Journal of Mathematical Research with Applications Jul., 2015, Vol. 35, No. 4, pp. 435–447 DOI:10.3770/j.issn:2095-2651.2015.04.009 Http://jmre.dlut.edu.cn

Hamilton's Gradient Estimate for a Nonlinear Parabolic Equation on Riemannian Manifolds

Xinrong JIANG^{1,*}, Caisheng LIAO²

- 1. Institute of Mathematics and Information Science, Jiangxi Normal University, Jiangxi 330022, P. R. China;
- 2. Department of Mathematics, East China Normal University, Shanghai 200241, P. R. China

Abstract In this paper, we give a local Hamilton's gradient estimate for a nonlinear parabolic equation on Riemannian manifolds. As its application, a Harnack-type inequality and a Liouville-type theorem are obtained.

Keywords Hamilton's gradient estimate; nonlinear parabolic equation; Riemannian manifold

MR(2010) Subject Classification 53C21; 35K05

1. Introduction

Let (M^n, g) be a complete Riemannian manifold. We consider the following equation on (M^n, g) ,

$$\frac{\partial v^{p-1}}{\partial t} = (p-1)^{p-1} \operatorname{div}(|\nabla v|^{p-2} \nabla v), \quad p > 1, \tag{1.1}$$

where div and ∇ are, respectively, the divergence operator and the gradient operator of the metric g.

In 2006, Souplet and Zhang [7] got a local Hamilton's gradient estimate for heat equation on Riemannian manifolds. That is,

Theorem 1.1 ([7]) Let M be a Riemannian manifold with dimension $n \geq 2$, Ricci $\geq -k$, $k \geq 0$. Suppose v is any positive solution to the heat equation in $Q_{R,T} \equiv B(x_0,R) \times [t_0 - T,t_0] \subset M \times (-\infty,+\infty)$. Suppose also $v \leq A$ in $Q_{R,T}$. Then there exists a dimensional constant c such that

$$\frac{|\nabla v(x,t)|}{v(x,t)} \leq c(\frac{1}{R} + \frac{1}{T^{1/2}} + \sqrt{k})(1 + \ln\frac{A}{v(x,t)}),$$

in $Q_{R/2,T/2}$. Moreover, if M has nonnegative Ricci curvature and v is any positive solution of the heat equation on $M \times (0, \infty)$, then there exist dimensional constants c_1, c_2 such that

$$\frac{|\nabla v(x,t)|}{v(x,t)} \le c_1 \frac{1}{t^{1/2}} (c_2 + \ln \frac{v(x,2t)}{v(x,t)}),$$

Received August 29, 2014; Accepted March 20, 2015

Supported by the National Natural Science Foundation of China (Grant Nos. 11261038; 11271132) and the Jiangxi Normal University Youth Development Fund.

* Corresponding author

E-mail address: jiangxr1979@yahoo.com (Xinrong JIANG); cliao@math.ecnu.edu.cn (Caisheng LIAO)

for all $x \in M$ and t > 0.

Hamilton firstly got this gradient estimates for the heat equation on compact manifold in [2]. Recently, there are some interesting results on the Hamilton's gradient estimates for nonlinear parabolic equation on Riemannian manifold in [5,8,10–12] and references therein.

As we know the heat equation is p=2 in (1.1). When 1 in (1.1), Hamilton's gradient estimates for positive continuous weak solutions to the equation (1.1) have been obtained by Wang in [8] (see also [9]). In this paper, we consider the positive smoothing solution to the equation (1.1) and <math>p > 2. We derive a similar Hamilton's gradient estimate, when 2 .

Theorem 1.2 Let M^n be a Riemannian manifold and sectional curvature $K_M \ge -k^2, k \ge 0$. Suppose that v is a positive and bounded solution to the equation (1.1) and $2 , that is, <math>0 < v \le A$, in $Q_{R,T} = B(x_0, R) \times [t_0 - T, t_0] \subset M \times (-\infty, +\infty)$. Then we obtain

$$\frac{|\nabla v(x,t)|}{v(x,t)} \le C(n,p)(\frac{1}{R} + \frac{1}{T^{\frac{1}{p}}} + k)(1 + (p-1)\ln\frac{A}{v(x,t)})$$
(1.2)

in $Q_{R/2,T/2}$, where C(n,p) depends on n and p.

Using the theorem, we get two corollaries. The first application is the following Harnack-type inequality:

Corollary 1.3 Let M be a complete noncompact Riemannian manifold and sectional curvature $K_M \geq -k^2, k \geq 0$. Suppose that v is a positive and bounded solution to the equation (1.1) and $2 , that is, <math>0 < v(x,t) \leq A$, $(x,t) \in M \times (0,+\infty)$. Then for any $x_1, x_2 \in M, t \in (0,+\infty)$ there exists

$$v(x_1,t) \le v^{\gamma}(x_2,t)e^{\frac{\alpha}{p-1}(1-\gamma)}$$

where $\alpha = 1 + (p-1) \ln A$, $\gamma = \exp \{-C(n,p)\rho(\frac{1}{t^{1/p}} + k)\}$, and $\rho = \rho(x_1, x_2)$ denotes the geodesic distance between x_1 and x_2 .

The second application is the following Liouville-type theorem:

Corollary 1.4 Let M be a complete noncompact Riemannian manifold and nonnegative sectional curvature, that is, $K_M \geq 0$. Suppose that v is a positive solution to the equation (1.1), $2 , and <math>v = \exp\{o(d(x_0, x) + |t|^{\frac{1}{p}})\}$. And also suppose $|\nabla v| > 0$ in $M \times (-\infty, 0)$. Then the equation (1.1) does not have a positive ancient solution.

The equation (1.1) on Riemannian manifold has been studied in [3], where Li-Yau type gradient estimates and an entropy formula were obtained.

The paper is organized as follows. In Section 2 we establish some lemmas for p > 1. In Section 3, for 2 , and using maximum principle, we prove Theorem 1.2. And using Theorem 1.2, we prove Corollaries 1.3 and 1.4.

