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1. Introduction

Chang [1] first introduced the concept of compactness to [0, 1]-topological spaces by means

of open cover. Afterward, many researchers have tried successfully to generalize the compactness

theory of general topology to fuzzy setting [2–6].

For the more general case, in an L-fuzzy topology, open sets are not crisp subset, and

topology comprising those open sets is a fuzzy set of LX . There have been many research results

about fuzzy compactness in L-fuzzy topological spaces [7–14]. The definitions of countable

compactness and the Lindelöf property in L-topological spaces were introduced by Shi [4]. The

aim of this paper is to introduce the notion of countable compactness degree and the Lindelöf

property degree to L-fuzzy topological spaces, thus some properties of them are researched.

2. Preliminaries

In this paper, (L,
∨
,
∧
,′ ) is a completely distributive DeMorgan algebra (i.e., completely

distributive lattice with order-reversing involution) [2]. The largest element and the smallest

element in L are denoted by ⊤ and ⊥, respectively.

The binary wedge below relation ≺ in L is defined as follows: For a, b ∈ L, a is called wedge

below b in L(i.e., a ≺ b) if and only if for every subset D ⊆ L,
∨

D ≥ b implies d ≥ a for some
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d ∈ D. L is completely distributive lattice if and only if b =
∨
{a ∈ L : a ≺ b} for each b ∈ L.

For b ∈ L, β(b) = {a ∈ L : a ≺ b} is called the greatest minimal family of b.

In a completely distributive DeMorgan algebra L, binary operation a 7→ b =
∨
{c ∈ L |

a ∧ c ≤ b} is called implication operator. It is easy to get the following results:

(1) a ≤ b ⇔ a 7→ b = ⊤;

(2) c ≤ (a 7→ b) ⇔ a ∧ c ≤ b;

(3) (
∨

i ai) 7→ b =
∧

i(ai 7→ b);

(4) a 7→ (
∧

i bi) =
∧

i(a 7→ bi).

[a ≤ b] = a 7→ b can be viewed as the degree of a ≤ b.

Definition 2.1 ([15]) An L-fuzzy topology on a set X is a map τ : LX → L such that

(1) τ(⊤) = τ(⊥) = ⊤;

(2) ∀U, V ∈ LX , τ(U ∧ V ) > τ(U) ∧ τ(V );

(3) ∀Uj ∈ LX , j ∈ J , τ(
∨

j∈J Uj) >
∧

j∈J τ(Uj).

Generally, τ(U) can be regarded as degree to which U ∈ LX is an open set; while τ∗(U) =

τ(U ′) is called the degree of closedness of U . ∀U ⊆ LX , τ(U) =
∧

A∈U τ(A) will be called the

degree of openness of U . The pair (X, τ) is called an L-fuzzy topological space.

A map f : (X, τ) → (Y, δ) is called continuous with respect to L-fuzzy topologies τ and δ if

τ(f←L (U)) > δ(U) holds for all U ∈ LY , where f←L is defined by f←L (U)(x) = U(f(x)), x ∈ X.

For a subfamily Φ ⊆ LX , 2(Φ) denotes the set of all finite subfamilies of Φ. And 2[Φ] denotes

the set of all countable subfamilies of Φ.

Definition 2.2 ([13]) A map ⊂̃ : LX × LX → L is an L-fuzzy inclusion on X, defined as

⊂̃(A,B) =
∧

x∈X(A′(x) ∨ B(x)), which is denoted by [A⊂̃B] for simplicity instead of ⊂̃(A,B),

i.e., [A⊂̃B] =
∧

x∈X(A′(x) ∨B(x)).

Definition 2.3 ([11]) If (X, τ) is an L-fuzzy topological space and G ∈ LX , then

CDτ (G) =
∧
U⊆LX

(
τ(U) 7→

(
[G⊂̃

∨
U ] 7→

∨
V∈2(U)

[G⊂̃
∨

V]
))

is called the fuzzy compactness degree of G with respect to τ .

Lemma 2.4 ([6]) Let f : X → Y be a set map. The fuzzy powerset operators f→L : LX → LY

and f←L : LY → LX are defined by f→L (a)(y) =
∨
{a(x) : f(x) = y}, f←L (b) = b ◦ f . Then for

any P ⊆ LY , we have that∧
y∈Y

(
f→L (G)′(y) ∨

∨
B∈P

B(y)
)
=

∧
x∈X

(
G′(x) ∨

∨
B∈P

f←L (B)(x)
)
.

