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Abstract We define and study the Fourier-Wigner transform associated with the Dunkl

operators, and we prove for this transform an inversion formula. Next, we introduce and

study the Weyl transforms Wσ associated with the Dunkl operators, where σ is a symbol in

the Schwartz space S(Rd ×Rd). An integral relation between the precedent Weyl and Wigner

transforms is given. At last, we give criteria in terms of σ for boundedness and compactness

of the transform Wσ.
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1. Introduction

In this paper, we consider Rd with the Euclidean inner product ⟨., .⟩ and norm |y| :=
√

⟨y, y⟩.
For α ∈ Rd\{0}, let σα be the reflection in the hyperplane Hα ⊂ Rd orthogonal to α:

σαy := y − 2⟨α, y⟩
|α|2

α.

A finite set ℜ ⊂ Rd\{0} is called a root system, if ℜ ∩ R.α = {−α, α} and σαℜ = ℜ for

all α ∈ ℜ. We assume that it is normalized by |α|2 = 2 for all α ∈ ℜ. For a root system ℜ,
the reflections σα, α ∈ ℜ, generate a finite group G. The Coxeter group G is a subgroup of the

orthogonal group O(d). All reflections in G, correspond to suitable pairs of roots. For a given

β ∈ Rd\
∪

α∈ℜ Hα, we fix the positive subsystem ℜ+ := {α ∈ ℜ : ⟨α, β⟩ > 0}. Then for each

α ∈ ℜ either α ∈ ℜ+ or −α ∈ ℜ+.

Let k : ℜ → C be a multiplicity function on ℜ (a function which is constant on the orbits

under the action of G). As an abbreviation, we introduce the index γ = γk :=
∑

α∈ℜ+
k(α).

Throughout this paper, we will assume that k(α) ≥ 0 for all α ∈ ℜ. Moreover, let wk

denote the weight function wk(y) :=
∏

α∈ℜ+
|⟨α, y⟩|2k(α), for all y ∈ Rd, which is G-invariant and

homogeneous of degree 2γ.

Let ck be the Mehta-type constant given by ck := (
∫
Rd e

−|y|2/2wk(y)dy)
−1. We denote by

µk the measure on Rd given by dµk(y) := ckwk(y)dy; and by Lp(µk), 1 ≤ p ≤ ∞, the space of
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measurable functions f on Rd, such that

∥f∥Lp(µk) :=
(∫

Rd

|f(y)|pdµk(y)
)1/p

< ∞, 1 ≤ p < ∞,

∥f∥L∞(µk) := ess sup
y∈Rd

|f(y)| < ∞,

and by Lp
rad(µk) the subspace of Lp(µk) consisting of radial functions.

For f ∈ L1(µk) the Dunkl transform of f is defined by [3]

Fk(f)(x) :=

∫
Rd

Ek(−ix, y)f(y)dµk(y), x ∈ Rd,

where Ek(−ix, y) denotes the Dunkl kernel (For more details see the next section).

The Dunkl translation operators τx, x ∈ Rd, [10] are defined on L2(µk) by

Fk(τxf)(y) = Ek(ix, y)Fk(f)(y), y ∈ Rd.

Using these results, we define the Dunkl-Wigner transform V , by

V (f, g)(x, y) :=

∫
Rd

f(t)τxg(−t)Ek(−iy, t)dµk(t), f, g ∈ L2(µk).

Next, we study some of its properties, and we prove an inversion formula for this transform.

Next, we introduce the Dunkl-Weyl transform Wσ, by

Wσ(f)(x) :=

∫
Rd

∫
Rd

σ(y, z)Ek(ix, z)τxf(−y)dµk(y)dµk(z), f ∈ L2(µk),

with σ in the Schwartz space S(Rd × Rd), and we give its connection with the Dunkl-Wigner

transform V . Furthermore, we prove that for σ in S(Rd × Rd), the transform Wσ is a compact

operator from L2(µk) into itself. At last, we define Wσ for σ in the spaces Lp(µk ⊗ µk), with

p ∈ [1, 2], and we establish that Wσ is again a compact operator.