2. Preliminaires

Let v be a positive and bounded solution to the equation (1.1), and let $u=(p-1)\ln v$. It

is easy to see that u satisfies

$$\frac{\partial u}{\partial t} = \operatorname{div}(|\nabla u|^{p-2}\nabla u) + |\nabla u|^{p}. \tag{2.1}$$

Let $f = |\nabla u|^2$, and assume that f > 0 over some region of M. Similarly to [3] or [4], we use the linearized operator on right-hand side of the nonlinear equation (2.1).

Lemma 2.1 Let u be a solution to (2.1) and $f = |\nabla u|^2$, and also assume that f > 0 over some region of M. Then the linearized operator on right-hand side of the nonlinear equation (2.1) at u is

$$\mathcal{L}(\psi) = \frac{1}{2}(p-2)(p-4)f^{\frac{p}{2}-3}\langle \nabla u, \nabla \psi \rangle \langle \nabla f, \nabla u \rangle + (p-2)f^{\frac{p}{2}-2}\langle \nabla \langle \nabla u, \nabla \psi \rangle, \nabla u \rangle + \frac{1}{2}(p-2)f^{\frac{p}{2}-2}\langle \nabla f, \nabla \psi \rangle + (p-2)f^{\frac{p}{2}-2}\langle \nabla u, \nabla \psi \rangle \Delta u + f^{\frac{p}{2}-1}\Delta \psi + pf^{\frac{p}{2}-1}\langle \nabla u, \nabla \psi \rangle.$$
(2.2)

Proof Using variational method, we can get

$$\mathcal{L}(\psi) = \frac{\mathrm{d}}{\mathrm{d}\epsilon} \Big|_{\epsilon=0} \left\{ \mathrm{div}[|\nabla(u+\epsilon\psi)|^{p-2}\nabla(u+\epsilon\psi)] + |\nabla(u+\epsilon\psi)|^{p} \right\}$$

$$= \frac{\mathrm{d}}{\mathrm{d}\epsilon} \Big|_{\epsilon=0} \left\{ \mathrm{div}[(|\nabla(u+\epsilon\psi)|^{2})^{\frac{p-2}{2}}\nabla(u+\epsilon\psi)] + (|\nabla(u+\epsilon\psi)|^{2})^{\frac{p}{2}} \right\}$$

$$= \mathrm{div}\left[(p-2)|\nabla u|^{p-4} \langle \nabla u, \nabla \psi \rangle \nabla u + |\nabla u|^{p-2} \nabla \psi \right] + p|\nabla u|^{p-2} \langle \nabla u, \nabla \psi \rangle$$

$$= \frac{1}{2} (p-2)(p-4)f^{\frac{p}{2}-3} \langle \nabla u, \nabla \psi \rangle \langle \nabla f, \nabla u \rangle +$$

$$(p-2)f^{\frac{p}{2}-2} \langle \nabla \langle \nabla u, \nabla \psi \rangle, \nabla u \rangle + \frac{1}{2} (p-2)f^{\frac{p}{2}-2} \langle \nabla f, \nabla \psi \rangle +$$

$$(p-2)f^{\frac{p}{2}-2} \langle \nabla u, \nabla \psi \rangle \Delta u + f^{\frac{p}{2}-1} \Delta \psi + pf^{\frac{p}{2}-1} \langle \nabla u, \nabla \psi \rangle. \quad \Box$$

Let u, f be as above, $0 < v \le A$, $\alpha = 1 + (p-1) \ln A$ and $\omega = |\nabla(\alpha - u)|^2 = \frac{|\nabla u|^2}{(\alpha - u)^2}$. Now we will derive $\omega_t - \mathcal{L}(\omega)$. Firstly, we need the following two lemmas.

Lemma 2.2 Let $\omega = \frac{|\nabla u|^2}{(\alpha - u)^2}$. Then

$$\mathcal{L}(\omega) = \frac{1}{2}(p-2)(p-4)(\alpha-u)^{2}|\nabla u|^{p-6}(\langle \nabla u, \nabla \omega \rangle)^{2} + (p-2)|\nabla u|^{p-4}\langle \nabla \langle \nabla u, \nabla \omega \rangle, \nabla u \rangle + \frac{1}{2}(p-2)(\alpha-u)^{2}|\nabla u|^{p-4}|\nabla \omega|^{2} + (p-2)|\nabla u|^{p-4}\langle \nabla u, \nabla \omega \rangle \triangle u + \frac{2|\nabla u|^{p-2}}{(\alpha-u)^{2}}u_{ij}^{2} + \frac{2|\nabla u|^{p-2}}{(\alpha-u)^{2}}u_{i}u_{ijj} - (p^{2} - 5p + 2)\frac{|\nabla u|^{p-2}}{(\alpha-u)}\langle \nabla u, \nabla \omega \rangle + \frac{2|\nabla u|^{p}}{(\alpha-u)^{3}}\Delta u - 2\frac{|\nabla u|^{p+2}}{(\alpha-u)^{4}} + p|\nabla u|^{p-2}\langle \nabla u, \nabla \omega \rangle.$$

$$(2.3)$$

Proof Using Lemma 2.1, we obtain

$$\mathcal{L}(\omega) = \frac{1}{2} (p-2)(p-4) f^{\frac{p}{2}-3} \langle \nabla u, \nabla \omega \rangle \langle \nabla f, \nabla u \rangle + (p-2) f^{\frac{p}{2}-2} \langle \nabla \langle \nabla u, \nabla \omega \rangle, \nabla u \rangle +$$

$$\frac{1}{2} (p-2) f^{\frac{p}{2}-2} \langle \nabla f, \nabla \omega \rangle + (p-2) f^{\frac{p}{2}-2} \langle \nabla u, \nabla \omega \rangle \triangle u$$

$$f^{\frac{p}{2}-1} \triangle \omega + p f^{\frac{p}{2}-1} \langle \nabla u, \nabla \omega \rangle = I + II + III + IV + V + VI. \tag{2.4}$$

