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Abstract In this paper we show that a positive superfunction on a cone behaves regularly
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1. Introduction

Let Rn(n ≥ 2) be the n-dimensional Euclidean space and S its an open set. The boundary

and the closure of S are denoted by ∂S and S, respectively. In cartesian coordinate a point P

is denoted by (X,xn), where X = (x1, x2, . . . , xn−1), hence the upper half space Tn = {P =

(X,xn) ∈ Rn;xn > 0}. Let |P | be the Euclidean norm of P and |P−Q| the Euclidean distance of

two points P and Q in Rn. The unit sphere and the upper half unit sphere are denoted by Sn−1

and Sn−1
+ , respectively. For P ∈ Rn and r > 0, let B(P, r) be the open ball of radius r centered

at P in Rn. Then Sr = ∂B(O, r). Furthermore, we denote by dSr the (n − 1)-dimensional

volume elements induced by the Euclidean metric on Sr.

In this paper we are concerned with some properties for the generalized subharmonic func-

tion associated with the stationary Schrödinger operator (i.e., subfunction or superfunction [1]).

Lelong-Ferrand [2], Essén and Jackson [3] obtained some properties for minimally thin sets and

rarefied sets at ∞ with respect to Tn. Aikawa [4] introduced the definition of Lb
0-minimally

thinness (0 ≤ b ≤ 1) and gave the following theorem.

Theorem A Let 0 ≤ b ≤ 1. If u is a non-negative superharmonic function on Tn, then there

exists a set E in Tn which is Lb
0-minimally thin at ∞ such that

lim
|P |→∞,P∈Tn\E

u(P )− c(u)xn

xb
n | P |1−b

= 0.

Conversely, if E is unbounded and Lb
0-minimally thin at ∞ with respect to Cn(Ω), then there
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exists a non-negative superharmonic function u(P ) on Tn such that

lim
|P |→∞,P∈E

u(P )− c(u)xn

xb
n|P |1−b

= ∞.

Remark 1.1 Here c(u) = infP=(X,xn)∈Tn

u(P )
xn

. When b = 0 and b = 1, Theorem A is due to

[3] and [2], respectively.

In [5] Miyamoto and Yoshida generalized the above results in [2] and [3] from Tn to a cone.

By modifying the methods of [3] and [4], Yanagishita [6] proved that Theorem A holds in a

cone. In addition, Qiao and Deng [7,8] considered some problems for the stationary Schrödinger

operator at ∞ with respect to a cone as well as Levin and Kheyfits [1,9]. Similarly, in [10] the

first author joined the results from [5] to the stationary Schrödinger operator. Hence, when

we introduce the notion of the Lb
a-minimally thin at ∞ with respect to a cone, we may extend

Theorem A through [6] to Theorem 2.2 of Section 2 in this paper. To state our results, we will

need some notations and background materials below.

Relative to the system of spherical coordinates, the Laplace operator ∆ may be written by

∆ =
n− 1

r

∂

∂r
+

∂2

∂r2
+

∆∗

r2
,

where the explicit form of the Beltrami operator ∆∗ is given by Azarin [11].

LetD be an arbitrary domain inRn and Aa denote the class of nonnegative radial potentials

a(P ), i.e., 0 ≤ a(P ) = a(r), P = (r,Θ) ∈ D, such that a ∈ Lb
loc(D) with some b > n/2 if n ≥ 4

and with b = 2 if n = 2 or n = 3.

If a ∈ Aa, then the stationary Schrödinger operator with a potential a(·)

La = −∆+ a(·)I (1.1)

can be extended in the usual way from the space C∞
0 (D) to an essentially self-adjoint operator

on L2(D), where ∆ is the Laplace operator and I the identical operator [12, Chap.13]. Then

La has a Green a-function Ga
D(·, Q) which is positive on D and whose inner normal derivative

∂Ga
D(·, Q)/∂nQ is not negative, here ∂/∂nQ denotes the differentiation at Q along the inward

normal into D. We write this derivative by PIaD(·, Q), which is called the Poisson a-kernel with

respect to D, and denote by G0
D(·, Q) the Green function of Laplacian. For simplicity, a point

(1,Θ) on Sn−1 and the set {Θ; (1,Θ) ∈ Ω} for a set Ω (Ω ⊂ Sn−1) are often identified with Θ

and Ω, respectively. For two sets Ξ ⊂ R+ and Ω ⊂ Sn−1, the set {(r,Θ) ∈ Rn; r ∈ Ξ, (1,Θ) ∈ Ω}
in Rn is simply denoted by Ξ × Ω. In particular, the upper half space Tn = R+ × Sn−1

