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Abstract Change monitoring of distribution in time series models is an important issue. This

paper proposes a procedure for monitoring changes in the error distribution of autoregressive

time series, which is based on a weighed empirical process of residuals with weights equal to

the regressors. The asymptotic properties of our monitoring statistic are derived under the

null hypothesis of no change in distribution. The finite sample properties are investigated by

a simulation. As it turns out, the procedure is not only able to detect distributional changes

but also changes in the regression coefficient and mean. Finally, we apply the statistic to a

groups of financial data.
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1. Introduction

The problem of testing for parameter changes in time series models has attracted much

attention from researchers since time series often experience structural changes due to the changes

of monetary policy and critical social events. There are two distinctly different approaches to

tackle such problems, namely, (1) retrospective (off-line) or a posteriori test, and (2) sequential

(on-line) or a priori test. The former tests study a fixed historical sample, for surveys we refer to

Csorgo and Horvath [1], Lee et al. [2], Berkes et al. [3], Perron [4] and Qin and Tian [5]. The latter

tests on-line monitor new observations to see if a change occurs, for instance, we can mention

Chu et al. [6], Leisch et al. [7], Horvath et al. [8] and Chen et al. [9].

While many articles are devoted to detecting parameter change in time series, testing for

distributional changes in time series has also received wide attention. Karunamuni and Zhang

[10] investigated the detection of a change in distribution for independent observations. Inoue
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[11] suggested nonparametric tests of change in the distribution of a strong mixing sequence.

Horvath et al. [12] proposed a test to detect a change in the error distribution of an ARCH

sequence. Huskova and Meintanis [13,14] developed the detection problem for distributional

changes with independent identically distributed (i.i.d.) observations. Compared with retro-

spective test, more attention is being paid to sequential detection of a change in the distribution

of a time series. Gombay [15] studied sequential detection of distributional changes in i.i.d.

observations. Huskova and Chochola [16] investigated sequential detection of a change in dis-

tribution in case of independent and dependent observations. Na et al. [17] developed a general

monitoring procedure for time series and applied their method to monitor distributional changes

in i.i.d. samples. For autoregressive (AR) models, Lee et al. [18] proposed a monitoring proce-

dure related to Kolmogorov-Smirnov (K-S) statistics for an early detection of error distribution

changes in AR(p) models. Hlavka et al. [19] discussed a sequential test based on the empirical

characteristic function (ECF) of the residuals for monitoring changes in the error distribution.

However, the tests proposed by Lee et al. [18] and Hlavaka et al. [19] could not achieve satisfac-

tory effects when the error of AR(p) models changes from normal distribution to heavy-tailed

distribution. In other words, their procedures have lower powers and longer detection delays

in that case. Heavy-tailed distribution is applied to many fields of probability and statistics,

such as branching process, random theory, queuing theory and risk theory and so on（see Su et

al. [20]）. Hence, studying for a monitoring scheme, which is sensitive for this type of change, is

necessary and meaningful.

With the above considerations in mind, we provide in this paper a monitoring procedure

based on a weighted empirical process of residuals with weights equal to the regressors. The

weighted empirical process of residuals was employed by Bai [21] in order to test parameter

constancy in linear regression models in an off-line setting. Simulations indicate that the proposed

procedure has higher powers and shorter detection delays than that of Lee et al. [18] and Halvka

et al. [19] when the error terms of AR(p) models change from normal distribution to heavy-tailed

distribution, furthermore, this procedure also produces satisfactory results for changes in the

regression coefficient and mean.

The rest of the paper is organized as follows. Section 2 introduces the models and assump-

tions. The test statistic and its asymptotic behaviors under both null and alternative hypothesis

are stated in Section 3. In Section 4, we show the finite sample performance through simulations

and empirical application. Section 5 concludes the paper. The proof of Theorem 3.1 is gathered

in Section 6.

2. Assumptions and models

Let {xt, t = p+ 1, . . .} be an AR(p) process defined by the equation

xt = βTXt−1 + εt (1)

where Xt−1 = (xt−1, . . . , xt−p)
T , and β = (β1, . . . , βp)

T is an unknown regression parameter.

The errors εt are independent, each having a corresponding distribution function Ft with mean
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zero and finite variance.