Firstly, $f = \omega(\alpha - u)^2$,

$$\nabla f = (\alpha - u)^2 \nabla \omega - 2(\alpha - u)\omega \nabla u = (\alpha - u)^2 \nabla \omega - \frac{2|\nabla u|^2}{(\alpha - u)} \nabla u,$$
$$\langle \nabla f, \nabla u \rangle = (\alpha - u)^2 \langle \nabla u, \nabla \omega \rangle - \frac{2|\nabla u|^4}{(\alpha - u)},$$
(2.5)

$$\langle \nabla \omega, \nabla f \rangle = (\alpha - u)^2 |\nabla \omega|^2 - \frac{2|\nabla u|^2}{(\alpha - u)} \langle \nabla u, \nabla \omega \rangle, \tag{2.6}$$

$$\omega_j = \frac{2u_i u_{ij}}{(\alpha - u)^2} + \frac{2|\nabla u|^2}{(\alpha - u)^3} u_j,$$

$$\Delta\omega = \omega_{jj} = \frac{2u_{ij}^2}{(\alpha - u)^2} + \frac{2u_i u_{ijj}}{(\alpha - u)^2} + \frac{8u_i u_j u_{ij}}{(\alpha - u)^3} + \frac{2|\nabla u|^2}{(\alpha - u)^3} \Delta u + \frac{6|\nabla u|^4}{(\alpha - u)^4}.$$
 (2.7)

For the first term on the right-hand side of (2.4), using (2.5) and $f = |\nabla u|^2$, we can get

$$\begin{split} & \mathbf{I} = \frac{1}{2}(p-2)(p-4)|\nabla u|^{p-6}\langle \nabla u, \nabla \omega \rangle [(\alpha-u)^2 \langle \nabla u, \nabla \omega \rangle - \frac{2|\nabla u|^4}{(\alpha-u)}] \\ & = \frac{1}{2}(p-2)(p-4)|\nabla u|^{p-6}(\alpha-u)^2(\langle \nabla u, \nabla \omega \rangle)^2 - \\ & (p-2)(p-4)\frac{|\nabla u|^{p-2}}{(\alpha-u)}\langle \nabla u, \nabla \omega \rangle. \end{split}$$

For the second term on the right-hand side of (2.4), using $f = |\nabla u|^2$, we obtain

$$II = (p-2)|\nabla u|^{p-4}\langle \nabla \langle \nabla u, \nabla \omega \rangle, \nabla u \rangle.$$

For the third term on the right-hand side of (2.4), using (2.6) and $f = |\nabla u|^2$, we can get

$$III = \frac{1}{2}(p-2)|\nabla u|^{p-4}[(\alpha-u)^2|\nabla\omega|^2 - \frac{2|\nabla u|^2}{(\alpha-u)}\langle\nabla u, \nabla\omega\rangle]$$
$$= \frac{1}{2}(p-2)(\alpha-u)^2|\nabla u|^{p-4}|\nabla\omega|^2 - (p-2)\frac{|\nabla u|^{p-2}}{(\alpha-u)}\langle\nabla u, \nabla\omega\rangle.$$

For the fourth term on the right-hand side of (2.4), using $f = |\nabla u|^2$, we obtain

$$IV = (p-2)|\nabla u|^{p-2}\langle \nabla u, \nabla \omega \rangle \triangle u.$$

For the fifth term on the right-hand side of (2.4), using (2.7) and $f = |\nabla u|^2$, we can get

$$\begin{split} \mathbf{V} = & |\nabla u|^{p-2} \left[\frac{2u_{ij}^2}{(\alpha - u)^2} + \frac{2u_i u_{ijj}}{(\alpha - u)^2} + \frac{8u_i u_j u_{ij}}{(\alpha - u)^3} + \frac{2|\nabla u|^2}{(\alpha - u)^3} \triangle u + \frac{6|\nabla u|^4}{(\alpha - u)^4} \right] \\ = & \frac{2|\nabla u|^{p-2}}{(\alpha - u)^2} u_{ij}^2 + \frac{2|\nabla u|^{p-2}}{(\alpha - u)^2} u_i u_{ijj} + \frac{4|\nabla u|^{p-2}}{(\alpha - u)^3} \langle \nabla u, \nabla f \rangle + \frac{2|\nabla u|^p}{(\alpha - u)^3} \triangle u + \frac{6|\nabla u|^{p+2}}{(\alpha - u)^4} \\ = & \frac{2|\nabla u|^{p-2}}{(\alpha - u)^2} u_{ij}^2 + \frac{2|\nabla u|^{p-2}}{(\alpha - u)^2} u_i u_{ijj} + \frac{4|\nabla u|^{p-2}}{(\alpha - u)} \langle \nabla u, \nabla \omega \rangle + \frac{2|\nabla u|^p}{(\alpha - u)^3} \triangle u - \frac{2|\nabla u|^{p+2}}{(\alpha - u)^4} \end{aligned}$$

For the sixth term on the right-hand side of (2.4), using $f = |\nabla u|^2$, we obtain

$$VI = p|\nabla u|^{p-2}\langle \nabla u, \nabla \omega \rangle.$$

Combining the equations above and (2.4), we obtain (2.3). \square

Lemma 2.3 Let $\omega = \frac{|\nabla u|^2}{(\alpha - u)^2}$. Then

$$\begin{split} \frac{\partial \omega}{\partial t} &= \frac{1}{2} (p-2) (p-4) (\alpha - u)^2 |\nabla u|^{p-6} (\langle \nabla u, \nabla \omega \rangle)^2 + \\ & (p-2) |\nabla u|^{p-4} \langle \nabla \langle \nabla u, \nabla \omega \rangle, \nabla u \rangle + 2 (1-p) \frac{|\nabla u|^{p+2}}{(\alpha - u)^3} + \\ & (p-2) |\nabla u|^{p-4} \langle \nabla u, \nabla \omega \rangle \triangle u - \frac{2|\nabla u|^{p-2}}{(\alpha - u)^2} R_{ij} u_i u_j + \\ & \frac{2|\nabla u|^{p-2}}{(\alpha - u)^2} u_i u_{ijj} - (2p^2 - 7p + 6) \frac{|\nabla u|^{p-2}}{(\alpha - u)} \langle \nabla u, \nabla \omega \rangle + \\ & 2 (3-p) \frac{|\nabla u|^p}{(\alpha - u)^3} \triangle u + 2 (p-2)^2 \frac{|\nabla u|^{p+2}}{(\alpha - u)^4} + \\ & p |\nabla u|^{p-2} \langle \nabla u, \nabla \omega \rangle. \end{split}$$