In the classical case, the Fourier-Wigner transform and the Weyl transform were studied by

Weyl [12] and Wong [13]. In the Bessel-Kingman hypergroups, these operators were studied by

Dachraoui [1].

This paper is organized as follows. In Section 2, we recall some properties of harmonic

analysis for the Dunkl operators. In Section 3, we define the Fourier-Wigner transform V in the

Dunkl setting, and we have established for it an inversion formula. In Section 4, we introduce and

study the Dunkl-Weyl transforms Wσ for σ in S(Rd × Rd); and we prove that these transforms

are compact operators from L2(µk) into itself. In Section 5, we define Wσ for σ in Lp(µk ⊗ µk),

with p ∈ [1, 2], and we prove the boundedness and compactness of these transforms on these

spaces. In Section 6, we define Wσ for σ in S ′(Rd × Rd).

2. The Dunkl analysis on Rd

The Dunkl operators Dj ; j = 1, . . . , d, on Rd associated with the finite reflection group G

and multiplicity function k are given, for a function f of class C1 on Rd, by

Djf(y) :=
∂

∂yj
f(y) +

∑
α∈ℜ+

k(α)αj
f(y)− f(σαy)

⟨α, y⟩
.
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For y ∈ Rd, the initial problem Dju(., y)(x) = yju(x, y), j = 1, . . . , d, with u(0, y) = 1

admits a unique analytic solution on Rd, which will be denoted by Ek(x, y) and called Dunkl

kernel [2,5]. This kernel has a unique analytic extension to Cd × Cd. The Dunkl kernel has the

Laplace-type representation [6]

Ek(x, y) =

∫
Rd

e⟨y,z⟩dΓx(z), x ∈ Rd, y ∈ Cd, (2.1)

where ⟨y, z⟩ :=
∑d

i=1 yizi and Γx is a probability measure on Rd, such that supp(Γx) ⊂ {z ∈
Rd : |z| ≤ |x|}. In our case,

|Ek(ix, y)| ≤ 1, x, y ∈ Rd. (2.2)

The Dunkl kernel gives rise to an integral transform, which is called Dunkl transform on

Rd, and was introduced by Dunkl in [3], where already many basic properties were established.

Dunkl’s results were completed and extended later by De Jeu [5]. The Dunkl transform of a

function f in L1(µk), is defined by

Fk(f)(x) :=

∫
Rd

Ek(−ix, y)f(y)dµk(y), x ∈ Rd.

We notice that F0 agrees with the Fourier transform F that is given by

F(f)(x) := (2π)−d/2

∫
Rd

e−i⟨x,y⟩f(y)dy, x ∈ Rd.

Some of the properties of Dunkl transform Fk are collected bellow [3,5].

Theorem 2.1 (i) L1 − L∞-boundedness. For all f ∈ L1(µk), Fk(f) ∈ L∞(µk), and

∥Fk(f)∥L∞(µk) ≤ ∥f∥L1(µk).

(ii) The Dunkl transform Fk is a topological isomorphism from S(Rd) onto itself.

(iii) Inversion theorem. Let f ∈ L1(µk), such that Fk(f) ∈ L1(µk). Then

f(x) = F(Fk(f))(−x), a.e. x ∈ Rd. (2.3)

(iv) Plancherel theorem. The Dunkl transform Fk extends uniquely to an isometric iso-

morphism of L2(µk) onto itself. In particular,

∥f∥L2(µk) = ∥Fk(f)∥L2(µk). (2.4)

The Dunkl transform Fk allows us to define a generalized translation operators on L2(µk)

by setting

Fk(τxf)(y) = Ek(ix, y)Fk(f)(y), y ∈ Rd. (2.5)

It is the definition of Thangavelu and Xu given in [10]. It plays the role of the ordinary translation

τxf = f(x + .) in Rd, since the Euclidean Fourier transform satisfies F(τxf)(y) = eixyF(f)(y).

