Journal of Mathematical Research with Applications May, 2015, Vol. 35, No. 3, pp. 350–354 DOI:10.3770/j.issn:2095-2651.2015.03.013 Http://jmre.dlut.edu.cn

Characterizations of Semi-Metric Spaces

Erguang YANG

School of Mathematics & Physics, Anhui University of Technology, Anhui 243002, P. R. China

Abstract We use the notions of weak base g-functions and pair networks to give some new characterizations of semi-metric spaces.

Keywords semi-metric spaces; weak base g-functions; pair networks; co-cushioned families

MR(2010) Subject Classification 54E25

1. Introduction

The notion of semi-metric spaces was introduced by Wilson [1] which plays an important role in the theory of generalized metric spaces. Properties of semi-metric spaces were investigated by Heath [2,3], Brown [4], McAuley [5,6] and Jones [7], etc and several important characterizations were obtained. In this paper, we shall give some new characterizations of semi-metric spaces in terms of weak base g-functions and pair networks.

Throughout, the set of all positive integers is denoted by \mathbb{N} while $\langle x_n \rangle$ denotes a sequence. Let X be a topological space. Then τ is the topology on X and τ^c is the family of all closed subsets of X. For a subset A of a space X, the closure and the interior of A will be denoted by \overline{A} and int A, respectively.

A collection \mathcal{P} of pairs of subsets of a space X is called a pair network [8] if $P_1 \subset P_2$ for each $(P_1, P_2) \in \mathcal{P}$ and if $x \in U \in \tau$, then there exists $(P_1, P_2) \in \mathcal{P}$ such that $x \in P_1 \subset P_2 \subset U$.

Definition 1.1 ([1]) A space X is called a semi-metric space if there is a function $d: X \times X \rightarrow [0, \infty)$ satisfying the following conditions:

- (1) d(x, y) = 0 if and only if x = y;
- (2) d(x, y) = d(y, x) for all $x, y \in X$;

(3) a subset U of X is open if and only if for each $x \in U$, there exists r > 0 such that $B(x,r) \subset U$, where $B(x,r) = \{y \in X : d(x,y) < r\};$

(4) for each $x \in X$ and r > 0, $x \in int(B(x, r))$.

Definition 1.2 Let \mathcal{P} be a collection of pairs of subsets of a space X. Then:

(1) \mathcal{P} is called co-cushioned [9] if for each $\mathcal{P}' \subset \mathcal{P}$, $\cap \{P_1 : (P_1, P_2) \in \mathcal{P}'\} \subset \operatorname{int}(\cap \{P_2 : (P_1, P_2) \in \mathcal{P}'\});$

Received July 3, 2014; Accepted January 16, 2015

Supported by the National Natural Science Foundation of China (Grant Nos. 11001001; 11401262; 11271178). E-mail address: egyang@126.com

(2) \mathcal{P} is called cushioned [10] if for each $\mathcal{P}' \subset \mathcal{P}$, $\overline{\cup\{P_1 : (P_1, P_2) \in \mathcal{P}'\}} \subset \cup\{P_2 : (P_1, P_2) \in \mathcal{P}'\}$.

Definition 1.3 ([11]) A weak base for a space X is a collection $\mathcal{B} = \bigcup \{\mathcal{B}_x : x \in X\}$ of subsets of X such that

(1) For each $x \in X$, $x \in \cap \mathcal{B}_x$ and \mathcal{B}_x is closed under finite intersections;

(2) A subset U of X is open if and only if for each $x \in U$ there exists $B \in \mathcal{B}_x$ such that $x \in B \subset U$.

Definition 1.4 ([12]) A weak base g-function for a space X is a map $g : \mathbb{N} \times X \to 2^X$ satisfying:

(1) For every $x \in X$ and $n \in \mathbb{N}$, $x \in g(n+1, x) \subset g(n, x)$;

(2) $\{g(n,x): n \in \mathbb{N}, x \in X\}$ is a weak base for X, i.e., a subset U of X is open if and only if for each $x \in U$ there exists $n \in \mathbb{N}$ such that $g(n,x) \subset U$.

A g-function [13] for a space X is a mapping $g : \mathbb{N} \times X \to \tau$ such that for every $x \in X$ and $n \in \mathbb{N}, x \in g(n+1,x) \subset g(n,x)$.

Let g be a g-function or a weak base g-function for a space X. For a set $A \subset X$, denote $g(n, A) = \bigcup \{g(n, x) : x \in A\}.$

All spaces are assumed to be T_2 unless otherwise stated.