Proof Firstly, we calculate

$$\frac{\partial w}{\partial t} = \frac{2u_i u_{ti}}{(\alpha - u)^2} + \frac{2|\nabla u|^2 u_t}{(\alpha - u)^3}.$$
(2.8)

Using

$$\begin{split} \frac{\partial u}{\partial t} &= \operatorname{div}(|\nabla u|^{p-2}\nabla u) + |\nabla u|^p = \operatorname{div}[f^{\frac{p-2}{2}}\nabla u] + f^{\frac{p}{2}} \\ &= \frac{p-2}{2}f^{\frac{p}{2}-2}\langle\nabla f,\nabla u\rangle + f^{\frac{p}{2}-1}\triangle u + f^{\frac{p}{2}}, \end{split}$$

and $\langle \nabla f, \nabla u \rangle = (\alpha - u)^2 \langle \nabla u, \nabla \omega \rangle - \frac{2|\nabla u|^4}{(\alpha - u)}$, we have

$$\frac{2u_{i}u_{ti}}{(\alpha-u)^{2}} = \frac{2}{(\alpha-u)^{2}}u_{i}(\frac{p-2}{2}f^{\frac{p}{2}-2}\langle\nabla f,\nabla u\rangle + f^{\frac{p}{2}-1}\Delta u + f^{\frac{p}{2}})_{i}$$

$$= \frac{2}{(\alpha-u)^{2}}\left(\frac{1}{4}(p-2)(p-4)|\nabla u|^{(p-6)}(\langle\nabla u,\nabla f\rangle)^{2} + \frac{p-2}{2}|\nabla u|^{(p-4)}\langle\nabla u,\nabla\langle\nabla u,\nabla f\rangle\rangle + \frac{1}{2}(p-2)|\nabla u|^{(p-4)}\langle\nabla u,\nabla f\rangle\Delta u + |\nabla u|^{(p-2)}\langle\nabla u,\nabla\Delta u\rangle + \frac{p}{2}|\nabla u|^{(p-2)}\langle\nabla u,\nabla f\rangle\right)$$

$$= \frac{2}{(\alpha-u)^{2}}\left\{\frac{1}{4}(p-2)(p-4)|\nabla u|^{(p-6)}\left((\alpha-u)^{2}\langle\nabla u,\nabla w\rangle - \frac{2|\nabla u|^{4}}{(\alpha-u)}\right)^{2} + \frac{p-2}{2}|\nabla u|^{(p-4)}\langle\nabla u,\nabla\left((\alpha-u)^{2}\langle\nabla u,\nabla w\rangle - \frac{2|\nabla u|^{4}}{(\alpha-u)}\right)\right) + \frac{1}{2}(p-2)|\nabla u|^{(p-4)}\left((\alpha-u)^{2}\langle\nabla u,\nabla w\rangle - \frac{2|\nabla u|^{4}}{(\alpha-u)}\right)\Delta u + |\nabla u|^{(p-2)}\langle\nabla u,\nabla\Delta u\rangle + \frac{p}{2}|\nabla u|^{(p-2)}\left((\alpha-u)^{2}\langle\nabla u,\nabla w\rangle - \frac{2|\nabla u|^{4}}{(\alpha-u)}\right)\right\}$$

$$= \frac{1}{2}(p-2)(p-4)|\nabla u|^{(p-6)}(\alpha-u)^{2}(\langle\nabla u,\nabla w\rangle)^{2} - 2(p-1)(p-2)\frac{|\nabla u|^{(p-2)}}{(\alpha-u)}\langle\nabla u,\nabla w\rangle + 2(p-2)(p-4)\frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}} + (p-2)|\nabla u|^{(p-4)}\langle\nabla u,\nabla\langle\nabla u,\nabla w\rangle\rangle + 6(p-2)\frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}} + (p-2)|\nabla u|^{(p-4)}\langle\nabla u,\nabla\langle\nabla u,\nabla w\rangle\rangle + 6(p-2)\frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}} + (p-2)|\nabla u|^{(p-4)}\langle\nabla u,\nabla\langle\nabla u,\nabla w\rangle\rangle + 6(p-2)\frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}} + (p-2)|\nabla u|^{(p-4)}\langle\nabla u,\nabla\langle\nabla u,\nabla w\rangle\rangle + 6(p-2)\frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}} + (p-2)|\nabla u|^{(p-4)}\langle\nabla u,\nabla\langle\nabla u,\nabla w\rangle\rangle + 6(p-2)\frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}} + (p-2)|\nabla u|^{(p-4)}\langle\nabla u,\nabla\langle\nabla u,\nabla w\rangle\rangle + 6(p-2)\frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}} + (p-2)|\nabla u|^{(p-4)}\langle\nabla u,\nabla\langle\nabla u,\nabla w\rangle\rangle + 6(p-2)\frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}} + (p-2)|\nabla u|^{(p-4)}\langle\nabla u,\nabla\langle\nabla u,\nabla w\rangle\rangle + 6(p-2)\frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}} + (p-2)|\nabla u|^{(p-4)}\langle\nabla u,\nabla\langle\nabla u,\nabla w\rangle\rangle + 6(p-2)\frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}} + (p-2)|\nabla u|^{(p-4)}\langle\nabla u,\nabla\langle\nabla u,\nabla w\rangle\rangle + 6(p-2)\frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}} + (p-2)|\nabla u|^{(p-4)}\langle\nabla u,\nabla\langle\nabla u,\nabla w\rangle\rangle + 6(p-2)\frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}} + (p-2)|\nabla u|^{(p-4)}\langle\nabla u,\nabla\langle\nabla u,\nabla w\rangle\rangle + 6(p-2)\frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}} + (p-2)|\nabla u|^{(p-4)}\langle\nabla u,\nabla\langle\nabla u,\nabla w\rangle\rangle + 6(p-2)\frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}} + (p-2)|\nabla u|^{(p-4)}\langle\nabla u,\nabla\langle\nabla u,\nabla w\rangle\rangle + 6(p-2)\frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}} + (p-2)|\nabla u|^{(p-4)}\langle\nabla u,\nabla u,\nabla u\rangle\rangle + 6(p-2)\frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}} + (p-2)|\nabla u|^{(p-4)}\langle\nabla u,\nabla u,\nabla u\rangle\rangle + 6(p-2)\frac{|\nabla u|^{(p-4)}}{(\alpha-u)^{4}} + (p-2)|\nabla u|^{(p-4)}\langle\nabla u,\nabla u,\nabla u\rangle\rangle + (p-2)|\nabla u|^{(p-4)}$$