3. Measures of countable compactness

In the following part, the set {U | U is a countable family, U ⊆ LX} is written as LX
C .

Let (X, T ) be an L-topological space and TC = {U | U is a countable family, U ⊆ T }. Then
G ∈ LX is countably compact [4] if and only if for every U ⊆ TC , it follows that [G⊂̃

∨
U ] 6
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V∈2(U) [G⊂̃

∨
V]. This implies that [[G⊂̃

∨
U ] 6

∨
V∈2(U) [G⊂̃

∨
V]] = ⊤.

On the other hand, an L-topology T can be regarded as a map χT : LX → L defined by

χT (A) =

{
⊤, A ∈ T ,

⊥, A /∈ T .

In this way, (X,χT ) is a special L-fuzzy topological space and χT (U) = ⊤ for any U ⊆ T .

From the above analysis, we can obtain that G ∈ LX is countably compact if and only if

for every family U ⊆ TC , it follows that χT (U) 6 [[G⊂̃
∨
U ] 6

∨
V∈2(U) [G⊂̃

∨
V]].

Naturally, we can introduce a countable compactness degree defined as follows:

Definition 3.1 Let (X, τ) be an L-fuzzy topological space and G ∈ LX . Then

CCDτ (G) =
∧
U⊆LX

C

[
τ(U) 6

[
[G⊂̃

∨
U ] 6

∨
V∈2(U)

[G⊂̃
∨

V]
]]

=
∧
U⊆LX

C

( ∧
A∈U

τ(A) 7→
( ∧

x∈X

(
G′(x) ∨

∨
A∈U

A(x)
)
7→

∨
V∈2(U)

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)
)))

is called the countable compactness degree of G with respect to τ .

Obviously, G is countably compact in L-topological space T if and only if CCDχT (G) = ⊤.

According to the properties of implication operation 7→, the following lemma can be proved.

Lemma 3.2 Let (X, τ) be an L-fuzzy topological space and G ∈ LX . Then a ≤ CCDτ (G) if

and only if for any U ⊆ LX
C ,

τ(U) ∧ [G⊂̃
∨

U ] ∧ a ≤
∨
V∈2(U)

[G⊂̃
∨

V]. (3.1)

Theorem 3.3 Let (X, τ) be an L-fuzzy topological space and G ∈ LX . Then

CCDτ (G) =
∨{

a ∈ L : τ(U) ∧ [G⊂̃
∨

U ] ∧ a ≤
∨
V∈2(U)

[G⊂̃
∨

V] for any U ⊆ LX
C

}
. (3.2)

It is easy to get the following theorem according to Definitions 2.3 and 3.1.

Theorem 3.4 Let (X, τ) be an L-fuzzy topological space and G ∈ LX . Then CDτ (G) ≤
CCDτ (G).

By Lemma 3.2, Theorem 3.3 and the properties of implication operation 7→, we can obtain

the following result.

Theorem 3.5 Let (X, τ) be an L-fuzzy topological space and G ∈ LX . Then

CCDτ (G) =
∧
U⊆LX

C

( ∧
A∈U

τ(A) ∧
∧
x∈X

(
G′(x) ∨

∨
A∈U

A(x)
)
7→

∨
V∈2(U)

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)
))

=
∧
U⊆LX

C

[
τ(U) ∧ [G⊂̃

∨
U ] 6

∨
V∈2(U)

[G⊂̃
∨

V]
]
.

Theorem 3.6 Let (X, τ) be an L-fuzzy topological space. Then ∀G,H ∈ LX , CCDτ (G∧H) ≥
CCDτ (G) ∧ τ∗(H).
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Proof For any a ∈ L and a ≤ CCDτ (G) ∧ τ∗(H), now the proof of a ≤ CCDτ (G ∧ H) will

be conducted. Suppose any U ⊆ LX
C , since a ≤ CCDτ (G) ∧ τ∗(H), we have that a ≤ τ∗(H)

and a ≤ CCDτ (G). Let W = U
∪
H ′. Then W ⊆ LX

C . Therefore τ(W) ∧ [G⊂̃
∨

W] ∧ a ≤∨
V∈2(W) [G⊂̃

∨
V] by Lemma 3.2. And because τ(W) = τ(U) ∧ τ(H ′) = τ(U) ∧ τ∗(H),

[G⊂̃
∨

W] =
∧
x∈X

(
G′(x) ∨

∨
A∈W

A(x)
)
=

∧
x∈X

(
G′(x) ∨H ′(x) ∨

∨
A∈U

A(x)
)