+ . By

Cn(Ω) we denote the set R+×Ω in Rn with the domain Ω on Sn−1 and call it a cone. We mean

the sets I ×Ω and I × ∂Ω with an interval on R+ by Cn(Ω; I) and Sn(Ω; I), and Cn(Ω)∩ Sr by

Cn(Ω; r). By Sn(Ω) we denote Sn(Ω; (0,+∞)), which is ∂Cn(Ω) \ {O}. From now on, we always

assume D = Cn(Ω) and write Ga
Ω(·, Q) instead of Ga

Cn(Ω)(·, Q).

Let Ω be a domain on Sn−1 with smooth boundary and λ the least positive eigenvalue for

−∆∗ on Ω (see [13, p.41])

(∆∗ + λ)φ(Θ) = 0 on Ω, (1.2)

φ(Θ) = 0 on ∂Ω.
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The corresponding eigenfunction is denoted by φ(Θ) satisfying
∫
Ω
φ2(Θ)dS1 = 1. In order to

ensure the existence of λ and φ(Θ), we put a rather strong assumption on Ω: if n ≥ 3, then Ω is

a C2,α-domain (0 < α < 1) on Sn−1 surrounded by a finite number of mutually disjoint closed

hypersurfaces ([14, p.88,89] for the definition of C2,α-domain).

Solutions of an ordinary differential equation

−Q′′(r)− n− 1

r
Q′(r) + (

λ

r2
+ a(r))Q(r) = 0, for 0 < r < ∞ (1.3)

are known (see [15] for more references) if the potential a ∈ Aa. We know the equation (1.3) has

a fundamental system of positive solutions {V,W} such that V is nondecreasing with

0 ≤ V (0+) ≤ V (r) as r → +∞ (1.4)

and W is monotonically decreasing with

+∞ = W (0+) > W (r) ↘ 0 as r → +∞. (1.5)

We remark that both V (r)φ(Θ) andW (r)φ(Θ) are a-harmonic on Cn(Ω) and vanish continuously

on Sn(Ω).

We will also consider the class Ba, consisting of the potentials a ∈ Aa such that there exists

the finite limit limr→∞ r2a(r) = κ ∈ [0,∞), moreover, r−1|r2a(r)−κ| ∈ L(1,∞). If a ∈ Ba, then

the (super)subfunctions are continuous [16]. For simplicity, in the rest of the paper we assume

that a ∈ Ba.

Denote

ι±κ =
2− n±

√
(n− 2)2 + 4(κ+ λ)

2
,

then the solutions V (r) and W (r) to the equation (1.3) normalized by V (1) = W (1) = 1 have

the asymptotic [14]

V (r) ≈ rι
+
κ , W (r) ≈ rι

−
κ , as r → ∞ (1.6)

and

χ = ι+κ − ι−κ =
√
(n− 2)2 + 4(κ+ λ), χ′ = ω(V (r),W (r))|r=1, (1.7)

where χ′ is their Wronskian at r = 1.

Remark 1.2 If a = 0 and Ω = Sn−1
+ , then ι+0 = 1, ι−0 = 1 − n and φ(Θ) = (2ns−1

n )1/2 cos θ1,

where sn is the surface area 2πn/2{Γ(n/2)}−1 of Sn−1.

It is known that the Martin boundary △ of Cn(Ω) is the set ∂Cn(Ω) ∪ {∞}. Define the

generalized Martin type kernel Ma
Ω(P,Q)(P = (r,Θ) ∈ Cn(Ω), Q = (t,Φ) ∈ Cn(Ω) ∪ {∞}) as

follows:

Ma
Ω(P,Q) =



Ga
Ω(P,Q)

V (t)φ(Φ) on Cn(Ω)× Cn(Ω),
∂Ga

Ω(P,Q)
∂nQ

{V (t)t−1 ∂φ(Φ)
∂nΦ

}−1 on Cn(Ω)× Sn(Ω),

V (r)φ(Θ) on Cn(Ω)× {∞},
κW (r)φ(Θ) on Cn(Ω)× {o},
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where ∂/∂nQ denotes the differentiation at Q along the inward normal into Cn(Ω). Note

that Ma
Ω(P,Q) is continuous in the extending sense on Cn(Ω) ∪ Sn(Ω). Set M̈a

Ω(P,Q) =

Ma
Ω(Q,P ) (P = (r,Θ) ∈ Cn(Ω), Q = (t,Φ) ∈ Cn(Ω)∪{∞}) and M̈a

Ων(P ) =
∫
Cn(Ω)

M̈a
Ω(P,Q)dν(Q).