In this paper, we monitor the distributional change in autoregressive models with at most

one change point. For some known T < ∞, we are interested in testing the hypothesis

H0 : Ft = F0, t = 1, . . . , T, . . . , ⌊Tκ⌋, (2)

H1 : Ft = F0, T < t < T + k∗; Ft = F 0, T + k∗ ≤ t ≤ ⌊Tκ⌋, (3)

where the distribution functions F0 ̸= F 0 as well as the time of change k∗ are assumed unknown,

κ is some fixed number larger than 1, ⌊·⌋ denotes the integer part.

In the hypothesis-testing problem exemplified by Hi, i = 0, 1, suppose that there exists a

fixed set x1, . . . , xT of historic data which involve no change, i.e., F1 = · · · = FT . Based on this

data set, we complete the estimator β̂T := β̂(x1, . . . , xT ) of β in model (1). Then, in view of the

fact that the errors are unobserved, typically one calculates the residuals

ε̂t = xt − β̂′
TXt−1,

and it is on the basis of these residuals that the null hypothesis H0 will be tested against H1.

Now suppose that we are operating with an on-line monitoring scheme. So that the test

statistic, say St, is computed sequentially at each time point, and that the null hypothesis should

be rejected when the value of the statistic exceeds an appropriately chosen constant cα for the

first time. Otherwise we should continue monitoring. The associated stopping rule is given by

τ(T ) =

{
inf{T < t < ⌊Tκ⌋ : St > cα},
⌊Tκ⌋, if St ≤ cα for T < t < ⌊Tκ⌋.

As in classical hypothesis testing, our aim is to control the overall value of α,

lim
T→∞

PH0(τ(T ) < ∞) = α, (4)

lim
T→∞

PH1(τ(T ) < ∞) = 1, (5)

the probability α ∈ (0, 1) controls the false alarm rate, (4) ensures that the probability of false

alarm is asymptotically bounded by α, while (5) means that a change is detected with probability

approaching one.

In the remainder of this section, we state the assumptions on the regression model

Assumption 2.1 {εt, t = 1, 2, . . .} are i.i.d. random variables with common distribution F0

having zero mean, positive variance and E|ε4t | < ∞, F0 admits a density function f , f > 0. Both

f(x) and xf(x) are assumed to be uniformly continuous on the real line. Furthermore, there

exists a finite number L such that |xf(x)| < L and |f(x)| < L for all x.

Assumption 2.2 The initial values x1, x2, . . . , xp are independent of εp+1, . . . , εT , let βp ̸= 0,

and the roots of the polynomial zp − β1z
p−1 − · · · − βp are less than one in absolute value.

Assumption 2.3 (Y TY )1/2(β̂T − β) = Op(1), as T → ∞, where Y = (x1, x2, . . . , xT )
T .
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Assumption 2.4 The regressors satisfy

lim
T→∞

max
1≤t≤⌊Tκ⌋

1

T 1/2
|xt| = op(1),

lim
T→∞

1

T

⌊Ts⌋∑
t=1

x2
t = lim

T→∞

1

T
E

⌊Ts⌋∑
t=1

x2
t = l(s), uniformly s ∈ [1, κ],

where l(s) is positive for s > 0.

Assumption 2.5 For every fixed s1, there exists a sequence of positive number zT = Op(1)

such that

1

T

⌊Ts⌋∑
t=⌊Ts1⌋

|xt| ≤ (s− s1)zT a.s.,

for all s ≥ s1, and the tail probability of zT satisfies, for some ρ > 0,

P (zT > C) ≤ M/C2(1+ρ)

where C > 0 and M > 0.

Assumption 2.6 There exist γ > 1, α > 1 and K < ∞ such that for all 0 ≤ s′ ≤ s′′ ≤ 1, and

for all T ,
1

T

∑
i<t<j

E(x2
t )

γ ≤ K(s′′ − s′) and E
( 1

T

∑
i<t<j

x2
t

)γ

≤ K(s′′ − s′)α,

where i = ⌊Ts′⌋, j = ⌊Ts′′⌋.

Assumption 2.7 For arbitrary T , there exist δ > 0 and M < ∞ such that

E
( 1

T

T∑
t=1

|xt|3(1+δ)
)
< M and E

( 1

T

T∑
t=1

|xt|3
)1+δ

< M.

Remark 2.8 Assumptions 2.1 and 2.2 are sufficient conditions for stationary AR(p) process.

When the error terms are i.i.d. and have finite variance, then the least squares estimator β̂T

satisfies assumption 2.3. Assumptions 2.4–2.7 are required in the proof of limiting distribution

to follow.