=
∧
x∈X

(
(G(x) ∧H(x))′ ∨

∨
A∈U

A(x)
)
= [(G ∧H)⊂̃

∨
U ]

and ∨
V∈2(W)

[G⊂̃
∨

V] =
∨
V∈2(U)

[G⊂̃
∨

V] ∨
∨
V∈2(U)

[G⊂̃
∨

(V ∨H ′)]

=
∨
V∈2(U)

[G⊂̃
∨

V] ∨
∨
V∈2(U)

[(G ∧H)⊂̃
∨

V]

=
∨
V∈2(U)

[(G ∧H)⊂̃
∨

V],

we have that (τ(U) ∧ τ∗(H)) ∧ [(G ∧H)⊂̃
∨
U ] ∧ a ≤

∨
V∈2(U) [(G ∧H)⊂̃

∨
V]. Since a ≤ τ∗(H),

this means that τ(U) ∧ [(G ∧H)⊂̃
∨

U ] ∧ a ≤
∨
V∈2(U) [(G ∧H)⊂̃

∨
V].

Thus a ≤ CCDτ (G ∧H) by Lemma 3.2. The proof is completed. �

Corollary 3.7 Let (X, τ) be an L-fuzzy topological spaces. Then ∀G ∈ LX , CCDτ (G) >
CCDτ (⊤) ∧ τ∗(G).

Theorem 3.8 Let (X, τ) be an L-fuzzy topological space. Then ∀G,H ∈ LX , CCDτ (G∨H) ≥
CCDτ (G) ∧ CCDτ (H).

Proof For any a ∈ L and a ≤ CCDτ (G)∧CCDτ (H), we need to prove that a ≤ CCDτ (G∨H).

Suppose any U ⊆ LX
C , since a ≤ CCDτ (G) ∧ CCDτ (H), we have that a ≤ CCDτ (G) and a ≤

CCDτ (H). According to Lemma 3.2, we can obtain that τ(U)∧ [G⊂̃
∨
U ]∧a ≤

∨
V∈2(U) [G⊂̃

∨
V]

and τ(U) ∧ [H⊂̃
∨

U ] ∧ a ≤
∨
V∈2(U) [H⊂̃

∨
V].

Moreover, we have that

τ(U) ∧ [G⊂̃
∨

U ] ∧ [H⊂̃
∨

U ] ∧ a ≤
( ∨
V∈2(U)

[G⊂̃
∨

V]
)
∧
( ∨
V∈2(U)

[H⊂̃
∨

V]
)
.

By

[G⊂̃
∨

U ] ∧ [H⊂̃
∨

U ] =
( ∧

x∈X

(
G′(x) ∨

∨
A∈U

A(x)
))

∧
( ∧

x∈X

(
H ′(x) ∨

∨
A∈U

A(x)
))

=
∧
x∈X

((
G′(x) ∨

∨
A∈U

A(x)
)
∧
(
H ′(x) ∨

∨
A∈U

A(x)
))

=
∧
x∈X

(
(G ∨H)′(x) ∨

∨
A∈U

A(x)
)
= [(G ∨H)⊂̃

∨
U ]
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and ∨
V∈2(U)

[G⊂̃
∨

V] ∧
∨
V∈2(U)

[H⊂̃
∨

V] =
∨
V∈2(U)

{[G⊂̃
∨

V] ∧ [H⊂̃
∨

V]}

=
∨
V∈2(U)

[(G ∨H)⊂̃
∨

V],

we have that τ(U) ∧ [(G ∨H)⊂̃
∨
U ] ∧ a ≤

∨
V∈2(U) [(G ∨H)⊂̃

∨
V].

Thus a ≤ CCDτ (G ∨H) by Lemma 3.2. The proof is completed. �

Theorem 3.9 Let f : X → Y be a set map, τ1 be an L-fuzzy topology on X, τ2 be an L-fuzzy

topology on Y , and f : (X, τ1) → (Y, τ2) be continuous. Then CCDτ2(f
→
L (G)) ≥ CCDτ1(G).