Note that from (2.2) and (2.4), the definition (2.5) makes sense, and

∥τxf∥L2(µk) ≤ ∥f∥L2(µk), f ∈ L2(µk). (2.6)
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Rösler [7] introduced the Dunkl translation operators for radial functions. If f are radial

functions, f(x) = F (|x|), then

τxf(y) =

∫
Rd

F
(√

|x|2 + |y|2 + 2⟨y, z⟩
)
dΓx(z); x, y ∈ Rd,

where Γx is the representing measure given by (2.1).

This formula allows us to establish the following results [10,11].

Proposition 2.2 (i) For all p ∈ [1, 2] and for all x ∈ Rd, the Dunkl translation τx : Lp
rad(µk) →

Lp(µk) is a bounded operator, and for f ∈ Lp
rad(µk),

∥τxf∥Lp(µk) ≤ ∥f∥Lp
rad(µk). (2.7)

(ii) Let f ∈ L1
rad(µk). Then, for all x ∈ Rd,∫

Rd

τxf(y)dµk(y) =

∫
Rd

f(y)dµk(y). (2.8)

3. The Dunkl-Wigner transform

The Fourier-Wigner transform associated to the Dunkl operators, is the mapping V defined

on S(Rd)× S(Rd) by

V (f, g)(x, y) :=

∫
Rd

f(t)τxg(−t)Ek(−iy, t)dµk(t), x, y ∈ Rd. (3.1)

The transform V can also be written in the form

V (f, g)(x, y) = Fk(f τ̃xg)(y), f̃(x) = f(−x). (3.2)

Proposition 3.1 (i) The Dunkl-Wigner transform V is a bilinear, continuous mapping from

S(Rd)× S(Rd) into S(Rd × Rd).

(ii) For f, g ∈ L2(µk), then V (f, g) ∈ L∞ ∩ L2(µk ⊗ µk), and

∥V (f, g)∥L∞(µk⊗µk) ≤ ∥f∥L2(µk)∥g∥L2(µk), (3.3)

∥V (f, g)∥L2(µk⊗µk) ≤ ∥f∥L2(µk)∥g∥L2(µk). (3.4)

(iii) Let p ∈ [1, 2] and q such that 1
p + 1

q = 1. For (f, g) ∈ Lq(µk) × Lp
rad(µk), then

V (f, g) ∈ L∞(µk ⊗ µk), and

∥V (f, g)∥L∞(µk⊗µk) ≤ ∥f∥Lq(µk)∥g∥Lp
rad(µk). (3.5)

Proof (i) Let f, g ∈ S(Rd), and let F be the function defined on Rd × Rd by

F (x, y) := f(y)τxg(−y).

Then V (f, g)(x, y) = (I ⊗Fk)(F )(x, y), where I is the identity operator. This with Theorem 2.1

(ii) gives (i).

(ii) We get (3.3) from (3.1), Hölder’s inequality and relation (2.6).

We obtain (3.4) from (3.2), (2.4), Minkowski’s inequality for integrals [4, p.186], and from (2.6).
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(iii) We deduce (3.5) from (3.1), Hölder’s inequality and relation (2.7). �

Proposition 3.2 Let f, g ∈ S(Rd). Then for all ξ, λ ∈ Rd,

Fk ⊗F−1
k [V (f, g)](ξ, λ) = Ek(−iλ, ξ)f(λ)Fk(g)(ξ).

Proof Let f, g ∈ S(Rd). From (3.1), (3.2) and Fubini’s theorem,

Fk ⊗F−1
k [V (f, g)](ξ, λ) =

∫
Rd

∫
Rd

V (f, g)(x, y)Ek(−iξ, x)Ek(iλ, y)dµk(x)dµk(y)

=

∫
Rd

[ ∫
Rd

Fk(f τ̃xg)(y)Ek(iλ, y)dµk(y)
]
Ek(−iξ, x)dµk(x)

= f(λ)

∫
Rd

τxg(−λ)Ek(−iξ, x)dµk(x).