$$(p-2)|\nabla u|^{(p-4)}\langle \nabla u, \nabla w \rangle \triangle u - 2(p-2)\frac{|\nabla u|^p}{(\alpha-u)^3} \triangle u + \frac{2|\nabla u|^{(p-2)}}{(\alpha-u)^2}\langle \nabla u, \nabla \triangle u \rangle + p|\nabla u|^{(p-2)}\langle \nabla u, \nabla w \rangle - 2p\frac{|\nabla u|^{(p+2)}}{(\alpha-u)^3}, \tag{2.9}$$

and

$$\frac{2|\nabla u|^{2}u_{t}}{(\alpha - u)^{3}} = \frac{2|\nabla u|^{2}}{(\alpha - u)^{3}} \left(\frac{p - 2}{2}f^{\frac{p}{2} - 2}\langle\nabla f, \nabla u\rangle + f^{\frac{p}{2} - 1}\Delta u + f^{\frac{p}{2}}\right) \\
= (p - 2)\frac{|\nabla u|^{(p - 2)}}{(\alpha - u)^{3}} \left[(\alpha - u)^{2}\langle\nabla u, \nabla\omega\rangle - \frac{2|\nabla u|^{4}}{(\alpha - u)}\right] + \\
\frac{2|\nabla u|^{p}}{(\alpha - u)^{3}}\Delta u + \frac{2|\nabla u|^{(p + 2)}}{(\alpha - u)^{3}} \\
= (p - 2)\frac{|\nabla u|^{(p - 2)}}{(\alpha - u)}\langle\nabla u, \nabla\omega\rangle - 2(p - 2)\frac{|\nabla u|^{(p + 2)}}{(\alpha - u)^{4}} + \\
\frac{2|\nabla u|^{p}}{(\alpha - u)^{3}}\Delta u + \frac{2|\nabla u|^{(p + 2)}}{(\alpha - u)^{3}}.$$
(2.10)

Using (2.8), (2.9), (2.10) and $u_{jji} - u_{jij} = -R_{ij}u_j$, we can obtain the result.

Proposition 2.4 Let $\omega = \frac{|\nabla u|^2}{(\alpha - u)^2}$. Then

$$\frac{\partial \omega}{\partial t} - \mathcal{L}(\omega) = \left[2(p-2)^2 + 2 \right] \frac{|\nabla u|^{p+2}}{(\alpha - u)^4} + 2(1-p) \frac{|\nabla u|^{p+2}}{(\alpha - u)^3} + 2(2-p) \frac{|\nabla u|^p}{(\alpha - u)^3} \Delta u - (p^2 - 2p + 4) \frac{|\nabla u|^{p-2}}{(\alpha - u)} \langle \nabla u, \nabla \omega \rangle - \frac{2|\nabla u|^{p-2}}{(\alpha - u)^2} u_i u_j R_{ij} - \frac{1}{2} (p-2)(\alpha - u)^2 |\nabla u|^{p-4} |\nabla \omega|^2 - \frac{2|\nabla u|^{p-2}}{(\alpha - u)^2} u_{ij}^2. \tag{2.11}$$

Proof Using Lemmas 2.2 and 2.3, we can get (2.11). \square

3. Proofs of Theorem 1.2 and Corollaries 1.3 and 1.4

Let $\varphi = \varphi(x,t)$ be a smooth cut-off function supported in $Q_{R,T}$, satisfying the following properties:

- (1) $\varphi = \varphi(d(x,x_0),t) \equiv \varphi(r,t); \varphi(x,t) = 1 \text{ in } Q_{R/2,T/2} \text{ and } \partial_r \varphi = 0 \text{ in } Q_{R/2,T}; 0 \le \varphi \le 1.$
- (2) φ is decreasing as a radial function in the spatial variables.
- (3) $\frac{|\partial_r \varphi|}{\varphi^a} \le \frac{C_a}{R}, \frac{|\partial_r^2 \varphi|}{\varphi^a} \le \frac{C_a}{R^2}, \text{ when } 0 < a < 1.$ (4) $\frac{|\partial_t \varphi|}{\varphi^{\frac{2}{p+2}}} \le \frac{C}{T}.$

Lemma 3.1 If p > 1, and let $\nabla(\varphi \omega) = 0$, also $\operatorname{Ric}(M) \ge -(n-1)k^2$, then

$$\left[\frac{\partial \omega}{\partial t} - \mathcal{L}(\omega)\right] \varphi \leq \left[(2n+2)(p-2)^2 + 1\right] \omega^{\frac{p+2}{2}} \varphi(\alpha - u)^{p-2} + 2(1-p)\omega^{\frac{p+2}{2}} \varphi(\alpha - u)^{p-1} + \left[3\varepsilon\omega^{\frac{p+2}{2}}\varphi + C(n, p, \varepsilon)k^{p+2} + C(p, \varepsilon)\frac{1}{R^{p+2}}\right] (\alpha - u)^{p-2} - \frac{1}{R^{p+2}} \varphi(\alpha - u)^{p-2} + \frac{1}{R^{p+2}} \varphi$$

$$\frac{|\nabla u|^{p-2}}{2(\alpha-u)^2}u_{ij}^2\varphi,\tag{3.1}$$

where ε is a positive constant and will be chosen later, and $C(n, p, \varepsilon)$, $C(p, \varepsilon)$ are positive constants, depending on n, p, ε .