2. Main results

In this section, we shall give some new characterizations of semi-metric spaces. The following theorem is a reformulation of a theorem in [3].

Theorem 2.1 A space X is a semi-metric space if and only if for each $x \in X$ there is a decreasing (open) neighborhood base $\{U_n(x) : n \in \mathbb{N}\}$ for x such that for each $A \subset X$ and $n \in \mathbb{N}, \overline{A} \subset \cup \{U_n(x) : x \in A\}.$

Proof Let X be a semi-metric space. For each $x \in X$ and $n \in \mathbb{N}$, let $V_n(x) = B(x, 1/n)$. For each $n \in \mathbb{N}$, if $V_n(x) \subset \operatorname{int}(V_m(x))$ for some $m \in \mathbb{N}$, then let $k_n = \max\{i \leq n : V_n(x) \subset \operatorname{int}(V_i(x))\}$ and $U_n(x) = \operatorname{int}(V_{k_n}(x))$; otherwise, let $U_n(x) = X$. Then $\{U_n(x) : n \in \mathbb{N}\}$ is a decreasing open neighborhood base for x. Indeed, if $x \in U \in \tau$, then there exist $m, n \in \mathbb{N}$ such that $V_n(x) \subset \operatorname{int}(V_m(x)) \subset U$, from which it follows that $U_n(x) = \operatorname{int}(V_{k_n}(x))$ with $m \leq k_n \leq n$. Consequently, $U_n(x) \subset \operatorname{int}(V_m(x)) \subset U$ and so $\{U_n(x) : n \in \mathbb{N}\}$ is a neighborhood base for x. Now, let $A \subset X$ and $n \in \mathbb{N}$. If $x \in \overline{A}$, then $\operatorname{int}(V_n(x)) \cap A \neq \emptyset$. Choose $y \in \operatorname{int}(V_n(x)) \cap A$, then $x \in V_n(y)$. If $V_n(y) \nsubseteq \operatorname{int}(V_m(y))$ for all $m \in \mathbb{N}$, then $U_n(y) = X$ and so $x \in U_n(y)$. If $V_n(y)$ for some $m \in \mathbb{N}$, then $U_n(y) = \operatorname{int}(V_{k_n}(y))$ with $V_n(y) \subset \operatorname{int}(V_{k_n}(y))$ which also follows that $x \in U_n(y)$. As a consequence, $\overline{A} \subset U\{U_n(x) : x \in A\}$.

Conversely, for each $x \in X$, let $\{U_n(x) : n \in \mathbb{N}\}$ be a decreasing neighborhood base for x that satisfies the condition of the theorem. For each $x \in X$ and $n \in \mathbb{N}$, put $o(n, x) = \{y \in U_n(x) : x \in U_n(y)\}$. Then $x \in \operatorname{int}(o(n, x))$. Indeed, since $\overline{A} \subset \cup \{U_n(x) : x \in A\}$ for each $A \subset X$, $x \in X \setminus \{\overline{y \in X : x \notin U_n(y)}\}$. So if we let $V_n(x) = U_n(x) \setminus \{\overline{y \in X : x \notin U_n(y)}\}$, then

 $V_n(x)$ is a neighborhood of x and $V_n(x) \subset o(n, x)$ which implies that $x \in \operatorname{int}(o(n, x))$. Now, for every pair of distinct $x, y \in X$, let $m(x, y) = \min\{n \in \mathbb{N} : y \notin o(n, x)\}$. Define a function $d: X \times X \to [0, \infty)$ as follows: d(x, x) = 0 and d(x, y) = 1/m(x, y) whenever $x \neq y$. It is easy to verify that B(x, 1/n) = o(n, x) for each $x \in X$ and $n \in \mathbb{N}$, from which it follows that $x \in \operatorname{int}(B(x, r))$ for each r > 0. (o(n, x) is decreasing with respect to n, so if $x \neq y$ then $y \in o(n, x)$ if and only if n < m(x, y) if and only if $y \in B(x, 1/n)$). Now it is clear that U is open if and only if for each $x \in U$ there exists r > 0 such that $B(x, r) \subset U$. Consequently, X is a semi-metric space. \Box

Corollary 2.2 A space X is a semi-metric space if and only if for each $x \in X$ there exist two sequences $\{U_n(x) : n \in \mathbb{N}\}$ and $\{V_n(x) : n \in \mathbb{N}\}$ of neighborhoods of x satisfying the following conditions:

- (i) $\{U_n(x) : n \in \mathbb{N}\}\$ is a neighborhood base of x;
- (ii) For each $n \in \mathbb{N}$, if $x \in V_n(y)$, then $y \in U_n(x)$.