Then, by (2.5),

Fk ⊗F−1
k [V (f, g)](ξ, λ) = f(λ)Fk(τ−λg)(ξ) = Ek(−iλ, ξ)f(λ)Fk(g)(ξ),

which completes the proof. �

Corollary 3.3 Let f, g ∈ S(Rd). Then

(i)
∫
Rd Fk ⊗F−1

k [V (f, g)](ξ, λ)dµk(λ) = Fk(f)(ξ)Fk(g)(ξ), ξ ∈ Rd,

(ii)
∫
Rd Fk ⊗F−1

k [V (f, g)](ξ, λ)dµk(ξ) = f(λ)g(−λ), λ ∈ Rd.

Theorem 3.4 Let g ∈ L1
rad ∩ L2(µk) such that c =

∫
Rd g(x)dµk(x) ̸= 0. Then for all f ∈

L1 ∩ L2(µk),

Fk(f)(y) =
1

c

∫
Rd

V (f, g)(x, y)dµk(x).

Proof Using (3.1), Fubini’s theorem and (2.8),∫
Rd

V (f, g)(x, y)dµk(x) =

∫
Rd

Ek(−iy, t)f(t)
[ ∫

Rd

τxg(−t)dµk(x)
]
dµk(t)

= cFk(f)(y),

where c =
∫
Rd g(x)dµk(x). �

Corollary 3.5 Let g ∈ L1
rad ∩ L2(µk) such that c =

∫
Rd g(x)dµk(x), c ̸= 0. Then

(i) For all f ∈ L1 ∩ L2(µk) such that Fk(f) ∈ L1(µk),

f(z) =
1

c

∫
Rd

Ek(iy, z)
[ ∫

Rd

V (f, g)(x, y)dµk(x)
]
dµk(y).

(ii) For all f ∈ L1 ∩ L2(µk),

∥f∥2L2(µk)
=

1

c2

∫
Rd

∣∣∣ ∫
Rd

V (f, g)(x, y)dµk(x)
∣∣∣2dµk(y).

4. The Dunkl-Weyl transforms

In this section, we introduce and study the Weyl transform associated to the Dunkl opera-

tors. Let σ ∈ S(Rd × Rd), we define the Weyl transform Wσ associated to the Dunkl operators
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on S(Rd), by

Wσ(f)(x) :=

∫
Rd

∫
Rd

σ(y, z)Ek(−ix, z)τxf(−y)dµk(y)dµk(z), x ∈ Rd. (4.1)

Proposition 4.1 Let σ ∈ S(Rd × Rd). Then Wσ is continuous from S(Rd) into itself.

Proof Let f ∈ S(Rd). From Theorem 2.1 (ii) and (2.3),

τxf(−y) =

∫
Rd

Ek(ix, t)Ek(−iy, t)Fk(f)(t)dµk(t), x, y ∈ Rd.

Then, by (4.1) and Fubini’s theorem,

Wσ(f)(x) =

∫
Rd

Ek(−ix, z)
[ ∫

Rd

Ek(ix, t)Fk(f)(t){∫
Rd

σ(y, z)Ek(−iy, t)dµk(y)
}
dµk(t)

]
dµk(z)

=

∫
Rd

Ek(−ix, z)
[ ∫

Rd

Ek(ix, t)Fk(f)(t)

Fk(σ(., z))(t)dµk(t)
]
dµk(z).

Now the function (t, z) → Fk(σ(., z))(t) belongs to S(Rd × Rd).

On the other hand, the mapping f → Gf , given by

Gf (t, z) = Fk(f)(t)Fk(σ(., z))(t), t, z ∈ Rd,

is continuous from S(Rd) into S(Rd × Rd), and for all x ∈ Rd,

Wσ(f)(x) =

∫
Rd

Ek(−ix, z)
[ ∫

Rd

Ek(ix, t)Gf (t, z)dµk(t)
]
dµk(z)

=F−1
k ⊗Fk(Gf )(x, x).