3. Main results

Let β̂T be the least squares estimator β based on the observations x1, . . . , xT , namely,

β̂T =
( T∑

t=p+1

Xt−1X
′
t−1

)−1 T∑
t=p+1

Xt−1xt,

and calculate the residuals

ε̂t = xt − β̂′
TXt−1, t ≥ p+ 1. (6)

For k ≥ p+ 1, set

F̂k(x) =
1

k

k∑
i=p+1

I(ε̂i ≤ x), −∞ < x < ∞.
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Let Yk = (x1, . . . , xk)
T and Ak = (Y TY )−1/2(Y T

k Yk)(Y
TY )−1/2. Define ΓT

ΓT (
k

T
, x) = (Y TY )−1/2

k∑
i=1

xi{I(ε̂i ≤ x)− F̂T (x)} −Ak(Y
TY )−1/2

T∑
i=1

xi{I(ε̂i ≤ x)− F̂T (x)}

and the test statistic

MT = max
T<k≤⌊Tκ⌋

sup
−∞<x<+∞

|ΓT (
k

T
, x)|. (7)

The statistic ΓT , obtained by constructing a weighted empirical process of residuals with weights

equal to the regressors, was employed by Bai [21] to detect parameter change in linear regression

models.

Let B(u, v) be a Gaussian process on [1, κ]× [0, 1] with zero mean and covariance function

E{B(s, u)B(t, v)} = (min(s, t)− st)(min(u, v)− uv),

which we shall call a two parameter Brownian bridge on [1, κ]× [0, 1].

Theorem 3.1 Under model (1) and Assumptions 2.1–2.7,

ΓT (
⌊Ts⌋
T

, ·) ⇒ B(·, F (·)),

where B(·, F (·)) is a two parameter Brownian bridge on [1, κ] × [0, 1], ⇒ denotes the weak

convergence in the space of [1, κ]× [0, 1].

Corollary 3.2 Under model(1) and Assumptions 2.1–2.7,

lim
T→∞

P (MT ≤ x) = G(x), (8)

where G(x) denotes the distribution of the random variable sup1<u≤κsup0≤v≤1|B(u, v)|.
The proof of the theorem is based on the limiting behavior of the process KT ,

KT (s, x) = (X ′X)−1/2

⌊Ts⌋∑
i=1

Xi{I(ε̂i ≤ x)− F (x)},

which we call the weighted sequential empirical process of residuals, then

ΓT (
⌊Ts⌋
T

, x) = KT (s, x)−A⌊Ts⌋KT (1, x).

4. Simulations and an application

4.1. Simulations

In this section we report the results of a simulation study that is performed in order to check

the finite sample performance of the monitoring procedure considered in the previous section.

The critical values c were obtained by applying a classical bootstrap based on the residuals

of the training sample to approximate the limit distribution as indicated in (8). The classical

bootstrap based on the estimated residuals of the training sample is as follows. Let UT (p +

1), . . . , UT (LT ) be i.i.d. uniform on p+1, . . . , T independent of {xt}, ε∗(t) = ε̂UT
(t) with ε̂j as in
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(6), where LT = ⌊Tκ⌋. The bootstrap critical value cα(x1, . . . , xT ) is chosen minimal such that

P ∗
T (MT (ε

∗(1), . . . , ε∗(T )) ≤ cα(x1, . . . , xT )) ≥ 1− α,

where P ∗
T (·) = P (·|x1, . . . , xT ). We can easily simulate the above conditional distribution by

drawing B random realizations of {UT (·)}.
The training sample is an AR(1) process with the regression coefficient β = 0.1, 0.5 and

standard normally distributed error terms. The length of training sample T = 500 and the

monitoring length (κ − 1)T with κ = 3. All experiments were repeated 2000 times, and the

bootstrap approximation uses B = 2000 replicates. All results are obtained for the level α = 0.05.

In each simulation, 100 initial observations are discarded to remove initialization effects. Consider

the following alternative hypothesis:

(1) Change in mean;

(2) Change in regression coefficient;

(3) Change from N(0, 1) to N(0, 2);

(4) Change from N(0, 1) to χ2 distribution with 4 degrees of freedom χ2(4);

(5) Change from N(0, 1) to Cauchy distribution t(1);

(6) Change from N(0, 1) to Student t-distribution with 4 degrees of freedom t(4);

(7) Change from N(0, 1) to Log-normal distribution Log-N(µ, σ2) with µ = 0 and σ = 1.

