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1. Introduction

The notion of semi-metric spaces was introduced by Wilson [1] which plays an important role

in the theory of generalized metric spaces. Properties of semi-metric spaces were investigated by

Heath [2,3], Brown [4], McAuley [5,6] and Jones [7], etc and several important characterizations

were obtained. In this paper, we shall give some new characterizations of semi-metric spaces in

terms of weak base g-functions and pair networks.

Throughout, the set of all positive integers is denoted by N while ⟨xn⟩ denotes a sequence.

Let X be a topological space. Then τ is the topology on X and τ c is the family of all closed

subsets of X. For a subset A of a space X, the closure and the interior of A will be denoted by

A and intA, respectively.

A collection P of pairs of subsets of a space X is called a pair network [8] if P1 ⊂ P2 for

each (P1, P2) ∈ P and if x ∈ U ∈ τ , then there exists (P1, P2) ∈ P such that x ∈ P1 ⊂ P2 ⊂ U .

Definition 1.1 ([1]) A space X is called a semi-metric space if there is a function d : X ×X →
[0,∞) satisfying the following conditions:

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) a subset U of X is open if and only if for each x ∈ U , there exists r > 0 such that

B(x, r) ⊂ U , where B(x, r) = {y ∈ X : d(x, y) < r};
(4) for each x ∈ X and r > 0, x ∈ int(B(x, r)).

Definition 1.2 Let P be a collection of pairs of subsets of a space X. Then:

(1) P is called co-cushioned [9] if for each P ′ ⊂ P, ∩{P1 : (P1, P2) ∈ P ′} ⊂ int(∩{P2 :

(P1, P2) ∈ P ′});
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(2) P is called cushioned [10] if for each P ′ ⊂ P, ∪{P1 : (P1, P2) ∈ P ′} ⊂ ∪{P2 : (P1, P2) ∈
P ′}.

Definition 1.3 ([11]) A weak base for a space X is a collection B = ∪{Bx : x ∈ X} of subsets

of X such that

(1) For each x ∈ X, x ∈ ∩Bx and Bx is closed under finite intersections;

(2) A subset U of X is open if and only if for each x ∈ U there exists B ∈ Bx such that

x ∈ B ⊂ U .

Definition 1.4 ([12]) A weak base g-function for a space X is a map g : N×X → 2X satisfying:

(1) For every x ∈ X and n ∈ N, x ∈ g(n+ 1, x) ⊂ g(n, x);

(2) {g(n, x) : n ∈ N, x ∈ X} is a weak base for X, i.e., a subset U of X is open if and only

if for each x ∈ U there exists n ∈ N such that g(n, x) ⊂ U .

A g-function [13] for a space X is a mapping g : N×X → τ such that for every x ∈ X and

n ∈ N, x ∈ g(n+ 1, x) ⊂ g(n, x).

Let g be a g-function or a weak base g-function for a space X. For a set A ⊂ X, denote

g(n,A) = ∪{g(n, x) : x ∈ A}.
All spaces are assumed to be T2 unless otherwise stated.

2. Main results

In this section, we shall give some new characterizations of semi-metric spaces.

The following theorem is a reformulation of a theorem in [3].

Theorem 2.1 A space X is a semi-metric space if and only if for each x ∈ X there is a

decreasing (open) neighborhood base {Un(x) : n ∈ N} for x such that for each A ⊂ X and

n ∈ N, A ⊂ ∪{Un(x) : x ∈ A}.

Proof LetX be a semi-metric space. For each x ∈ X and n ∈ N, let Vn(x) = B(x, 1/n). For each

n ∈ N, if Vn(x) ⊂ int(Vm(x)) for some m ∈ N, then let kn = max{i ≤ n : Vn(x) ⊂ int(Vi(x))}
and Un(x) = int(Vkn(x)); otherwise, let Un(x) = X. Then {Un(x) : n ∈ N} is a decreasing

open neighborhood base for x. Indeed, if x ∈ U ∈ τ , then there exist m,n ∈ N such that

Vn(x) ⊂ int(Vm(x)) ⊂ U , from which it follows that Un(x) = int(Vkn(x)) with m ≤ kn ≤ n.