We deduce the result from the fact that F−1
k ⊗Fk is an isomorphism from S(Rd×Rd) onto itself.

�

Lemma 4.2 Let σ ∈ S(Rd × Rd). Then, the function h defined on Rd × Rd by

h(x, y) :=

∫
Rd

Ek(−ix, z)τx[σ(., z)](−y)dµk(z) (4.2)

belongs to S(Rd × Rd).

Proof The function h can be written in the form

h(x, y) = τx[F−1
k (G(., x))](−y) = τx[(I ⊗F−1

k )(G)(., x)](−y),

where G(t, x) =
∫
Rd Ek(−ix, z)Fk(σ(., z))(t)dµk(z). Now the function (t, x) → G(t, x) belongs

to S(Rd × Rd). Thus, by Theorem 2.1 (ii), we deduce that the function (I ⊗ F−1
k )(G) belongs

to S(Rd × Rd). Then the result follows from the fact that for all g ∈ S(Rd × Rd), the function

(x, y) → τx[g(., x)](−y) belongs to S(Rd × Rd). �

Theorem 4.3 Let σ ∈ S(Rd × Rd).
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(i) For all f ∈ S(Rd),

Wσ(f)(x) =

∫
Rd

h(x, y)f(y)dµk(y),

where h(x, y) is the kernel given by (4.2).

(ii) For all f ∈ S(Rd) and p, q ∈ [1,∞] such that 1
p + 1

q = 1,

∥Wσ(f)∥Lq(µk) ≤ ∥h∥Lq(µk⊗µk)∥f∥Lp(µk).

(iii) For p, q ∈ [1,∞[ such that 1
p + 1

q = 1, the operator Wσ can be extended to a bounded

operator from Lp(µk) into Lq(µk). In particular Wσ : L2(µk) → L2(µk) is a Hilbert-Schmidt

operator, and consequently it is compact.

Proof (i) Let f ∈ S(Rd). From (4.1),

Wσ(f)(x) =

∫
Rd

Ek(−ix, z)
[ ∫

Rd

τxf(−y)σ(y, z)dµk(y)
]
dµk(z).

Using Fubini’s theorem, and the equality∫
Rd

τxf(−y)σ(y, z)dµk(y) =

∫
Rd

f(y)τx[σ(., z)](−y)dµk(y),

we deduce that

Wσ(f)(x) =

∫
Rd

h(x, y)f(y)dµk(y),

where h(x, y) =
∫
Rd Ek(−ix, z)τx[σ(., z)](−y)dµk(z).

(ii) Follows from (i), Hölder’s inequality, and Lemma 4.2.

(iii) From (ii) and the fact that the space S(Rd) is dense in Lp(µk), p ∈ [1,∞[, we deduce

that Wσ can be extended to a continuous mapping from Lp(µk) into Lq(µk).

By Lemma 4.2, the kernel h belongs to L2(µk⊗µk), hence Wσ is a Hilbert-Schmidt operator.

In particular, it is compact. �

5. The transforms Wσ with σ ∈ Lp(µk ⊗ µk), p ∈ [1, 2]

In this section, we prove that the Weyl transform with symbol in Lp(µk ⊗ µk), p ∈ [1, 2], is

a compact operator.

We denote by B(L2(µk)) the C∗-algebra of bounded operators Ψ from L2(µk) into itself,

equipped with the norm

∥Ψ∥ := sup
∥f∥L2(µk)=1

∥Ψ(f)∥L2(µk).