Next, we evaluate the performance of the K-S, ECF and MT statistics under the null and

alternative hypothesis. In particular, the K-S and ECF statistics were proposed by Lee et al. [18]

and Hlavka et al. [19], respectively, MT is defined by (7). For the ECF statistic we set γ = 1,

ω(u) = exp(−au2) and a = σ̂2
T /2, where σ̂T is the standard deviation obtained from the training

sample.

Table 1 presents the empirical sizes for K-S, ECF and MT statistics when the regression

coefficient β is 0.1 and 0.5. From the table it can be seen that the empirical sizes are near the

nominal size. The same is also true for other βs such as 0.9 although not reported here for

brevity.

β K − S ECF MT

0.1 0.065 0.049 0.01

0.5 0.068 0.045 0.03

Table 1 Empirical sizes when T = 500, κ = 3.

Tables 2–8 summarize the empirical powers and some elementary statistics concerning the de-

tection delays when the change occurs at T +k∗ with k∗ = 50, 200. We only report the result for

the case β = 0.5 since the results for other βs are similar to this case. First consider k∗ = 50, the

K-S statistic has the shorter detection delays than the ECF and MT statistics when the mean

shifts, the ECF statistic behaves best when the error terms change from N(0, 1) to N(0, 2), as

shown in Tables 2 and 4. Table 3 and Tables 5–8 show results concerning change in the regression

coefficient and change in the distribution of the errors: from N(0, 1) to skew distribution (χ2(4),
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Log-N(0, 1)) and from N(0, 1) to heavy-tailed distribution (t(1), t(4)), MT performs best than

K-S and ECF statistics among those alternative hypothesis. For instance, the mean detection

delays of the K-S statistic, ECF statistic and MT are, respectively, 873.7, 693.3 and 267.14 when

the error distribution changes from N(0, 1) to t(4).

k∗ Power Mean S.E. Min Q1 Median Q3 Max

K-S 1.00 29.96 33.50 1 18 26 37 950

50 ECF 1.00 74.37 18.81 30 61 72 85 163

MT 1.00 75.80 21.08 20 61 74 89 156

K-S 0.67 349.64 347.00 6 67 120 800 800

200 ECF 1.00 95.58 35.19 10 71 93 117 288

MT 1.00 73.22 23.28 13 57 71 88 170

Table 2 Empirical powers and summary of the detection delays when a change in the mean of +1

occurs, T = 500, κ = 3, k∗ = 50, 200.

k∗ Power Mean S.E. Min Q1 Median Q3 Max

K-S 0.46 532.69 446.77 1 48 950 950 950

50 ECF 0.73 600.45 283 35 359 580.5 950 950

MT 1.00 220.05 91.57 23 160.5 215.5 292 581

K-S 0.08 778.48 124.11 11 800 800 800 800

200 ECF 0.44 656.10 218.58 13 528 800 800 800

MT 1.00 203.57 86.74 10 141 193.5 255 518

Table 3 Empirical powers and summary of the detection delays when the regression coefficient β

change from 0.5 to 0.8, T = 500, κ = 3, k∗ = 50, 200.

k∗ Power Mean S.E. Min Q1 Median Q3 Max

K-S 0.27 729.14 377.32 1 227.5 950 950 950

50 ECF 1.00 202.87 68.61 54 156 192 238 567

MT 1.00 327.62 115.72 123 256 306 385 683

K-S 0.06 797.99 39.03 3 800 800 800 800

200 ECF 1.00 246.69 99.56 13 177 236 302 800

MT 1.00 358.27 137.19 53 259 343 447 800

Table 4 Empirical powers and summary of the detection delays when the errors distribution changes

from N(0, 1) to N(0, 2), T = 500, κ = 3, k∗ = 50, 200.
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k∗ Power Mean S.E. Min Q1 Median Q3 Max

K-S 1.00 7.80 4.24 1 5 7 10 38

50 ECF 1.00 60.29 11.65 23 52 59 68 109

MT 1.00 6.28 2.50 1 4 6 8 19

K-S 1.00 40.03 42.43 2 16 28 50 800

200 ECF 1.00 76.58 20.83 12 62 76 90 141

MT 1.00 6.31 2.58 1 4 6 8 18

Table 5 Empirical powers and summary of the detection delays when the error distribution change

from N(0, 1) to χ2(4), T = 500, κ = 3, k∗ = 50, 200.