Proof Let X be a semi-metric space. For each $x \in X$ and $n \in \mathbb{N}$, let $U_n(x) = B(x, 1/n)$ and $V_n(x) = \operatorname{int}(B(x, 1/n))$, then $U_n(x)$ and $V_n(x)$ are the desired neighborhoods of x.

For the converse, let $\{U_n(x) : n \in \mathbb{N}\}\$ and $\{V_n(x) : n \in \mathbb{N}\}\$ satisfy the conditions. For each $n \in \mathbb{N}$ and $A \subset X$, if $x \in \overline{A}$, then $V_n(x) \cap A \neq \emptyset$. Choose $y \in V_n(x) \cap A$, then by (ii), $x \in U_n(y)$. Hence, $\overline{A} \subset \bigcup \{U_n(x) : x \in A\}$. By Theorem 2.1, X is a semi-metric space. \Box

Lemma 2.3 ([8]) Let $\cup \{\mathcal{B}_x : x \in X\}$ be a weak base for a space X. For each $x \in X$ and $B \in \mathcal{B}_x$, if $x_n \to x$, then $\{x_n : n \ge m\} \subset B$ for some $m \in \mathbb{N}$.

With the above lemma, we can give a characterization of semi-metric spaces in terms of weak base g-functions as follows.

Theorem 2.4 A space X is a semi-metric space if and only if there exists a weak base g-function g for X satisfying the following conditions:

- (1) If $x \in g(n, x_n)$ for all $n \in \mathbb{N}$, then $x_n \to x$;
- (2) For each $A \subset X$ and $n \in \mathbb{N}$, $\overline{A} \subset g(n, A)$.

Proof Let X be a semi-metric space. For each $x \in X$ and $n \in \mathbb{N}$, let g(n, x) = B(x, 1/n). Then it is easy to verify that g is a weak base g-function for X which satisfies conditions (1) and (2).

Conversely, let g be a weak base g-function for X satisfying the conditions. For each $x \in X$ and $n \in \mathbb{N}$, let $U_n(x) = X \setminus \overline{\{y \in X : x \notin U_n(y)\}}$. Then $U_n(x)$ is an open neighborhood of x by (2). We shall show that g(n, x) is a neighborhood of x for each $n \in \mathbb{N}$. Suppose not, then $x \in \overline{X \setminus g(m, x)}$ for some $m \in \mathbb{N}$. So $U_n(x) \setminus g(m, x) \neq \emptyset$ for each $n \in \mathbb{N}$. Choose $x_n \in U_n(x) \setminus g(m, x)$, then $x \in g(n, x_n)$ for all $n \in \mathbb{N}$. It follows from (1) that $x_n \to x$, a contradiction with Lemma 2.3. Now, for each $x \in X$ and $n \in \mathbb{N}$, put $V_n(x) = g(n, x) \cap U_n(x)$ and $o(n, x) = \{y \in g(n, x) : x \in g(n, y)\}$. Then $V_n(x)$ is a neighborhood of x and $V_n(x) \subset o(n, x)$ which implies that o(n, x) is also a neighborhood of x. Next, define a function d as that in the proof of Theorem 2.1. It is easy to check that B(x, 1/n) = o(n, x) for each $x \in X$ and $n \in \mathbb{N}$, from which it follows that $x \in int(B(x,r))$ for each r > 0. If for each $x \in U$ there exists r > 0such that $B(x,r) \subset U$, then it is clear that U is open. Suppose now that U is open and $x \in U$. If $B(x, 1/n) \setminus U \neq \emptyset$ for all $n \in \mathbb{N}$, choose $x_n \in B(x, 1/n) \setminus U$, then $x \in g(n, x_n)$. By (1), $x_n \to x$, a contradiction. Consequently, X is a semi-metric space. \Box

Corollary 2.5 A space X is a semi-metric space if and only if there exists a weak base g-function g for X such that for each $A \subset X$, $\overline{A} = \bigcap_{n \in \mathbb{N}} g(n, A)$.

