for some

i ∈ {1, . . . , p}.

Definition 2.5 An element x̄ ∈ Ω is said to be a properly efficient solution of the problem (P ),

if there exists λ = (λ1, . . . , λp) ∈ intRp
+ such that λTF (x̄, v(x̄)) ≤ λTF (x, v(x)) for all x ∈ Ω.

Let us notice that any properly efficient solution turns out to be an efficient solution.

3. Main results
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In this section, we first investigate the following scalar optimization problem.

(Pλ) inf λTF (x, v(x)),

s.t. x ∈ X,

G(x, v(x)) ≤Rq
+
0,

where λ ∈ Rp
+\{0} is a fixed vector and v(x) is the optimal value of the lower level problem

(Px) inf
y∈A

f(x, y).

For the case of the above scalar bilevel optimization problem without the constraint function G,

the Fenchel-Lagrange duality results have been obtained in [12]. In the following, we present the

duality results for (Pλ).

By using the technique in [12], let function h : Rn → Rn+1 be defined as

h(x) = (h1(x), . . . , hn(x), hn+1(x))
T = (x1, . . . , xn, v(x))

T ,

where v(x) is the optimal value of lower level problem (Px). We can rewrite the problem (Pλ)

as

(Pλ) inf λTF (h(x)),

s.t. x ∈ X,

G(h(x)) ≤Rq
+
0.

Thus the problem (Pλ) can be regarded as a composite programming problem which is

studied in many papers such as [16,17]. By using the similar method to that of in [12,16,17], we

can construct the following Lagrangian dual problem to the scalar problem (Pλ).

(Dλ) sup
r∈Rq

+

inf
x∈Rn

{
(λTF + rTG)(h(x)) + δX(x)

}
.

Since f is a convex function, we know that f is continuous [21, Corollary 10.1.1], and so

the marginal function v(x) is a finite convex function. Hence, hi is a finite convex function for

every i ∈ {1, . . . , n + 1}. On the other hand, λ ∈ Rp
+\{0} and r ∈ Rq

+ imply that the function

λTF + rTG is finite valued convex and Rp
+-increasing. Then, it follows from Lemmas 2.1 and

2.2 that the dual (Dλ) can be rewritten as

(Dλ) sup
(r,u,s,t)∈Y λ

{
−

p∑
i=1

λiF
∗
i (ui)− (rTG)∗(s−

p∑
i=1

λiui)− (sTh)∗(t)− σX(−t)
}
,

where Y λ = {(r, s, t, u) : r ∈ Rq
+, s ∈ Rn+1

+ , t ∈ Rn, u = (u1, . . . , up)
T , ui ∈ Rn+1, i = 1, . . . , p}.

The optimal values of the problem (Pλ) and (Dλ) are denoted as val(Pλ) and val(Dλ),

respectively. It is obvious that

val(Pλ) ≥ val(Dλ). (1)

In order to obtain the optimility conditions of (Pλ), the following generalized interior point
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constraint qualification is required:

(CQ) ∃x̄ ∈ riX such that

{
Gi(h(x̄)) ≤ 0, if i ∈ L,

Gi(h(x̄)) < 0, if i ∈ N,

where L = {i ∈ {1, . . . , q} : Gi ◦ h is an affine function } and N = {1, . . . , q} \ L.
For any λ ∈ Rp

+ \ {0}, let Iλ = {i ∈ {1, . . . , p} : λi > 0}. Using the similar method of

Theorem 3.3 in [17], we can get the following necessary and sufficient optimality conditions for

the problem (Pλ) and its dual (Dλ).