k∗ Power Mean S.E. Min Q1 Median Q3 Max

K-S 1.00 31.53 87.67 1 13 19 28.75 950

50 ECF 1.00 133.24 90.29 28 82 110 152 950

MT 1.00 25.85 12.60 1 17 25 34 73

K-S 0.42 526.28 360.25 4 61 800 800 800

200 ECF 0.97 205.1 170.29 5 95 149 244 800

MT 1.00 25.59 13.03 1 16 24 34 78

Table 6 Empirical powers and summary of the detection delays when the error distribution change

from N(0, 1) to Log-N(0, 1), T = 500, κ = 3, k∗ = 50, 200.

k∗ Power Mean S.E. Min Q1 Median Q3 Max

K-S 0.90 162.22 289.18 1 16 46 120 950

50 ECF 1.00 129.01 35.44 40 103 126 150 282

MT 1.00 17.46 13.99 1 6 14 25 98

K-S 0.37 563.3 346.8 1 89 800 800 800

200 ECF 1.00 158.62 48.81 18 125 155 190 398

MT 1.00 17.73 14.10 1 7 14 25 89

Table 7 Empirical powers and summary of the detection delays when the error distribution change

from N(0, 1) to t(1), T = 500, κ = 3, k∗ = 50, 200.

k∗ Power Mean S.E. Min Q1 Median Q3 Max

K-S 0.10 873.7 250.62 1 950 950 950 950

50 ECF 0.65 693.3 247.53 78 479.5 728 950 950

MT 1.00 267.14 120.31 8 169 254.5 348.5 646

K-S 0.06 797.2 45.71 9 800 800 800 800

200 ECF 0.42 669.15 187.55 44 554 800 800 800

MT 1.00 302.67 151.61 4 194 281 394.5 800

Table 8 Empirical powers and summary of the detection delays when the error distribution change

from N(0, 1) to t(4), T = 500, κ = 3, k∗ = 50, 200.
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In contrast with k∗ = 50, the mean detection delays of K-S and ECF statistics increase

when the change occurs at k∗ = 200, for example, prolongs by around 500 and 70 for change in

distribution of error from N(0, 1) to Log-N(0, 1), respectively, as shown in Table 6. However,

the location of the change has no significant effect on MT , even for k∗ = 200, the change of

elementary statistics, such as mean and median, is small.

In conclusion, if there exists changes in mean, the K-S statistic is recommended, and if the

error terms change from N(0, 1) to N(0, 2), the ECF statistic is best. For change in the regression

coefficient and changes in the distribution of the errors: From N(0, 1) to skew distribution (χ2(4),

Log-N(0, 1)) as well as to heavy-tailed distribution (t(1), t(4)), MT has the shorter detection

delays than K-S and ECF statistics. Overall, the proposed monitoring statistic MT performs

best.

4.2. Empirical application

In this section, we illustrate our procedures by a group of financial series, which contains 600

Dow Jones Indexes data from March 7 in 2006 to July 23 in 2008 (see Figure 1). The data are

processed with first order difference, centered and standardized first (see Figure 2), then using

the weighted Kolmogorov-Smirnov test of Bai in [21], there exists a change in the processed data

at point 320. The first 320 data follows the model

xt = 0.027xt−1 + ε1, ε1 ∼ N(0, 0.379),

the last 280 data follows the model

xt = −0.132xt−1 + ε2, ε2 ∼ N(0, 1.49),

where xt denotes the processed data. Let initial 200 processed data be the training samples

and we monitor from the 201st data at α = 0.05 level using K-S, ECF and MT statistics. As a

result, the detection delays of K-S, ECF and MT statistics are 400 (not detected), 46 and 32.

This result indicates that MT statistic behaves better than K-S and ECF statistics, which is in

accordance with our conclusion.

0 100 200 300 400 500 600
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1.15
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1.25
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1.35

1.4

x 10
4

0 100 200 300 400 500 600
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4

Figure 1 Dow Jones Indexes data Figure 2 First order difference data

5. Conclusions
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In this paper, a monitoring procedure for distributional changes of errors in AR(p) models

is proposed. The test is based on a weighed empirical process of residuals with weights equal

to the regressors. The asymptotic distribution of the monitoring statistic is derived. A classical

bootstrap procedure is applied to approximate the null distribution of the test statistic. The

simulation study included K-S and ECF statistics, the results of simulation study suggest that:

(1) K-S statistic has the shorter detection delays than MT and ECF statistics against

“change in mean”.