Proof Using Proposition 2.4 and $f = |\nabla u|^2$, we can get

$$\begin{split} \left[\frac{\partial \omega}{\partial t} - \mathcal{L}(\omega)\right] \varphi &= \left[2(p-2)^2 + 2\right] \frac{|\nabla u|^{p+2}}{(\alpha - u)^4} \varphi + \\ &\quad 2(1-p) \frac{|\nabla u|^{p+2}}{(\alpha - u)^3} \varphi + 2(2-p) \frac{|\nabla u|^p}{(\alpha - u)^3} \varphi \triangle u - \\ &\quad (p^2 - 2p + 4) \frac{|\nabla u|^{p-2}}{(\alpha - u)} \langle \nabla u, \nabla \omega \rangle \varphi - \frac{2|\nabla u|^{p-2}}{(\alpha - u)^2} u_i u_j R_{ij} \varphi - \\ &\quad \frac{1}{2} (p-2)(\alpha - u)^2 |\nabla u|^{p-4} |\nabla \omega|^2 \varphi - \frac{|\nabla u|^{p-2}}{(\alpha - u)^2} u_{ij}^2 \varphi - \frac{|\nabla u|^{p-2}}{(\alpha - u)^2} u_{ij}^2 \varphi. \end{split}$$

Using
$$\langle \nabla u, \nabla \omega \rangle = \frac{2u_i u_j u_{ij}}{(\alpha - u)^2} + \frac{2|\nabla u|^4}{(\alpha - u)^3}$$
 and

$$-\frac{|\nabla u|^{p-2}}{(\alpha - u)^2}u_{ij}^2\varphi - 2\frac{|\nabla u|^{p-2}}{(\alpha - u)^3}u_iu_ju_{ij}\varphi - \frac{|\nabla u|^{p+2}}{(\alpha - u)^4}\varphi \le 0,$$

we obtain

$$\left[\frac{\partial \omega}{\partial t} - \mathcal{L}(\omega)\right] \varphi \leq \left[2(p-2)^2 + 1\right] \frac{|\nabla u|^{p+2}}{(\alpha - u)^4} \varphi + 2(1-p) \frac{|\nabla u|^{p+2}}{(\alpha - u)^3} \varphi + 2(2-p) \frac{|\nabla u|^p}{(\alpha - u)^3} \varphi \triangle u - (p^2 - 2p + 3) \frac{|\nabla u|^{p-2}}{(\alpha - u)} \langle \nabla u, \nabla \omega \rangle \varphi - \frac{2|\nabla u|^{p-2}}{(\alpha - u)^2} u_i u_j R_{ij} \varphi - \frac{1}{2} (p-2)(\alpha - u)^2 |\nabla u|^{p-4} |\nabla \omega|^2 \varphi - \frac{|\nabla u|^{p-2}}{2(\alpha - u)^2} u_{ij}^2 \varphi - \frac{|\nabla u|^{p-2}}{2(\alpha - u)^2} u_{ij}^2 \varphi - \frac{|\nabla u|^{p-2}}{2(\alpha - u)^2} u_{ij}^2 \varphi \right]$$

$$= I + II + III + IV + V + VI + VII + VIII. \tag{3.2}$$

For the first and the second term on the right-hand side of (3.2), using $\omega = \frac{|\nabla u|^2}{(\alpha - u)^2}$, we obtain

$$I = \left[2(p-2)^2 + 1\right] \omega^{\frac{p+2}{2}} \varphi(\alpha - u)^{p-2}, \quad II = 2(1-p)\omega^{\frac{p+2}{2}} \varphi(\alpha - u)^{p-1}.$$

For the third and the seventh term on the right-hand side of (3.2), using Schwarz's inequality and $-x^2 + bx \le \frac{b^2}{4}$, we get

$$\begin{aligned} \text{III} + \text{VII} &= 2(2-p) \frac{|\nabla u|^p}{(\alpha - u)^3} \varphi \triangle u - \frac{|\nabla u|^{p-2}}{2(\alpha - u)^2} u_{ij}^2 \varphi \\ &\leq \frac{|\nabla u|^{p-2}}{2n(\alpha - u)^2} [-(\triangle u)^2 + \frac{4n|2 - p||\nabla u|^2}{(\alpha - u)} |\triangle u|] \varphi \\ &\leq 2n(2-p)^2 \frac{|\nabla u|^{p+2}}{(\alpha - u)^4} \varphi = 2n(2-p)^2 \omega^{\frac{p+2}{2}} \varphi (\alpha - u)^{p-2}. \end{aligned}$$

For the fourth term on the right-hand side of (3.2), using Young's inequality and Schwarz's

inequality, and $0 = \nabla(\omega\varphi) = \varphi\nabla\omega + \omega\nabla\varphi$, we get

$$IV = -(p^{2} - 2p + 3) \frac{|\nabla u|^{p-2}}{(\alpha - u)} \langle \nabla u, \nabla \omega \rangle \varphi \leq (p^{2} - 2p + 3) \frac{|\nabla u|^{p+1}}{(\alpha - u)^{3}} |\nabla \varphi|$$

$$= (p^{2} - 2p + 3) \left(\frac{|\nabla u|^{2}}{(\alpha - u)^{2}} \right)^{\frac{p+1}{2}} \varphi^{\frac{p+1}{p+2}} \frac{|\nabla \varphi|}{\varphi^{\frac{p+1}{p+2}}} (\alpha - u)^{p-2}$$

$$\leq [\varepsilon \omega^{\frac{p+2}{2}} \varphi + C(p, \varepsilon) \frac{|\nabla \varphi|^{p+2}}{\varphi^{p+1}}] (\alpha - u)^{p-2}$$

$$\leq [\varepsilon \omega^{\frac{p+2}{2}} \varphi + C(p, \varepsilon) \frac{1}{R^{p+2}}] (\alpha - u)^{p-2}. \tag{3.3}$$