Consequently, Un(x) ⊂ int(Vm(x)) ⊂ U and so {Un(x) : n ∈ N} is a neighborhood base for x.

Now, let A ⊂ X and n ∈ N. If x ∈ A, then int(Vn(x)) ∩ A ̸= ∅. Choose y ∈ int(Vn(x)) ∩ A,

then x ∈ Vn(y). If Vn(y) * int(Vm(y)) for all m ∈ N, then Un(y) = X and so x ∈ Un(y). If

Vn(y) ⊂ int(Vm(y)) for some m ∈ N, then Un(y) = int(Vkn(y)) with Vn(y) ⊂ int(Vkn(y)) which

also follows that x ∈ Un(y). As a consequence, A ⊂ ∪{Un(x) : x ∈ A}.
Conversely, for each x ∈ X, let {Un(x) : n ∈ N} be a decreasing neighborhood base for

x that satisfies the condition of the theorem. For each x ∈ X and n ∈ N, put o(n, x) = {y ∈
Un(x) : x ∈ Un(y)}. Then x ∈ int(o(n, x)). Indeed, since A ⊂ ∪{Un(x) : x ∈ A} for each

A ⊂ X, x ∈ X \ {y ∈ X : x /∈ Un(y))}. So if we let Vn(x) = Un(x) \ {y ∈ X : x /∈ Un(y))}, then
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Vn(x) is a neighborhood of x and Vn(x) ⊂ o(n, x) which implies that x ∈ int(o(n, x)). Now,

for every pair of distinct x, y ∈ X, let m(x, y) = min{n ∈ N : y /∈ o(n, x)}. Define a function

d : X × X → [0,∞) as follows: d(x, x) = 0 and d(x, y) = 1/m(x, y) whenever x ̸= y. It is

easy to verify that B(x, 1/n) = o(n, x) for each x ∈ X and n ∈ N, from which it follows that

x ∈ int(B(x, r)) for each r > 0. (o(n, x) is decreasing with respect to n, so if x ̸= y then

y ∈ o(n, x) if and only if n < m(x, y) if and only if y ∈ B(x, 1/n)). Now it is clear that U is

open if and only if for each x ∈ U there exists r > 0 such that B(x, r) ⊂ U . Consequently, X is

a semi-metric space. �

Corollary 2.2 A space X is a semi-metric space if and only if for each x ∈ X there exist two

sequences {Un(x) : n ∈ N} and {Vn(x) : n ∈ N} of neighborhoods of x satisfying the following

conditions:

(i) {Un(x) : n ∈ N} is a neighborhood base of x;

(ii) For each n ∈ N, if x ∈ Vn(y), then y ∈ Un(x).

Proof Let X be a semi-metric space. For each x ∈ X and n ∈ N, let Un(x) = B(x, 1/n) and

Vn(x) = int(B(x, 1/n)), then Un(x) and Vn(x) are the desired neighborhoods of x.

For the converse, let {Un(x) : n ∈ N} and {Vn(x) : n ∈ N} satisfy the conditions. For each

n ∈ N and A ⊂ X, if x ∈ A, then Vn(x)∩A ̸= ∅. Choose y ∈ Vn(x)∩A, then by (ii), x ∈ Un(y).

Hence, A ⊂ ∪{Un(x) : x ∈ A}. By Theorem 2.1, X is a semi-metric space. �

Lemma 2.3 ([8]) Let ∪{Bx : x ∈ X} be a weak base for a space X. For each x ∈ X and

B ∈ Bx, if xn → x, then {xn : n ≥ m} ⊂ B for some m ∈ N.
With the above lemma, we can give a characterization of semi-metric spaces in terms of

weak base g-functions as follows.