Let σ ∈ S(Rd × Rd). Define the operator Hσ on S(Rd)× S(Rd), by

Hσ(f, g)(z) :=

∫
Rd

∫
Rd

σ(x, y)Ek(−iz, y)V (f, g)(x, y)dµk(x)dµk(y), z ∈ Rd. (5.1)

Lemma 5.1 Let σ ∈ S(Rd × Rd). For all f, g ∈ S(Rd),

Hσ(f, g)(0) = ⟨Wσ(g̃), f⟩L2(µk),

where ⟨., .⟩L2(µk) is the inner product of L2(µk).
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Proof From (3.1) and (5.1),

Hσ(f, g)(0) =

∫
Rd

∫
Rd

σ(x, y)V (f, g)(x, y)dµk(x)dµk(y)

=

∫
Rd

∫
Rd

σ(x, y)
[ ∫

Rd

f(t)τxg(−t)Ek(−iy, t)dµk(t)
]
dµk(x)dµk(y).

From Fubini’s theorem, we get

Hσ(f, g)(0) =

∫
Rd

f(t)
[ ∫

Rd

∫
Rd

σ(x, y)τxg(−t)Ek(−iy, t)dµk(x)dµk(y)
]
dµk(t).

Using the fact τxg(−t) = τtg̃(−x), then by (4.1) we obtain

Hσ(f, g)(0) =

∫
Rd

f(t)Wσ(g̃)(t)dµk(t) = ⟨Wσ(g̃), f⟩L2(µk),

which completes the proof. �

Theorem 5.2 For p ∈ [1, 2], there exists a unique bounded operator

Q : Lp(µk ⊗ µk) → B(L2(µk)),

whose action is denoted by σ → Qσ, such that for all f, g ∈ S(Rd),

⟨Qσ(g), f⟩L2(µk) =

∫
Rd

∫
Rd

σ(x, y)V (f, g̃)(x, y)dµk(x)dµk(y),

∥Qσ∥ ≤ ∥σ∥Lp(µk⊗µk).

Proof (i) The case p = 2. Let σ ∈ S(Rd × Rd). For g ∈ S(Rd), we put

Qσ(g) = Wσ(g). (5.2)

From Lemma 5.1, we obtain

⟨Qσ(g), f⟩L2(µk) = ⟨Wσ(g), f⟩L2(µk) = Hσ(f, g̃)(0)

=

∫
Rd

∫
Rd

σ(x, y)V (f, g̃)(x, y)dµk(x)dµk(y).

On the other hand, from Hölder’s inequality and (3.4),

|⟨Qσ(g), f⟩L2(µk)| ≤ ∥σ∥L2(µk⊗µk)∥f∥L2(µk)∥g∥L2(µk).

This implies that Qσ ∈ B(L2(µk)) and

∥Qσ∥ ≤ ∥σ∥L2(µk⊗µk). (5.3)

Now, we consider σ ∈ L2(µk ⊗ µk). Let (σn)n∈N be a sequence in S(Rd × Rd) such that ∥σn −
σ∥L2(µk⊗µk) → 0 as n → 0. From (5.3) we have, for all m,n ∈ N,

∥Qσm −Qσn∥ ≤ ∥σm − σn∥L2(µk⊗µk) ≤ ∥σm − σ∥L2(µk⊗µk) + ∥σn − σ∥L2(µk⊗µk).

Thus (σn)n∈N is a Cauchy sequence in B(L2(µk)). Let it converge to Qσ. Again by relation (5.3),

the limit Qσ is independent of the choice of (σn)n∈N and

∥Qσ∥ = lim
n→∞

∥Qσn∥ ≤ lim
n→∞

∥σn∥L2(µk⊗µk) ≤ ∥σ∥L2(µk⊗µk).
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On the other hand, for f, g ∈ S(Rd),

⟨Qσ(g), f⟩L2(µk) = lim
n→∞

⟨Qσn
(g), f⟩L2(µk)

= lim
n→∞

∫
Rd

∫
Rd

σn(x, y)V (f, g̃)(x, y)dµk(x)dµk(y)

=

∫
Rd

∫
Rd

σ(x, y)V (f, g̃)(x, y)dµk(x)dµk(y).

(ii) The case p = 1. For σ ∈ S(Rd ×Rd), we consider the the operator Qσ defined by (5.2).