Theorem 3.1 (a) Let λ ∈ Rp
+\{0} be chosen arbitrarily. If x̄ ∈ X is an optimal solution

to (Pλ) and the constraint qualification (CQ) is fulfilled, then there exists an optimal solution

(r̄, s̄, t̄, ū) ∈ Y λ to the dual problem (Dλ), such that

(i) Fi(h(x̄)) + F ∗
i (ūi) = ūT

i h(x̄), ∀i ∈ Iλ,

(ii) r̄TG(h(x̄)) + (r̄TG)∗(s̄−
∑p

i=1 λiūi) = (s̄−
∑p

i=1 λiūi)
Th(x̄),

(iii) s̄Th(x̄) + (s̄Th)∗(t̄) = x̄T t̄,

(iv) σX(−t̄) = −x̄T t̄,

(v) r̄TG(h(x̄)) = 0.

(b) For a given λ ∈ Rp
+\{0}, assume that x̄ ∈ Ω and (r̄, s̄, t̄, ū) ∈ Y λ satisfy the condition

(i) − (v). Then x̄ is an optimal solution to (Pλ), (r̄, s̄, t̄, ū) is an optimal solution to (Dλ) and

val(Pλ) = val(Dλ).

From the duality results developed above for the scalar problem, we can introduce the

following multiobjective dual problem to (P ) and prove some duality results with respect to

properly efficient solution of (P ).

(D) v − max
(r,s,t,u,λ,α)∈Π

H(r, s, t, u, λ, α),

where

Π =
{
(r, s, t, u, λ, α) :r ∈ Rq

+, s ∈ Rn+1
+ , t ∈ Rn, u = (u1, . . . , up)

T , ui ∈ Rn+1,

i = 1, . . . , p, λ ∈ intRp
+, α = (α1, . . . , αp) ∈ Rp,

p∑
i=1

λiαi = 0
}
,

and

H(r, s, t, u, λ, α) =


H1(r, s, t, u, λ, α)

...

Hp(r, s, t, u, λ, α)


with Hi(r, s, t, u, λ, α) = −F ∗

i (ui)− 1
pλi

((rTG)∗(s−
∑p

i=1 λiui) + (sTh)∗(t) + σX(−t)) + αi.

The efficient solution for (D) can be defined in a similar manner as for (P).

Definition 3.2 An element (r̄, s̄, t̄, ū, λ̄, ᾱ) ∈ Π is said to be an efficient solution of the problem

(D), if there is no (r, s, t, u, λ, α) ∈ Π such that H(r, s, t, u, λ, α) ≥Rp
+

H(r̄, s̄, t̄, ū, λ̄, ᾱ) with

Hi(r, s, t, u, λ, α) > Hi(r̄, s̄, t̄, ū, λ̄, ᾱ) for some i ∈ {1, . . . , p}.
Now, we present the duality results between the vector problem (P ) and (D).
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Theorem 3.3 (weak duality) There are no x ∈ Ω and (r, s, t, u, λ, α) ∈ Π such that F (h(x)) ≤Rp
+

H(r, s, t, u, λ, α) and Fi(h(x)) < Hi(r, s, t, u, λ, α) for at least one i ∈ {1, . . . , p}.

Proof Let us suppose the contrary. Then there exist x ∈ Ω and (r, s, t, u, λ, α) ∈ Π satisfying that

F (h(x)) ≤Rp
+
H(r, s, t, u, λ, α) and Fi(h(x)) < Hi(r, s, t, u, λ, α) for at least one i ∈ {1, . . . , p}.

This implies

λTF (h(x)) < λTH(r, s, t, u, λ, α). (2)

On the other hand,

λTH(r, s, t, u, λ, α) =

p∑
i=1

λiHi(r, s, t, u, λ, α)

= −
p∑

i=1

λiF
∗
i (ui)−

p∑
i=1

λi
1

pλi

(
(rTG)∗(s−

p∑
i=1

λiui) + (sTh)∗(t) + σX(−t)
)
+

p∑
i=1

λiαi

= −
p∑

i=1

λiF
∗
i (ui)− (rTG)∗(s−

p∑
i=1

λiui)− (sTh)∗(t)− σX(−t).