For b ∈ [0, 1], we define the positive superfunction gba by gba(P ) = Ma
Ω(P,Q)b for P ∈ Cn(Ω).

For a bounded subset E of Cn(Ω), Lb
a-mass of E is defined by λa

E,b(Cn(Ω)) for 0 ≤ b ≤ 1, where

λa
E,b is the measure on Cn(Ω) such that

Ma
Ωλ

a
E,b = R̂E

gb
a

(1.8)

and

λa
E,b(Cn(Ω)) =

∫
Cn(Ω)

gbadλE . (1.9)

A subset E of Cn(Ω) is Lb
a-minimally thin at ∞ in Cn(Ω) if

∞∑
k=0

λa
Ek,b

(Cn(Ω))V
−η(2k)W (2k) < ∞, (1.10)

where Ek = E ∩ Ik and

Ik = {P ∈ Cn(Ω); 2
k ≤ r ≤ 2k+1}, k = 0, 1, 2, . . . .

The rest of the paper is organized as follows. In Section 2, we will give our main theorems.

In Section 3, some necessary lemmas are given. In Section 4, we will prove the main results.

2. Statements of main results

Let E be a bounded subset of Cn(Ω). Since gba(P ) is a positive superfunction on Cn(Ω)

vanishing on ∂Cn(Ω) and R̂E
gb
a
(P ) is bounded on Cn(Ω), the greatest a-harmonic minorant of

R̂E
gb
a
(P ) is zero. By the Riesz decomposition theorem there exists a unique positive measure λa

E,b

on Cn(Ω) such that

R̂E
gb
a
(P ) = Ga

Ωλ
a
E,b(P ) (2.1)

for any P ∈ Cn(Ω) and λa
E,b is concentrated on BE , where

BE = {P ∈ Cn(Ω) : E is not Lb
a − thin at P}.

Let η be a real number satisfying

lim
r→∞

logW (r)

log V (r)
< η ≤ 1. (2.2)

Define the positive superfunction ha
η(P ) = Ma

Ω(P,∞)W (r)V −η(r). Since Ma
Ω(P,∞) is a mini-

mal a-harmonic function on Cn(Ω), there exists a measure νη on Cn(Ω) such that Ga
Ωνη(P ) =

min{Ma
Ω(P,∞), ha

η(P )}.
Set c∞(u, a) = infP∈Cn(Ω)

u(P )
Ma

Ω(P,∞) . Let F
a
η be the class of all non-negative superfunction u

on Cn(Ω) such that c∞(u, a) = 0 and∫
Cn(Ω;(1,∞))∪Sn(Ω;(1,∞))

W (t)V −η(t)dµu(Q) < ∞. (2.3)
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Remark 2.1 If P ∈ Cn(Ω), then M̈a
Ωνη(P ) =

Ga
Ωνη(P )

Ma
Ω(P,∞) . Following the method from [10] for L1

a,

we know that subset E of Cn(Ω) is Lb
a-minimally thin at P ∈ Cn(Ω) such that

M̈a
Ωνη(P ) ≤ lim inf

Q→P,Q∈Cn(Ω)
M̈a

Ωνη(Q).

Therefore, if P ∈ Sn(Ω), then

M̈a
Ωνη(P ) = lim inf

Q→P,Q∈Cn(Ω)
M̈a

Ωνη(Q).

Hence for P ∈ Cn(Ω) ∪ Sn(Ω), we have

M̈a
Ωνη(P ) =

{
1 for 0 < r < 1,

W (r)V −η(r) for r ≥ 1.

Set ha
η,b(P ) = Ma

Ω(P,∞)bV (r)η−b. Next we state our results as follows.