Then from Hölder’s inequality and (3.3), for f, g ∈ S(Rd),

|⟨Qσ(g), f⟩L2(µk)| ≤ ∥σ∥L1(µk⊗µk)∥V (f, g̃)∥L∞(µk⊗µk)

≤ ∥σ∥L1(µk⊗µk)∥f∥L2(µk)∥g∥L2(µk).

This implies that Qσ ∈ B(L2(µk)) and ∥Qσ∥ ≤ ∥σ∥L1(µk⊗µk). Using the same proof as of (i), we

obtain for all σ ∈ L1(µk ⊗ µk), ∥Qσ∥ ≤ ∥σ∥L1(µk⊗µk).

(iii) Using the cases p = 1, p = 2, and the Riesz-Thorin theorem [8,9], we complete the

proof for all p ∈ [1, 2]. �

Remark 5.3 It is natural to denote Qσ by Wσ for any σ ∈ Lp(µk ⊗ µk), p ∈ [1, 2].

Theorem 5.4 For σ ∈ Lp(µk ⊗ µk), p ∈ [1, 2], the operator Qσ from L2(µk) into itself is a

compact operator.

Proof Let σ ∈ Lp(µk ⊗ µk), p ∈ [1, 2], and let (σn)n∈N be a sequence in S(Rd × Rd), such that

limn→0 ∥σn − σ∥Lp(µk⊗µk) = 0. From Theorem 5.2, we have ∥Qσn −Qσ∥ ≤ ∥σn − σ∥Lp(µk⊗µk).

This implies that limn→0 Qσn = Qσ, in B(L2(µk)). But from Theorem 4.3 (iii), we know that

for all n ∈ N, the operator Wσn is compact, then the result of the theorem follows from the fact

that the subspace K(L2(µk)) of B(L2(µk)) consisting of compact operators is a closed ideal of

B(L2(µk)). �

6. The transforms Wσ with σ ∈ S ′(Rd × Rd)

We denote by

(i) S ′(Rd) the space of tempered distributions on Rd. It is the topological dual of S(Rd).

(ii) S ′(Rd ×Rd) the space of tempered distributions on Rd ×Rd. It is the topological dual

of S(Rd × Rd).

For σ ∈ S ′(Rd × Rd) and g ∈ S(Rd), define the operator Wσ(g) on S(Rd), by

[Wσ(g)](f) = σ(V (f, g)], f ∈ S(Rd), (6.1)

where V is the mapping given by (3.1).

From Proposition 3.1 (i), it is clear that Wσ(g) given by (6.1) belongs to S ′(Rd).

For a slowly increasing function h on Rd ×Rd, we denote by σh the element of S ′(Rd ×Rd)
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defined by

σh(F ) =

∫
Rd

∫
Rd

F (x, y)h(x, y)dµk(x)dµk(y). (6.2)

Then, we have the following.

Proposition 6.1 Let σ1 ∈ S ′(Rd ×Rd), given by the function equal to 1. For g radial function

in S(Rd), we have Wσ1(g) = cδ, where c =
∫
Rd g(x)dµk(x) and δ is the Dirac distribution at 0.

Proof By relations (6.1) and (6.2), we have for all f ∈ S(Rd),

[Wσ1(g)](f) = σ1(V (f, g)] =

∫
Rd

[ ∫
Rd

V (f, g)(x, y)dµk(x)
]
dµk(y),

and by Theorem 3.4,

[Wσ1(g)](f) := σ1(V (f, g)] = c

∫
Rd

Fk(f)(y)dµk(y).

We complete the proof by using relation (2.3). �

Remark 6.2 From Proposition 6.1, we deduce that there exists σ ∈ S ′(Rd×Rd) given by a func-

tion in L∞(µk⊗µk), such that for all g radial function in S(Rd) satisfying c =
∫
Rd g(x)dµk(x) ̸= 0,

the distribution Wσ(g) is not given by a function of L2(µk).
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