(2) ECF statistic has the shorter detection delays than MT and K-S statistics against

“change from N(0, 1) to N(0, 2)”.

(3) MT performs better than K-S and ECF statistics for “c+hange in regression coefficien-

t, change from N(0, 1) to χ2(4), change from N(0, 1) to Log-normal distribution Log-N(0, 1),

change from N(0, 1) to t(1) and change from N(0, 1) to t(4)”.

It seems that the proposed statistic is recommended in most situations.

6. Mathematical proofs

In this section we state six lemmas needed in proving Theorem 3.1.

Lemma 6.1 Let U1, U2, . . . , Un be a sequence of i.i.d. uniformly distributed random variables

on [0, 1] and xi (i = 1, 2, . . . , T ) be a sequence of random vectors satisfying assumptions 2.5 and

2.6. Assume that Ui is independent of xj for j ≤ i. Then the process ZT (s, u) defined as

ZT (s, u) = T−1/2

⌊Ts⌋∑
t=1

xt{I(Ut ≤ u)− u}

with ZT (0, u) = ZT (s, 0) = 0 is tight in [1, κ]× [0, 1].

The process ZT is a multiparameter process. Lemma 6.1 holds for arbitrary i.i.d. random

variables εt, in this case I(Ut ≤ u)− u is replaced by I(εt ≤ x)−F (x). The proof of Lemma 6.1

is similar to that of Theorem A.1 in Bai [21].

Lemma 6.2 Under Assumptions 2.1, 2.3, 2.5 and 2.6, the process HT defined as

HT (s, x) = (Y TY )−/2

⌊Ts⌋∑
t=1

xt{I(εt ≤ x)− F (x)},

converges weakly to a Gaussian process with zero mean and covariance function

E{H(r, x)H(s, y)′} = l(r ∧ s)/l(1)[F (x ∧ y)− F (x)F (y)]. (9)

Proof Let Ui = F (εi). Then

HT (s, x) = (Y ′Y/T )−1/2ZT (s, F (x)).

Since (Y ′Y/T ) converges in probability to l(1), the tightness of HT follows from Lemma 6.1. It is

easy to see that HT (s, x) converges to a normal distribution. To verify the covariance function,
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consider for r < s and u = F (x) < v = F (y), then by the martingale property, we have that

E{ZT (r, u)ZT (s, v)} =
1

T
E
( ⌊Tr⌋∑

t=1

x2
t

)
(u− uv),

which tends to l(r)(u− uv). The proof is completed. �

Lemma 6.3 Under Assumptions 2.1, 2.3, 2.5 and 2.6, the process VT defined as

VT (s, x) = HT (s, x)−A⌊Ts⌋HT (1, x),

converges weakly to a Gaussian process V with mean zero and covariance matrix

E{V (r, u)V (s, v)} = {A(r ∧ s)−A(r)A(s)}{u ∧ v − uv}. (10)

Proof The tightness of VT follows form the tightness of HT and the convergence of A⌊Ts⌋ to a

deterministic function A(s) uniformly in s, by Lemma 6.2,

V (s, x) = H(s, x)−A(s)H(1, x),

and (10) follows easily from (9). The proof is completed. �
Next, we study the asymptotic behavior of the residual empirical process. Under model (1),

ε̂t ≤ z if and only if εt ≤ z + (β̂T − β)′Xt−1, thus KT is given by

KT (s, z) = (Y TY )−1/2

⌊Ts⌋∑
t=1

xt{I(εt ≤ z + (β̂T − β)TXt−1)− F (z)}.

Let a = (a1, a2, . . . , aT ), b = (b1, . . . , bT ) be two 1×T random vectors, and C = (c1, c2, . . . , cT )
T

be a T × q random matrix (q ≥ 1). Define

QT (s, z, a, b) = (C ′C)−/2

⌊Ts⌋∑
t=1

ct{I(εt ≤ z(1 + atT
−1/2) + btT

−1/2)− F (z)}.

For ct = xt, at = 0, and bt = T 1/2(β̂T − β)′Xt−1, we have

QT (s, z, a, b) = KT (s, z),

and moreover,

QT (s, z, 0, 0) = HT (s, z).