Theorem 2.2 If u(P ) ∈ Fa
η, then there exists a subset E of Cn(Ω) which is Lb

a-minimally thin

at ∞ with respect to Cn(Ω) such that

lim
|P |→∞,P∈Cn(Ω)\E

u(P )

ha
η,b

= 0. (2.4)

Conversely, if E is unbounded and Lb
a-minimally thin at ∞ with respect to Cn(Ω), then there

exists u(P ) ∈ Fa
η such that

lim
|P |→∞,P∈E

u(P )

ha
η,b

= ∞. (2.5)

Corollary 2.3 Let u(P ) be a non-negative superfunction on Cn(Ω). Then there exists a subset

E of Cn(Ω) which is Lb
a-minimally thin at ∞ with respect to Cn(Ω) such that

lim
|P |→∞,P∈Cn(Ω)\E

u(P )− c∞(u, a)Ma
Ω(P,∞)

Ma
Ω(P,∞)bV (r)1−b

= 0. (2.6)

Conversely, if E is unbounded and Lb
a-minimally thin at ∞ with respect to Cn(Ω), then there

exists a non-negative superfunction u(P ) such that

lim
|P |→∞,P∈E

u(P )− c∞(u, a)Ma
Ω(P,∞)

Ma
Ω(P,∞)bV (r)1−b

= ∞. (2.7)

Remark 2.4 When a = 0, Theorem 2.2 and Corollary 2.3 are from Yanagishita [6]. Further,

if a = 0 and Sn−1
+ , Theorem 2.2 is the result of Aikawa [4, Theorem 3.2]. In addition, when

a = 0 and b = 0, and b = 0 in Corollary 2.3, we refer to [5] and [10], respectively. Since

ũ(P ) = u(P )− c∞(u, a)Ma
Ω(P,∞) ∈ Fa

1 in Corollary 2.3, we may follow the same method as the

proof of Theorem 2.2.

3. Some lemmas

To state our results better, in the arguments we need the following results.

Lemma 3.1 ([7]) For any P = (r,Θ) ∈ Cn(Ω) and any Q = (t,Φ) ∈ Sn(Ω) satisfying 0 < t
r ≤
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4
5 (resp., 0 < r

t ≤ 4
5 ),

∂Ga
Ω(P,Q)

∂nQ
≤ Ct−1V (t)W (r)φ(Θ)

∂φ(Φ)

∂nΦ
(3.1)

(resp.,
∂Ga

Ω(P,Q)

∂nQ
≤ CV (r)t−1W (t)φ(Θ)

∂φ(Φ)

∂nΦ
). (3.2)

Further,
∂G0

Ω(P,Q)

∂nQ
. φ(Θ)

tn−1

∂φ(Φ)

∂nΦ
+

rφ(Θ)

|P −Q|n
∂φ(Φ)

∂nΦ
(3.3)

for any P = (r,Θ) ∈ Cn(Ω) and any Q = (t,Φ) ∈ Sn(Ω; (
4
5r,

5
4r)).

Lemma 3.2 ([7]) For any P = (r,Θ) ∈ Cn(Ω) and any Q = (t,Φ) ∈ Cn(Ω) satisfying 0 < t
r ≤

4
5 (resp., 0 < r

t ≤ 4
5 ),

Ga
Ω(P,Q) ≤ Ct−1V (t)W (r)φ(Θ)φ(Φ) (3.4)

(resp., Ga
Ω(P,Q) ≤ CV (r)t−1W (t)φ(Θ)φ(Φ)) (3.5)

Further,

G0
Ω(P,Q) . φ(Θ)φ(Φ)

tn−2
+ UΩ(P,Q) (3.6)

for any P = (r,Θ) ∈ Cn(Ω) and any Q = (t,Φ) ∈ Sn(Ω; (
4
5r,

5
4r)), where

UΩ(P,Q) = min{ 1

|P −Q|n−2
,
rtφ(Θ)φ(Φ)

|P −Q|n
}.

Lemma 3.3 The set E ⊂ Cn(Ω; (1,∞)) is Lb
a-minimally thin at ∞ if and only if

∞∑
k=0

R̂Ek

ha
η,b

∈ Fa
η.

Proof Note that for every k = 0, 1, 2, . . .

R̂Ek

gb
a
≈ V (2k)b−ηR̂Ek

ha
η,b

,

λa
Ek,b

(Cn(Ω)) ≈ V η(2k)W−1(2k)

∫
Cn(Ω)∪Sn(Ω)

V −η(t)W (t)dλa
Ek,b

(Q),

where the constants of comparison are independent of k. Since∫
Cn(Ω)

R̂Ek

gb
a
dνη(P ) =

∫
Cn(Ω)

Ma
Ωλ

a
Ek,b

(P )dνη(P ) =

∫
Cn(Ω)∪Sn(Ω)

M̈˘aΩνη(Q)dλa
Ek,b

(Q)

=

∫
Cn(Ω)∪Sn(Ω)