It follows from (1) that λTF (h(x)) ≥ λTH(r, s, t, u, λ, α), which contradicts (2). �

Theorem 3.4 (strong duality) Assume that x̄ ∈ Ω is a properly efficient solution to (P ) and that

the constraint qualification (CQ) holds. Then there exists an efficient solution (r̄, s̄, t̄, ū, λ̄, ᾱ) ∈ Π

to the dual problem (D) such that F (h(x̄)) = H(r̄, s̄, t̄, ū, λ̄, ᾱ).

Proof Since x̄ ∈ Ω is a properly efficient solution to the problem (P ), there exists a vector

λ̄ = (λ̄1, . . . , λ̄p) ∈ intRp
+ such that x̄ is an optimal solution to the scalar problem (P λ̄). By

using Theorem 3.1, there exists an optimal solution (r̄, s̄, t̄, ū) ∈ Y λ̄ to the dual problem (Dλ̄)

such that the optimality conditions (i)− (v) are fulfilled. Further let ᾱ = (ᾱ1, . . . , ᾱp) ∈ Rp as

ᾱi =
1

pλ̄i

(
(r̄TG)∗(s̄−

p∑
i=1

λ̄iūi) + (s̄Th)∗(t̄) + σX(−t̄)
)
+ ūT

i h(x̄).

From the optimal condition in Theorem 3.1, we have

p∑
i=1

λ̄iᾱi = (r̄TG)∗(s̄−
p∑

i=1

λ̄iūi) + (s̄Th)∗(t̄) + σX(−t̄) +

p∑
i=1

λ̄iū
T
i h(x̄) = 0.

This shows that (r̄, s̄, t̄, ū, λ̄, ᾱ) ∈ Π.

Using the assertions (i)–(v) of Theorem 3.1, we get for i = 1, . . . , p, Hi(r̄, s̄, t̄, ū, λ̄, ᾱ) =

−F ∗
i (ūi)− 1

pλ̄i
((r̄TG)∗(s̄−

∑p
i=1 λ̄iūi)+(s̄Th)∗(t̄)+σX(−t̄))+ᾱi = −F ∗

i (ūi)+ ūih(x̄) = Fi(h(x̄)).

From Theorem 3.3, it follows that (r̄, s̄, t̄, ū, λ̄, ᾱ) is an efficient solution of (D) and F (h(x̄)) =

H(r̄, s̄, t̄, ū, λ̄, ᾱ). �
Note that the dual problem (D) has the conjugate function (sTh)∗ which depends on the

marginal function of the lower level problem. One can calculate the conjugate functions of the

marginal function v(·) as follows [12, Proposition 5.1].

v∗(x∗) = f∗
Rn×A(x

∗, 0), ∀x∗ ∈ Rn. (3)
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Therefore, for any s ∈ Rn+1
+ , the conjugate function (sTh)∗ can be calculated as

(sTh)∗(t) = sup
x∈Rn

{⟨t, x⟩ −
n+1∑
i=1

sihi(x)}

= sup
x∈Rn

{⟨t, x⟩ − (
n∑

i=1

sixi + sn+1v(x))}

=


ss+1f

∗
Rn×A(

t−(s1,...,sn)
sn+1

, 0), if sn+1 > 0,

0, if sn+1 = 0, ti = si, i = 1, . . . , n,

+∞, otherwise.

(4)

Then the dual problem (D) can be considered as following two problems.

(D1) v − max
(r,s,t,u,λ,α)∈Π1

H1(r, s, t, u, λ, α),

where

Π1 =
{
(r, s, t, u, λ, α) :r ∈ Rq

+, s ∈ Rn+1
+ with sn+1 > 0, t ∈ Rn, u = (u1, . . . , up)

T , ui ∈ Rn+1,

i = 1, . . . , p, λ ∈ intRp
+, α = (α1, . . . , αp) ∈ Rp,

p∑
i=1

λiαi = 0
}
,

and

H1(r, s, t, u, λ, α) =


H1

1 (r, s, t, u, λ, α)
...