Assume

(i) The variable εt is independent of Ft−1, where

Ft−1 = σ − field{as+1, bs+1, cs+1, εs; s ≤ t− 1}.

(ii) T−1
∑T

t=1 ∥ct∥ = Op(1).

(iii) T−1/2 max1≤i≤T |ηi| = op(1), for ηi = ai, bi.

(iv) There exist a γ > 1 and A < ∞ such that for all T

E
{ 1

T

T∑
t=1

|ct|2(|at|+ |bt|)
}γ

< A and
1

T

T∑
t=1

E{|ct|2(|at|+ |bt|)}γ < A.
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(v) Conditions (iii) and (iv) with |bt| replaced by |xt|. �

Lemma 6.4 Under Assumptions 2.1 and (i)–(v),

KT (s, z, a, b) = KT (s, z, 0, 0) + (CTC/T )1/2f(z)z
( 1

T

⌊Ts⌋∑
t=1

ctat

)
+ f(z)

( 1

T

⌊Ts⌋∑
t=1

ctbt) + op(1),

where the op(1) is uniform in s and in z, and for bt = xtα, the op(1) is also uniform in α ∈ D, an

arbitrary compact set of R. In particular, the result holds for bt = T 1/2(β̂T − β)TXt−1 as long

as T 1/2(β̂T − β) = Op(1).

Lemma 6.5 Define

ZT (s, z, a, b) =
1√
T

⌊Ts⌋∑
t=1

ct{I(εt ≤ z(1 + atT
−1/2) + btT

−1/2)− F (z(1 + atT
−1/2) + btT

−1/2)}.

(a) Under Assumptions 2.1 and (i)–(iv),

sup
1<s<κ,z∈R

∥ZT (s, z, a, b)− ZT (s, z, 0, 0)∥ = op(1).

(b) Let bt = xtα in a compact set D of R for p ≥ 1 and denote b(α) = (x1α, . . . , xTα).

Then under Assumption 2.1, (i), (ii) and (v),

sup
α∈D

sup
1≤s≤κ,z∈R

∥ZT (s, z, a, b(α))− ZT (s, z, 0, 0)∥ = op(1).

(c) Let at = r′tξ, rt ∈ Rl for some l ≥ 1; ξ ∈ S, a compact set. Denote a(ξ) = (r′1ξ, . . . , r
′
T ξ),

assume (3) and (4) hold with |at| = ∥rt∥, then under Assumption 2.1, (i) and (ii),

sup
ξ∈S

sup
α∈D

sup
1≤s≤κ,z∈R

∥ZT (s, z, a(ξ), b(α))− ZT (s, z, 0, 0)∥ = op(1).

Lemma 6.6 Under Assumption 2.1 and (i)–(iv), for every d ∈ (0, 1/2),

sup
y,z

1√
T

T∑
t=1

ct∥F (y∗t )− F (z∗t )∥ = op(1),

where y∗t = y(1 + atT
−1/2) + btT

−1/2, z∗t = z(1 + atT
−1/2) + btT

−1/2 and the supreme extends

over all pairs of (y, z) such that |F (y)− F (z)| ≤ T−1/2 − d.

The proofs of Lemmas 6.4, 6.5 and 6.6 are similar to those of Theorems A.2, A.3 and Lemma

A.3 in Bai [21].

Proof of Theorem 3.1 Since ε̂t = εt−X ′
t−1(β̂T−β), ε̂t ≤ z if and only if εt ≤ z+X ′

t−1(β̂T − β).

Applying Lemma 6.4 with ct = xt, at = 0 and bt = T 1/2X ′
t−1(β̂T − β), by

QT (s, z, a, b) = KT (s, z) and QT (s, z, 0, 0) = HT (s, z),

we have that

KT (s, z)−A⌊Ts⌋KT (1, z) = HT (s, z)−A⌊Ts⌋HT (1, z)+ (11)

f(z)(Y ′Y/T )−1/2 1

T

⌊Ts⌋∑
t=1

xtbt − f(z)A⌊Ts⌋(Y
′Y/T )−1/2 1

T

T∑
t=1

xtbt+ (12)
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op(1), (13)

for bt = T 1/2X ′
t−1(β̂T − β), (12) is identically zero for all s ∈ [1, κ], so the drift terms KT (s, z)

are cancelled out and the limiting distribution of ΓT (
⌊Ts⌋
T , ·) is obtained by Lemma 6.3. The

proof is completed. �
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