V −η(t)W (t)dλa
Ek,b

(Q),

we have

V −b(2k)W (2k)λa
Ek,b

(Cn(Ω)) ≈
∫
Cn(Ω)

R̂Ek

ha
η,b

(P )dνη(P ),

where the constants of comparison are independent of k, which gives the conclusion. �

Lemma 3.4 Let E ⊂ Cn(Ω; (1,∞)). If R̂E
ha
η,b

∈ Fa
η, then E is Lb

a-minimally thin at ∞.
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Proof Since ha
η,b(P ) satisfies

lim inf
|P |→∞

ha
η,b(P )

Ma
Ω(P,∞)V (r)η−1

> 0,

we find a positive constant C ′ and a natural number N1 such that

ha
η,b(P ) ≥ C ′Ma

Ω(P,∞)V (r)η−1

for r > 2N1 . Let R̂E
ha
η,b

= Ma
Ωµ, where µ satisfies (2.3) and

A =

∫
Cn(Ω;(1,∞))∪Sn(Ω;(1,∞))

V −η(t)W (t)dµ(t,Φ) < ∞.

Set C̃ = C
C′ . By (1.4–1.7) we may take a natural number N2 such that

4AC̃V −η(2N2r)W (2N2r) < V −η(r)W (r).

Then there exists a natural number N0 such that

C̃

∫
{Q∈Cn(Ω)∪Sn(Ω):t≥2k+N2+1}

V −η(t)W (t)dµ(t,Φ) <
1

4

for k ≥ N0. Let N = max{N0, N1, N2}. Since
N∑

k=0

R̂Ek

ha
η,b

≤ (N + 1)R̂E
ha
η,b

∈ Fa
η,

it suffices to prove
∑∞

k>N R̂Ek

ha
η,b

∈ Fa
η. Set Jk = Ik−N2 ∪ · · · ∪ Ik ∪ · · · ∪ Ik+N2 . Let k > N and

P = (r,Θ) ∈ Ek. If Q ∈ Cn(Ω) and t < 2k−N2 , then from the inequality (3.4) in Lemma 3.2 we

obtain

Ma
Ω(P,Q) =

Ga
Ω(P,Q)

V (t)φ(Φ)
≤ CW (r)φ(Θ).

Hence ∫
{Q∈Cn(Ω):t≤2k−N2}

Ma
Ω(P,Q)dµ(t,Φ) ≤ C̃ha

η,b(P )V −η(r)W (r)

∫
1≤t≤2k−N2

dµ(Q)

≤ C̃ha
η,b(P )

∫
1≤t≤2k−N2

V −η(r)W (r)dµ(Q).

On the other hand, if Q ∈ Cn(Ω) and t ≥ 2k+N2+1, then we get∫
{Q∈Cn(Ω):t≥2k+N2+1}

Ma
Ω(P,Q)dµ(t,Φ) ≤ C̃ha

η,b(P )V 1−η(r)

∫
t≥2k+N2+1

V −1(t)W (t)dµ(Q)

≤ C̃ha
η,b(P )

∫
t≥2k+N2+1

V −η(t)W (t)dµ(Q).

If Q ∈ Sn(Ω) and t ≤ 2k−N2 or Q ∈ Sn(Ω) and t ≥ 2k+N2+1, then from Lemma 3.1 we have

similar inequalities. According to these inequalities we obtain

C̃−1

∫
Cn(Ω)\Jk

Ma
Ω(P,Q)dµ(Q) ≤ha

η,b(P )

∫
t≤2k−N2

V −η(t)W (t)dµ(Q)+

ha
η,b(P )

∫
t≥2k+N2+1

V −η(t)W (t)dµ(Q).
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Since 4AC̃V −η(2N2r)W (2N2r) < V −η(r)W (r), we see that

C̃

∫
t≤2k−N2

V −η(r)W (r)dµ(t,Φ) ≤ 1

4A

∫
t≤2k−N2

V −η(2−N2r)W (2−N2r)dµ(t,Φ)

≤ 1

4A

∫
t≤2k−N2

V −η(t)W (t)dµ(t,Φ) ≤ 1

4
.