Proof Let X be a semi-metric space. By Theorem 2.4, there exists a weak base g-function g for X satisfying conditions (1) and (2). Then for each $A \subset X$, $\overline{A} \subset \bigcap_{n \in \mathbb{N}} g(n, A)$. Now, let $x \in \bigcap_{n \in \mathbb{N}} g(n, A)$. Then for each $n \in \mathbb{N}$, there is $x_n \in A$ such that $x \in g(n, x_n)$. By (1), $x_n \to x$ which implies that $x \in \overline{A}$. Thus $\bigcap_{n \in \mathbb{N}} g(n, A) \subset \overline{A}$.

For the converse, let g be a weak base g-function for X satisfying the condition. Then g satisfies condition (2) of Theorem 2.4. Now suppose that $x \in g(n, x_n)$ for all $n \in \mathbb{N}$. If $\langle x_n \rangle$ does not converge to x, then there exists a subsequence $\langle x_{n_k} \rangle$ of $\langle x_n \rangle$ such that $x \notin \overline{\{x_{n_k} : k \in \mathbb{N}\}}$. Put $A = \{x_{n_k} : k \in \mathbb{N}\}$, then there is $m \in \mathbb{N}$ such that $x \notin g(m, A)$. Choose $k \in \mathbb{N}$ such that $n_k > m$, then $x \notin g(n_k, x_{n_k})$, a contradiction. Thus g also satisfies condition (1) of Theorem 2.4. Consequently, X is a semi-metric space. \Box

Corollary 2.6 ([3]) A space X is a semi-metric space if and only if there exists a g-function g for X satisfying: if for each $n \in \mathbb{N}$, $x_n \in g(n, x)$ or $x \in g(n, x_n)$, then $x_n \to x$.

Proof We only prove the sufficiency.

For each $x \in X$ and $n \in \mathbb{N}$, let $h(n, x) = \{y \in X : y \in g(n, x) \text{ or } x \in g(n, y)\}$. Then $g(n, x) \subset h(n, x)$. Thus, if for each $x \in U$ there exists $n \in \mathbb{N}$ such that $h(n, x) \subset U$, then $g(n, x) \subset U$, therefore U is open. Now, suppose that U is open and $x \in U$. Assume that $h(n, x) \setminus U \neq \emptyset$ for all $n \in \mathbb{N}$. Choose $x_n \in h(n, x) \setminus U$, then $x_n \in g(n, x)$ or $x \in g(n, x_n)$ for each $n \in \mathbb{N}$, therefore $x_n \to x$, a contradiction. Hence there is $m \in \mathbb{N}$ such that $h(m, x) \subset U$. From the above argument, we see that h is a weak base g-function for X.

It is easy to verify that h satisfies conditions (1) and (2) of Theorem 2.4. $(g(n, x) \subset h(n, x))$. If $x \in \overline{A}$, then $g(n, x) \cap A \neq \emptyset$, from which it follows that $h(n, x) \cap A \neq \emptyset$. Choose $y \in h(n, x) \cap A$, then $x \in h(n, y)$ and $y \in A$ which implies that $x \in h(n, A)$). Therefore, X is a semi-metric space. \Box

Corollary 2.7 A space X is a semi-metric space if and only if there exists a g-function g for X satisfying: for each $x \in X$ and $F \in \tau^c$, if $x \notin F$, then there exists $m \in \mathbb{N}$ such that $x \notin g(m, F)$ and $F \cap g(m, x) = \emptyset$.

Proof Let X be a semi-metric space. Then there exists a g-function g for X satisfying the condition of Corollary 2.6. Let $F \in \tau^c$ and $x \notin F$. Assume that for each $n \in \mathbb{N}$, $x \in g(n, F)$ or $F \cap g(n, x) \neq \emptyset$, then there is $x_n \in F$ such that $x_n \in g(n, x)$ or $x \in g(n, x_n)$. By Corollary 2.6, $x_n \to x$ which implies that $x \in F$, a contradiction.

For the converse, let g be a g-function for X satisfying the condition. Suppose that for each $n \in \mathbb{N}$, $x_n \in g(n, x)$ or $x \in g(n, x_n)$. If $\langle x_n \rangle$ does not converge to x, then there exists a subsequence $\langle x_{n_k} \rangle$ of $\langle x_n \rangle$ such that $x \notin \overline{\{x_{n_k} : k \in \mathbb{N}\}}$. Put $F = \overline{\{x_{n_k} : k \in \mathbb{N}\}}$, then there exists $m \in \mathbb{N}$ such that $x \notin g(m, F)$ and $F \cap g(m, x) = \emptyset$. Choose $k \in \mathbb{N}$ such that $n_k > m$, then $x \notin g(n_k, x_{n_k})$ and $x_{n_k} \notin g(n_k, x)$, a contradiction. Thus $x_n \to x$. By Corollary 2.6, X is a semi-metric space. \Box

Theorem 2.8 A space X is a semi-metric space if and only if it has a pair network $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ such that for each $n \in \mathbb{N}$, \mathcal{P}_n is both cushioned and co-cushioned.