Theorem 2.4 A space X is a semi-metric space if and only if there exists a weak base g-function

g for X satisfying the following conditions:

(1) If x ∈ g(n, xn) for all n ∈ N, then xn → x;

(2) For each A ⊂ X and n ∈ N, A ⊂ g(n,A).

Proof Let X be a semi-metric space. For each x ∈ X and n ∈ N, let g(n, x) = B(x, 1/n). Then

it is easy to verify that g is a weak base g-function for X which satisfies conditions (1) and (2).

Conversely, let g be a weak base g-function for X satisfying the conditions. For each x ∈ X

and n ∈ N, let Un(x) = X \ {y ∈ X : x /∈ Un(y))}. Then Un(x) is an open neighborhood of

x by (2). We shall show that g(n, x) is a neighborhood of x for each n ∈ N. Suppose not,

then x ∈ X \ g(m,x) for some m ∈ N. So Un(x) \ g(m,x) ̸= ∅ for each n ∈ N. Choose

xn ∈ Un(x) \ g(m,x), then x ∈ g(n, xn) for all n ∈ N. It follows from (1) that xn → x, a

contradiction with Lemma 2.3. Now, for each x ∈ X and n ∈ N, put Vn(x) = g(n, x) ∩ Un(x)

and o(n, x) = {y ∈ g(n, x) : x ∈ g(n, y)}. Then Vn(x) is a neighborhood of x and Vn(x) ⊂ o(n, x)

which implies that o(n, x) is also a neighborhood of x. Next, define a function d as that in the

proof of Theorem 2.1. It is easy to check that B(x, 1/n) = o(n, x) for each x ∈ X and n ∈ N,
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from which it follows that x ∈ int(B(x, r)) for each r > 0. If for each x ∈ U there exists r > 0

such that B(x, r) ⊂ U , then it is clear that U is open. Suppose now that U is open and x ∈ U .

If B(x, 1/n) \U ̸= ∅ for all n ∈ N, choose xn ∈ B(x, 1/n) \U , then x ∈ g(n, xn). By (1), xn → x,

a contradiction. Consequently, X is a semi-metric space. �

Corollary 2.5 A space X is a semi-metric space if and only if there exists a weak base g-function

g for X such that for each A ⊂ X, A = ∩n∈Ng(n,A).

Proof Let X be a semi-metric space. By Theorem 2.4, there exists a weak base g-function

g for X satisfying conditions (1) and (2). Then for each A ⊂ X, A ⊂ ∩n∈Ng(n,A). Now, let

x ∈ ∩n∈Ng(n,A). Then for each n ∈ N, there is xn ∈ A such that x ∈ g(n, xn). By (1), xn → x

which implies that x ∈ A. Thus ∩n∈Ng(n,A) ⊂ A.

For the converse, let g be a weak base g-function for X satisfying the condition. Then g

satisfies condition (2) of Theorem 2.4. Now suppose that x ∈ g(n, xn) for all n ∈ N. If ⟨xn⟩ does
not converge to x, then there exists a subsequence ⟨xnk

⟩ of ⟨xn⟩ such that x /∈ {xnk
: k ∈ N}.

Put A = {xnk
: k ∈ N}, then there is m ∈ N such that x /∈ g(m,A). Choose k ∈ N such that

nk > m, then x /∈ g(nk, xnk
), a contradiction. Thus g also satisfies condition (1) of Theorem 2.4.

Consequently, X is a semi-metric space. �

Corollary 2.6 ([3]) A space X is a semi-metric space if and only if there exists a g-function g

for X satisfying: if for each n ∈ N, xn ∈ g(n, x) or x ∈ g(n, xn), then xn → x.

Proof We only prove the sufficiency.