So we have ∫
Cn(Ω)\Jk

Ma
Ω(P,Q)dµ(Q) ≤ 1

2
ha
η,b(P ) on Ek,

which implies that

ha
η,b(P ) ≤ R̂Ek

ha
η,b

(P ) ≤
∫
Jk

Ma
Ω(P,Q)dµ(Q) +

1

2
ha
η,b(P )

q.e on Ek. Hence

ha
η,b(P ) ≤ 2

∫
Jk

Ma
Ω(P,Q)dµ(Q)

q.e on Ek. By the definition of R̂Ek

ha
η,b

, R̂Ek

ha
η,b

≤ 2
∫
Jk

Ma
Ω(P,Q)dµ(Q) on Cn(Ω). If we sum up

R̂Ek

ha
η,b

over k > N , we obtain
∞∑

k=N

R̂Ek

ha
η,b

≤ cR̂E
ha
η,b

.

Since
∑

k>N R̂Ek

ha
η,b

∈ Fa
η, we get Lemma 3.4 from Lemma 3.3. �

4. Proofs of Theorems

In the section we will mainly give the proofs of theorems in the paper.

Proof of Theorem 2.2 Let u1(P ) = u(P )− co(u, a)M
a
Ω(P,Q) for P = (r,Θ) ∈ Cn(Ω), where

co(u) = infP∈Cn(Ω)
u(P )

M(P,O) . Then u1 ∈ Fa
η. For each nonnegative integer j, set Aj = {P =

(r,Θ) ∈ Cn(Ω);
u1(P )
ha
η,b(P ) ≥ (j + 1)−1}. Since R̂

Aj

ha
η,b

≤ (j + 1)u1 ∈ Fa
η, R̂

Aj

ha
η,b

∈ Fa
η, and so Aj is

Lb
a-minimally thin by Lemma 3.4. We can find an increasing sequence {m(j)} of natural numbers

such that ∑
j

R̂
∪k≥j(Aj∩Ik)
ha
η,b

∈ Fa
η.

Set E = ∪∞
j=0 ∪k≥m(j) (Aj ∩ Ik). Since

R̂E
ha
η,b

≤
∑
j

R̂
∪k≥j(Aj∩Ik)
ha
η,b

,

by Lemma 3.4 E is Lb
a-minimally thin. If P ∈ Cn(Ω) \ E, then P ∈ Cn(Ω) \ ∪k≥j(Aj ∩ Ik) for

every j. It follows that if r ≥ 2m(j), then P ∈ Cn(Ω) \Aj . This implies that u1(P )
ha
η,b(P ) ≤ (j+1)−1.

Hence we have u1(P )
ha
η,b(P ) → 0 as r → ∞ for P = (r,Θ) ∈ Cn(Ω) \ E. On the other hand,

Ma
Ω(P,O)

ha
η,b(P ) = κW (r)V η(r)φ(Θ)1−b → 0 as r → ∞. Thus we obtain

u(P )

ha
η,b(P )

=
u1(P ) + co(u, a)M

a
Ω(P,Q)

ha
η,b(P )

→ 0 as r → ∞, P = (r,Θ) ∈ Cn(Ω) \ E.
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Conversely we take an unbounded and Lb
a-minimally thin set E. It is well known that if U is

bounded, then

λa
U,b(Cn(Ω)) = inf{λa

O,b(Cn(Ω));U ⊂ O,O is open}.

By applying the above property to Ek (k = 0, 1, 2, . . .), we get an open set O ⊃ E such that O

is Lb
a-minimally thin. According to Lemma 3.3 we have

∞∑
k=0

R̂Ok

ha
η,b

∈ Fa
η,

where Ok = O ∩ Ik, which implies

∞∑
k=0

∫
R̂Ok

ha
η,b

(P )dνη(P ) < ∞.

We can find an increasing sequence ck of positive numbers such that ck ↑ ∞ and

∞∑
k=0

ck

∫
R̂Ok

ha
η,b

(P )dνη(P ) < ∞.

Put

u(P ) =

∞∑
k=0

R̂Ok

ha
η,b

(P ).

By Lebesgue’s monotone convergence theorem, we see that u ∈ Fa
η. Since Ok ( Ok ∪ Ok−1, we

have

R̂
Ok−1

ha
η,b

(P ) + R̂Ok

ha
η,b

(P ) ≥ R̂Ok

ha
η,b

(P ) ≥ ha
η,b(P )

for P ∈ Ok. Hence, if P = (r,Θ) ∈ Ek ⊂ Ok, then

u(P ) ≥ ck−1R̂
Ok−1

ha
η,b

(P ) + ckR̂
Ok

ha
η,b

(P ) ≥ ck−1h
a
η,b(P ).

Therefore

lim
r→∞,P∈E

u(P )

ha
η,b(P )

= ∞

holds. �
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