Proof ∀a ∈ L and a ≤ CCDτ1(G), the next step is to prove that a ≤ CCDτ2(f
→
L (G)). Suppose

any U ⊆ LY
C , let R = f←L (U) = {B|B = f←L (A), A ∈ U}. Then R ⊆ LX

C . By a ≤ CCDτ1(G), we

have that τ1(R) ∧ [G⊂̃
∨

R] ∧ a ≤
∨
S∈2(R) [G⊂̃

∨
S]. Since f is continuous, τ1(f

←
L (A)) > τ2(A)

holds for all A ∈ U , i.e., τ1(R) = τ1(f
←
L (U)) > τ2(U).

By Lemma 2.4, we can obtain that

[f→L (G)⊂̃
∨

U ] =
∧
y∈Y

(
f→L (G)′(y) ∨

∨
A∈U

A(y)
)
=

∧
x∈X

(
G′(x) ∨

∨
B∈R

B(x)
)
= [G⊂̃

∨
R]

and ∨
S∈2(R)

[G⊂̃
∨

S] =
∨
S∈2(R)

∧
x∈X

(
G′(x) ∨

∨
C∈S

C(x)
)
=

∨
V∈2(U)

∧
y∈Y

(
f→L (G)′(y) ∨

∨
D∈V

D(y)
)

=
∨
V∈2(U)

[f→L (G)⊂̃
∨

V].

This shows the following inequality is true.

τ2(U) ∧ [f→L (G)⊂̃
∨

U ] ∧ a ≤ τ1(R) ∧ [G⊂̃
∨

R] ∧ a

≤
∨
S∈2(R)

[G⊂̃
∨

S]

=
∨
V∈2(U)

[f→L (G)⊂̃
∨

V].

Thus a ≤ CCDτ2(f
→
L (G)) by Lemma 3.2. The proof is completed. �

4. Measures of Lindelöf property

In an L-topological space (X, T ), if G ∈ LX has the Lindelöf property [11], then it can be

understood that for every U ⊆ T , it follows that [G⊂̃
∨

U ] 6
∨
V∈2[U] [G⊂̃

∨
V], which means

that [[G⊂̃
∨

U ] 6
∨
V∈2[U] [G⊂̃

∨
V]] = ⊤, for any U ⊆ T .

For U ⊆ T we have χT (U) = ⊤, where χT (A) = ⊤, when A ∈ T ; χT (A) = ⊥, when A /∈ T .

Thus, the following results can be obtained.

G ∈ LX has Lindelöf property ⇔ χT (U) 6 [[G⊂̃
∨
U ] 6

∨
V∈2[U] [G⊂̃

∨
V]], ∀U ⊆ T .

In this way, we can very naturally introduce the definition of degree of G with Lindelöf
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property as follows:

Definition 4.1 Let (X, τ) be an L-fuzzy topological space and G ∈ LX . Then

LPDτ (G) =
∧
U⊆LX

[
τ(U) 6

[
[G⊂̃

∨
U ] 6

∨
V∈2[U]

[G⊂̃
∨

V]
]]

=
∧
U⊆LX

( ∧
A∈U

τ(A) 7→
( ∧

x∈X

(
G′(x) ∨

∨
A∈U

A(x)
)
7→

∨
V∈2[U]

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)
)))

is called the degree to which G has the Lindelöf property with respect to τ .

Obviously, G has Lindelöf property in L-topological space T if and only if LPDχT (G) = ⊤.

Analogous to countable compactness degree, we have the following results.

Lemma 4.2 Let (X, τ) be an L-fuzzy topological space and G ∈ LX . Then a ≤ LPDτ (G) if

and only if for any U ⊆ LX ,

τ(U) ∧ [G⊂̃
∨

U ] ∧ a ≤
∨
V∈2[U]

[G⊂̃
∨

V]. (4.1)

Theorem 4.3 Let (X, τ) be an L-fuzzy topological space and G ∈ LX . Then

LPDτ (G) =
∨{

a ∈ L : τ(U) ∧ [G⊂̃
∨

U ] ∧ a ≤
∨
V∈2[U]

[G⊂̃
∨

V] for any U ⊆ LX
}
. (4.2)

Theorem 4.4 Let (X, τ) be an L-fuzzy topological space and G ∈ LX . Then

LPDτ (G) =
∧
U⊆LX

( ∧
A∈U

τ(A) ∧
∧
x∈X

(
G′(x) ∨

∨
A∈U

A(x)
)
7→

∨
V∈2[U]

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)
))

=
∧
U⊆LX

[
τ(U) ∧ [G⊂̃

∨
U ] 6

∨
V∈2[U]

[G⊂̃
∨

V]
]
.