For each x ∈ X and n ∈ N, let h(n, x) = {y ∈ X : y ∈ g(n, x) or x ∈ g(n, y)}. Then

g(n, x) ⊂ h(n, x). Thus, if for each x ∈ U there exists n ∈ N such that h(n, x) ⊂ U , then

g(n, x) ⊂ U , therefore U is open. Now, suppose that U is open and x ∈ U . Assume that

h(n, x) \U ̸= ∅ for all n ∈ N. Choose xn ∈ h(n, x) \U , then xn ∈ g(n, x) or x ∈ g(n, xn) for each

n ∈ N, therefore xn → x, a contradiction. Hence there is m ∈ N such that h(m,x) ⊂ U . From

the above argument, we see that h is a weak base g-function for X.

It is easy to verify that h satisfies conditions (1) and (2) of Theorem 2.4. (g(n, x) ⊂ h(n, x).

If x ∈ A, then g(n, x)∩A ̸= ∅, from which it follows that h(n, x)∩A ̸= ∅. Choose y ∈ h(n, x)∩A,

then x ∈ h(n, y) and y ∈ A which implies that x ∈ h(n,A)). Therefore, X is a semi-metric space.

�

Corollary 2.7 A space X is a semi-metric space if and only if there exists a g-function g for X

satisfying: for each x ∈ X and F ∈ τ c, if x /∈ F , then there exists m ∈ N such that x /∈ g(m,F )

and F ∩ g(m,x) = ∅.

Proof Let X be a semi-metric space. Then there exists a g-function g for X satisfying the

condition of Corollary 2.6. Let F ∈ τ c and x /∈ F . Assume that for each n ∈ N, x ∈ g(n, F ) or

F ∩ g(n, x) ̸= ∅, then there is xn ∈ F such that xn ∈ g(n, x) or x ∈ g(n, xn). By Corollary 2.6,

xn → x which implies that x ∈ F , a contradiction.
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For the converse, let g be a g-function for X satisfying the condition. Suppose that for

each n ∈ N, xn ∈ g(n, x) or x ∈ g(n, xn). If ⟨xn⟩ does not converge to x, then there exists a

subsequence ⟨xnk
⟩ of ⟨xn⟩ such that x /∈ {xnk

: k ∈ N}. Put F = {xnk
: k ∈ N}, then there exists

m ∈ N such that x /∈ g(m,F ) and F ∩ g(m,x) = ∅. Choose k ∈ N such that nk > m, then

x /∈ g(nk, xnk
) and xnk

/∈ g(nk, x), a contradiction. Thus xn → x. By Corollary 2.6, X is a

semi-metric space. �

Theorem 2.8 A space X is a semi-metric space if and only if it has a pair network P = ∪n∈NPn

such that for each n ∈ N, Pn is both cushioned and co-cushioned.

Proof Suppose that X is a semi-metric space and let g be the weak base g-function for X in

Theorem 2.4. For each n ∈ N, let Pn = {(x, g(n, x)) : x ∈ X} and P = ∪n∈NPn. Then P is a

pair network for X. Clearly, each Pn is co-cushioned. By (2), Pn is also cushioned.

Conversely, let P = ∪n∈NPn be a pair network for X where for each n ∈ N, Pn is both

cushioned and co-cushioned. Without loss of generality, we may assume that for each n ∈ N,
Pn ⊂ Pn+1. For each x ∈ X and n ∈ N, put g(n, x) = int(∩{P2 : x ∈ P1, (P1, P2) ∈ Pn}) \
∪{P1 : x /∈ P2, (P1, P2) ∈ Pn}. Since Pn is both co-cushioned and cushioned, g is a g-function

for X.

Suppose that F ∈ τ c and x /∈ F . Then there is m ∈ N and (P1, P2) ∈ Pm such that

x ∈ P1 ⊂ P2 ⊂ X \ F . Since x ∈ P1, we have that g(m,x) ⊂ P2, therefore F ∩ g(m,x) = ∅.
Now, for each y ∈ F , y /∈ P2. It follows from the definition of g that g(m, y) ∩ P1 = ∅. Thus

x /∈ g(m, y) which implies that x /∈ g(m,F ). By Corollary 2.7, X is a semi-metric space. �
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