Proof Suppose that X is a semi-metric space and let g be the weak base g-function for X in Theorem 2.4. For each $n \in \mathbb{N}$, let $\mathcal{P}_n = \{(x, g(n, x)) : x \in X\}$ and $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$. Then \mathcal{P} is a pair network for X. Clearly, each \mathcal{P}_n is co-cushioned. By (2), \mathcal{P}_n is also cushioned.

Conversely, let $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ be a pair network for X where for each $n \in \mathbb{N}$, \mathcal{P}_n is both cushioned and co-cushioned. Without loss of generality, we may assume that for each $n \in \mathbb{N}$, $\mathcal{P}_n \subset \mathcal{P}_{n+1}$. For each $x \in X$ and $n \in \mathbb{N}$, put $g(n, x) = \operatorname{int}(\cap \{P_2 : x \in P_1, (P_1, P_2) \in \mathcal{P}_n\}) \setminus \bigcup \{P_1 : x \notin P_2, (P_1, P_2) \in \mathcal{P}_n\}$. Since \mathcal{P}_n is both co-cushioned and cushioned, g is a g-function for X.

Suppose that $F \in \tau^c$ and $x \notin F$. Then there is $m \in \mathbb{N}$ and $(P_1, P_2) \in \mathcal{P}_m$ such that $x \in P_1 \subset P_2 \subset X \setminus F$. Since $x \in P_1$, we have that $g(m, x) \subset P_2$, therefore $F \cap g(m, x) = \emptyset$. Now, for each $y \in F$, $y \notin P_2$. It follows from the definition of g that $g(m, y) \cap P_1 = \emptyset$. Thus $x \notin g(m, y)$ which implies that $x \notin g(m, F)$. By Corollary 2.7, X is a semi-metric space. \Box

Acknowledgment The author would like to thank the referee for his (her) valuable comments.

References

- [1] W. A. WILSON. On Semi-Metric Spaces. Amer. J. Math., 1931, 53(2): 361-373.
- [2] R. W. HEATH. A regular semi-metric space for which there is no semi-metric under which all spheres are open. Proc. Amer. Math. Soc., 1961, 12: 810–811.
- [3] R. W. HEATH. Arc-wise connectedness in semi-metric spaces. Pacific J. Math., 1962, 12: 1301–1319.
- M. BROWN. Semi-metric spaces Summer. Institute on Set Theoretic Topology, Madison, Wisconsin, Amer. Math. Soc., 1955, 62–64.
- [5] L. F. MCAULEY. On semi-metric spaces. Summer Institute on Set Theoretic Topology, Madison, Wisconsin, Amer. Math. Soc., 1955, 58–62.
- [6] L. F. MCAULEY. A relation between perfect separability, completeness, and normality in semi-metric spaces. Pacific J. Math., 1956, 6: 315–326.
- [7] F. B. JONES. Introductory remarks on semi-metric spaces. Summer Institute on Set Theoretic Topology, Madison, Wisconsin, Amer. Math. Soc., 1955, 58.
- [8] Shou LIN. Weak bases and metrization theorems. Sichuan Daxue Xuebao, 1993, 30(2): 164–166. (in Chinese)
- [9] A. ANDRIKOPOULOS. The quasimetrization problem in the (Bi)topological spaces. Int. J. Math. Math. Sci., 2007, 1–19.
- [10] J. G. CEDER. Some generalizations of metric spaces. Pacific J. Math., 1961, 11: 105-125.
- [11] A. V. ARHANGEL'SKII. Mappings and spaces. Russian Math. Surveys, 1966, 21: 115–162.
- [12] Zhimin GAO. Metrizability of spaces and weak base g-functions. Topology Appl., 2005, 146/147: 279–288.
- [13] R. E. HODEL. Spaces defined by sequence of open covers which guarantee that certain sequences have cluster points. Duke Math. J., 1972, 39: 253–263.