For the fifth term on the right-hand side of (3.2), using Young's inequality and $Ric(M) \ge -(n-1)k^2$, we get

$$V = -\frac{2|\nabla u|^{p-2}}{(\alpha - u)^2} R_{ij} u_i u_j \varphi \le 2(n-1)k^2 \frac{|\nabla u|^p}{(\alpha - u)^2} \varphi$$
$$= 2(n-1)k^2 \left(\frac{|\nabla u|^2}{(\alpha - u)^2}\right)^{\frac{p}{2}} \varphi(\alpha - u)^{p-2}$$
$$\le \left[\varepsilon \omega^{\frac{p+2}{2}} \varphi + C(n, p, \varepsilon) k^{p+2}\right] (\alpha - u)^{p-2}.$$

For the sixth term on the right-hand side of (3.2), using Young's inequality and $0 = \nabla(\omega\varphi) = \varphi\nabla\omega + \omega\nabla\varphi$, we get

$$VI = -\frac{1}{2}(p-2)(\alpha-u)^{2}|\nabla u|^{p-4}|\nabla \omega|^{2}\varphi \leq \frac{1}{2}|p-2|\frac{|\nabla u|^{p}}{(\alpha-u)^{2}}\frac{|\nabla \varphi|^{2}}{\varphi}$$

$$= \frac{1}{2}|p-2|(\frac{|\nabla u|^{2}}{(\alpha-u)^{2}})^{\frac{p}{2}}\varphi^{\frac{p}{p+2}}\frac{|\nabla \varphi|^{2}}{\varphi^{\frac{2p+2}{p+2}}}(\alpha-u)^{p-2}$$

$$\leq [\varepsilon\omega^{\frac{p+2}{2}}\varphi + C(p,\ \varepsilon)\frac{|\nabla \varphi|^{p+2}}{\varphi^{p+1}}](\alpha-u)^{p-2}$$

$$\leq [\varepsilon\omega^{\frac{p+2}{2}}\varphi + C(p,\ \varepsilon)\frac{1}{R^{p+2}}](\alpha-u)^{p-2}.$$
(3.4)

In inequalities (3.3) and (3.4), we have used φ 's properties. Combining the estimates above and equation (3.2), we get (3.1), where ε will be chosen later and $C(n, p, \varepsilon)$, $C(p, \varepsilon)$ are constants. \square

Lemma 3.2 If p > 1, and we assume $\nabla(\varphi\omega) = 0$, and sectional curvature $K_M \ge -k^2, k \ge 0$, then

$$\left[\frac{\partial\varphi}{\partial t} - \mathcal{L}(\varphi)\right]\omega \leq \varepsilon\omega^{\frac{p+2}{2}}\varphi + \frac{1}{T^{\frac{p+2}{p}}} + \left[\varepsilon\omega^{\frac{p+2}{2}}\varphi + \frac{c(p,\varepsilon)}{R^{p+2}}\right](\alpha - u)^{p-1} + \left[10\varepsilon\omega^{\frac{p+2}{2}}\varphi + \frac{c(n,p,\varepsilon)}{R^{p+2}} + C(n,p,\varepsilon)k^{p+2}\right](\alpha - u)^{p-2} + \frac{|\nabla u|^{p-2}}{2(\alpha - u)^2}u_{ij}^2\varphi, \tag{3.5}$$

where ε is a positive constant and will be chosen later, $C(p,\varepsilon)$, $C(n,p,\varepsilon)$ are positive constants, depending on n, p, ε .

Proof Using Lemma 2.1 and $f = |\nabla u|^2$, we get

$$\left[\frac{\partial\varphi}{\partial t} - \mathcal{L}(\varphi)\right]\omega = \frac{\partial\varphi}{\partial t}\omega - \frac{1}{2}(p-2)(p-4)\frac{|\nabla u|^{p-4}}{(\alpha-u)^2}\langle\nabla u, \nabla\varphi\rangle\langle\nabla u, \nabla f\rangle - (p-2)\frac{|\nabla u|^{p-2}}{(\alpha-u)^2}\langle\nabla\langle\nabla u, \nabla\varphi\rangle, \nabla u\rangle - \frac{1}{2}(p-2)\frac{|\nabla u|^{p-2}}{(\alpha-u)^2}\langle\nabla f, \nabla\varphi\rangle - (p-2)\frac{|\nabla u|^{p-2}}{(\alpha-u)^2}\langle\nabla u, \nabla\varphi\rangle\Delta u - \frac{|\nabla u|^p}{(\alpha-u)^2}\Delta\varphi - \frac{p|\nabla u|^p}{(\alpha-u)^2}\langle\nabla u, \nabla\varphi\rangle \\
= I + II + III + IV + V + VI + VII.$$
(3.6)

For the first term on the right-hand side of (3.6), using Young's inequality and φ' s properties, we obtain

$$I = \varphi_t \omega \le \frac{|\nabla u|^2}{(\alpha - u)^2} \varphi^{\frac{2}{p+2}} \frac{|\varphi_t|}{\varphi^{\frac{2}{p+2}}} \le \varepsilon \omega^{\frac{p+2}{2}} \varphi + C(p, \varepsilon) \frac{|\varphi_t|^{\frac{p+2}{p}}}{\varphi^{\frac{2}{p}}}$$
$$\le \varepsilon \omega^{\frac{p+2}{2}} \varphi + C(p, \varepsilon) \frac{1}{T^{\frac{p+2}{p}}}.$$