H1
p (r, s, t, u, λ, α)


with H1

i (r, s, t, u, λ, α) = −F ∗
i (ui) − 1

pλi
((rTG)∗(s −

∑p
i=1 λiui) + sn+1f

∗
Rn×A(

t−(s1,...,sn)
sn+1

, 0) +

σX(−t)) + αi.

(D2) v − max
(r,s,t,u,λ,α)∈Π2

H2(r, s, t, u, λ, α),

where

Π2 =
{
(r, s, t, u, λ, α) : r ∈ Rq

+, s ∈ Rn+1
+ with sn+1 = 0, t ∈ Rn with tj = sj , j = 1, . . . , n,

u = (u1, . . . , up)
T , ui ∈ Rn+1, i = 1, . . . , p, λ ∈ intRp

+, α = (α1, . . . , αp) ∈ Rp,

p∑
i=1

λiαi = 0
}
,

and

H2(r, s, t, u, λ, α) =


H2

1 (r, s, t, u, λ, α)
...

H2
p (r, s, t, u, λ, α)


with H2

i (r, s, t, u, λ, α) = −F ∗
i (ui)− 1

pλi
((rTG)∗((s1, . . . , sn, 0)

T −
∑p

i=1 λiui) + σX(−t)) + αi.

From (3) and (4), we can easily obtain the following result.

Theorem 3.5 An element (r̄, s̄, t̄, ū, λ̄, ᾱ) ∈ Π is an efficient solution of problem (D) if and only
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if it is an efficient solution of problem (Da) satisfying that there is no (r, s, t, u, λ, α) ∈ Πb sat-

isfying that Hb(r, s, t, u, λ, α) ≥Rp
+
Ha(r̄, s̄, t̄, ū, λ̄, ᾱ) with Hb

i (r, s, t, u, λ, α) > Ha
i (r̄, s̄, t̄, ū, λ̄, ᾱ)

for some i ∈ {1, . . . , p}, where a, b ∈ {1, 2} and a ̸= b.

Proof By using (4) one can see that for any (r, s, t, u, λ, α) ∈ Π,

Hi(r, s, t, u, λ, α) =


H1

i (r, s, t, u, λ, α), if (r, s, t, u, λ, α) ∈ Π1,

H2
i (r, s, t, u, λ, α), if (r, s, t, u, λ, α) ∈ Π2,

−∞, otherwise.

Therefore, the conclusion is fulfilled from the definition of efficient solution. �
Notice that the objective functions of the problems (D1) and (D2) are only related to the

functions of F , G, f and δX . Theorem 3.5 shows that the efficient solutions of the dual problem

(D) can be considered equivalently as the efficient solutions of two single-level problems (D1)

and (D2).

4. Example and application

In this section, we will give an example to illustrate the strong duality assertion and propose

a practical model to show the applications of our results.

Let F = (F1, F2)
T : R×R → R×R, G : R×R → R, f : R×R → R be defined as follows:

F1(x, t) = 2x+ t, F2(x, t) =
1
2x

2 + x+ t,

G(x, t) = x+ 2t, f(x, y) = −x+ 1
2y

2.

Let X = [0,+∞), D = [0, 1].

For any x ∈ R, we have

v(x) = min
y∈D

f(x, y) = −x.

Then F1(x, v(x)) = x, F2(x, v(x)) =
1
2x

2, G(x, v(x)) = −x, h(x) = (x, v(x))T = (x,−x)T .

The primal problem that we consider becomes

(P ) v −min F (x, v(x)) = (x,
1

2
x2)T

s.t. x ∈ [0,+∞)

G(x, v(x)) = −x ≤ 0

In order to construct the dual problem, let us calculate following conjugate functions.