Theorem 4.5 Let (X, τ) be an L-fuzzy topological space. Then ∀G,H ∈ LX , LPDτ (G∧H) ≥
LPDτ (G) ∧ τ∗(H).

Corollary 4.6 Let (X, τ) be an L-fuzzy topological space. Then ∀G ∈ LX , LPDτ (G) >
LPDτ (⊤) ∧ τ∗(G).

Theorem 4.7 Let (X, τ) be an L-fuzzy topological space. Then ∀G,H ∈ LX , LPDτ (G∨H) ≥
LPDτ (G) ∧ LPDτ (H).

Theorem 4.8 Let (X, τ) be an L-fuzzy topological space and G ∈ LX . Then LPDτ (G) ∧
CCDτ (G) ≤ CDτ (G).

Proof For any a ∈ L and a ≤ LPDτ (G) ∧ CCDτ (G), we need to prove that a ≤ CDτ (G).

Suppose any U ⊆ LX , since a ≤ LPDτ (G) ∧ CCDτ (G), we have that a ≤ LPDτ (G) and

a ≤ CCDτ (G). Thus τ(U) ∧ [G⊂̃
∨
U ] ∧ a ≤

∨
V∈2[U] [G⊂̃

∨
V] by Lemma 4.2. For any V ∈ 2[U ],

V ⊆ LX
C . Therefore τ(U) ≤ τ(V) and τ(V) ∧ [G⊂̃

∨
V] ∧ a ≤

∨
W∈2(V) [G⊂̃

∨
W] by Lemma 3.2.
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Further, we have the following results

τ(U) ∧ [G⊂̃
∨

U ] ∧ a ≤ τ(U) ∧
∨
V∈2[U]

[G⊂̃
∨

V] ∧ a ≤
∨
V∈2[U]

(τ(V) ∧ [G⊂̃
∨

V] ∧ a)

≤
∨
V∈2[U]

(
∨

W∈2(V)

[G⊂̃
∨

W]) ≤
∨
V∈2[U]

(
∨

W∈2(U)

[G⊂̃
∨

W])

≤
∨

W∈2(U)

[G⊂̃
∨

W] =
∨
V∈2(U)

[G⊂̃
∨

V].

This implies (τ(U) ∧ a) ≤ ([G⊂̃
∨
U ] 7→

∨
V∈2(U) [G⊂̃

∨
V]) for any U ⊆ LX by the properties of

implication operation 7→.

Further, we have a ≤ τ(U) 7→ ([G⊂̃
∨

U ] 7→
∨
V∈2(U) [G⊂̃

∨
V]) for any U ⊆ LX .

Thus a ≤ CDτ (G). The proof is completed. �

Corollary 4.9 Let (X, τ) be an L-fuzzy topological space and G ∈ LX . Then LPDτ (G) ∧
CCDτ (G) ≤ LPDτ (G) ∧ CDτ (G).

The proposition can be regarded as the multi-value generalization of the result “if G has

the Lindelöf property, then G is compact if and only if it is countably compact”.
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[10] G. JÄGER. Degrees of compactness in fuzzy convergence spaces. Fuzzy Sets and Systems, 2002, 125(2):

167–175.

[11] Hongyan LI, Fugui SHI. Measures of fuzzy compactness in L-fuzzy topological spaces. Comput. Math.

Appl., 2010, 59(2): 941–947.

[12] E. LOWEN, R. LOWEN. On measures of compactness in fuzzy topological spaces. J. Math. Anal. Appl.,

1988, 131(2): 329–340.

[13] A. P. S̆OSTAK. On Compactness and Connectedness Degrees of Fuzzy Sets in Fuzzy Topological Spaces.

Heldermann, Berlin, 1988.

[14] Yueli YUE, Jinming FANG. Generated I-fuzzy topological spaces. Fuzzy Sets and Systems, 2005, 154(1):

103–117.
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