F ∗
1 (x

∗, t∗) =

{
0, x∗ = 2, t∗ = 1,

+∞, otherwise,
F ∗
2 (x

∗, t∗) =

{
1
2 (x

∗ − 1)2, t∗ = 1,

+∞, otherwise,

(rG)∗(x∗, t∗) =

{
0, x∗ = r, t∗ = 2r,

+∞, otherwise,
(sTh)∗(x∗) =

{
0, x∗ = s1 − s2,

+∞, otherwise,

σX(x∗) =

{
0, x∗ ≤ 0,

+∞, otherwise.
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Then the dual problem (D) looks like

(D) v − max
(r,s,t,u,λ,α)∈Π

H(r, s, t, u, λ, α) = v − max
(r,s,t,u,λ,α)∈Π

(
H1(r, s, t, u, λ, α)

H2(r, s, t, u, λ, α)

)
,

where

Hi(r, s, t, u, λ, α) = −F ∗
i (ui)−

1

pλi

(
(rTG)∗(s−

p∑
i=1

λiui) + (sTh)∗(t) + σX(−t)
)
+ αi.

One can see that the two objective functions of the dual problem are greater than −∞ only

if u1 = (2, 1)T , u2 = (u1
2, 1)

T , s −
∑2

i=1 λ1ui = (r, 2r)T , t = s1 − s2 ≤ 0. Therefore the dual

problem (D) becomes

(D) v − max
(r,s,t,u,λ,α)∈Π

(
H1(r, s, t, u, λ, α)

H2(r, s, t, u, λ, α)

)
,

where H1(r, s, t, u, λ, α) = α1, H2 = (r, s, t, u, λ, α) = −1
2 (u

1
2 − 1)2 + α2 and

Π =
{
(r, s, t, u, λ, α) : r ≥ 0, s = (s1, s2)

T ∈ R2
+, t = s1 − s2 ≤ 0, u = (u1, u2)

T , u1 = (2, 1)T ,

u2 = (u1
2, 1)

T , λ ∈ intR2
+, s−

2∑
i=1

λ1ui = (r, 2r)T , α = (α1, α2)
T ∈ R2,

2∑
i=1

λiαi = 0
}
.

We see that x̄ = 0 is a properly efficient solution to the primal problem (P ), and that the

condition (CQ) is fulfilled. By the Theorem 3.4, there exists an efficient solution (r̄, s̄, t̄, ū, λ̄, ᾱ) ∈
Π to the dual problem (D) such that F (h(x̄)) = H(r̄, s̄, t̄, ū, λ̄, ᾱ). In fact, we can find the efficient

solution of dual problem (D) as follows.

r̄ = 1, s̄ = (4, 4)T , t̄ = 0, ū = (ū1, ū2)
T =

(
(2, 1)T

(1, 1)T

)
, λ̄ = (1, 1)T , ᾱ = (0, 0)T .

The multiobjective bilevel programming problem has been studied in water resources opti-

mal allocation [22], regarding the optimal income of the society and optimal water quality as the

upper level decision makers; and the optimal income of using water as the lower level decision

maker. If we assume that the water amount of each user is the same and regard the optimal

quantity of water as the lower level decision maker, then we deduce the following multiobjective

bilevel programming problem

(P ) v −minri,w,t (F1(ri, w, t, v(ri, w, t)), F2(ri, w, t, v(ri, w, t)))

s.t.

n∑
i=1

ri,+w = Q,nv + w ≤ Q

ri ≥ r, w ≥ α, β ≤ t ≤ γ

v(ri, w, t) is the optimal value of the lower level problem

(Pv) min
y

g(ri, w, t, y)

where −F1(ri, w, t, v(ri, w, t)) = −h(w)−
∑n

i=1[f(v)+si(d1−v)+a(ri−v)−b
∑n

j=1(rj−v)(ri−v)]

is the society income function; F2(ri, w, t, v(ri, w, t)) =
∑n

i=1 0.01dipiv is the function of water
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quality. g(ri, w, t, y) is the water withdrawal function of each user, which is always a convex or

linear function.

For solving such a problem it is always converted to a single level multiobjective problem

by using the Karush-Kuhn-Tucker optimality conditions of the lower level problem [13,14,22].

According to the duality results obtained in this paper, some other methods may be provided to

solve the multiobjective bilevel programming problems.
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