For the second term on the right-hand side of (3.6), using Young's inequality and φ' s properties, and the following two equalities

$$\langle \nabla f, \nabla u \rangle = (\alpha - u)^2 \langle \nabla u, \nabla \omega \rangle - \frac{2|\nabla u|^4}{(\alpha - u)}, \quad 0 = \nabla(\omega \varphi) = \varphi \nabla \omega + \omega \nabla \varphi,$$

we obtain

$$\begin{split} & \text{II} = -\frac{1}{2}(p-2)(p-4)\frac{|\nabla u|^{p-4}}{(\alpha-u)^{\beta}}\langle \nabla u, \nabla \varphi \rangle \langle \nabla u, \nabla f \rangle \\ & \leq \frac{1}{2}|(p-2)(p-4)|\frac{|\nabla u|^{p}}{(\alpha-u)^{2}}\frac{|\nabla \varphi|^{2}}{\varphi} + |(p-2)(p-4)|\frac{|\nabla u|^{p+1}}{(\alpha-u)^{3}}|\nabla \varphi| \\ & \leq [\varepsilon\omega^{\frac{p+2}{2}}\varphi + C(p,\ \varepsilon)\frac{|\nabla \varphi|^{p+2}}{\varphi^{p+1}}](\alpha-u)^{p-2} + \\ & [\varepsilon\omega^{\frac{p+2}{2}}\varphi + C(p,\ \varepsilon)\frac{|\nabla \varphi|^{p+2}}{\varphi^{p+1}}](\alpha-u)^{p-2} \\ & \leq [2\varepsilon\omega^{\frac{p+2}{2}}\varphi + C(p,\varepsilon)\frac{1}{R^{p+2}}](\alpha-u)^{p-2}. \end{split}$$

For the third term on the right-hand side of (3.6), using

$$\langle \nabla f, \nabla \varphi \rangle = (\alpha - u)^2 \langle \nabla \varphi, \nabla \omega \rangle - \frac{2|\nabla u|^2}{(\alpha - u)} \langle \nabla \varphi, \nabla u \rangle,$$

we obtain

$$III = -(p-2)\frac{|\nabla u|^{p-2}}{(\alpha - u)^2} \langle \nabla \langle \nabla u, \nabla \varphi \rangle, \nabla u \rangle$$

$$= \frac{2-p}{2} \frac{|\nabla u|^{p-2}}{(\alpha - u)^2} \langle \nabla f, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^{p-2}}{(\alpha - u)^2} u_i u_j \varphi_{ij}$$

$$= \frac{2-p}{2} |\nabla u|^{p-2} \langle \nabla \omega, \nabla \varphi \rangle + (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u, \nabla \varphi \rangle - (p-2) \frac{|\nabla u|^p}{(\alpha - u)^3} \langle \nabla u$$

$$(p-2)\frac{|\nabla u|^{p-2}}{(\alpha-u)^2}u_iu_j\varphi_{ij}$$

=III₁ + III₂ + III₃. (3.7)

For the first and the second term on the right-hand side of (3.7), using Young's inequality, Schwarz's inequality and $0 = \nabla(\omega\varphi) = \varphi\nabla\omega + \omega\nabla\varphi$, we can get

$$\begin{split} & \text{III}_{1} = \frac{2-p}{2} |\nabla u|^{p-2} \langle \nabla \omega, \nabla \varphi \rangle \leq \frac{|p-2|}{2} \frac{|\nabla u|^{p}}{(\alpha-u)^{2}} \frac{|\nabla \varphi|^{2}}{\varphi} \\ & = \frac{|p-2|}{2} \left[\frac{|\nabla u|^{2}}{(\alpha-u)^{2}} \right]^{\frac{p}{2}} \varphi^{\frac{p}{p+2}} \frac{|\nabla \varphi|^{2}}{\varphi^{\frac{2p+2}{p+2}}} (\alpha-u)^{p-2} \\ & \leq \left[\varepsilon \omega^{\frac{p+2}{2}} \varphi + C(p, \varepsilon) \frac{|\nabla \varphi|^{p+2}}{\varphi^{p+1}} \right] (\alpha-u)^{p-2} \\ & \leq \left[\varepsilon \omega^{\frac{p+2}{2}} \varphi + C(p, \varepsilon) \frac{1}{R^{p+2}} \right] (\alpha-u)^{p-2}, \\ & \text{III}_{2} = (p-2) \frac{|\nabla u|^{p}}{(\alpha-u)^{3}} \langle \nabla u, \nabla \varphi \rangle \leq |p-2| \frac{|\nabla u|^{p+1}}{(\alpha-u)^{3}} |\nabla \varphi| \\ & = |p-2| \left[\frac{|\nabla u|^{2}}{(\alpha-u)^{2}} \right]^{\frac{p+1}{2}} \varphi^{\frac{p+1}{p+2}} \frac{|\nabla \varphi|}{\varphi^{\frac{p+1}{p+2}}} (\alpha-u)^{p-2} \\ & \leq \left[\varepsilon \omega^{\frac{p+2}{2}} \varphi + C(p, \varepsilon) \frac{|\nabla \varphi|^{p+2}}{\varphi^{p+1}} \right] (\alpha-u)^{p-2} \\ & \leq \left[\varepsilon \omega^{\frac{p+2}{2}} \varphi + C(p, \varepsilon) \frac{1}{R^{p+2}} \right] (\alpha-u)^{p-2}. \end{split}$$

For the fourth term on the right-hand side of (3.6), using

$$\langle \nabla f, \nabla \varphi \rangle = (\alpha - u)^2 \langle \nabla \varphi, \nabla \omega \rangle - \frac{2|\nabla u|^2}{(\alpha - u)} \langle \nabla \varphi, \nabla u \rangle \text{ and } 0 = \nabla(\omega \varphi) = \varphi \nabla \omega + \omega \nabla \varphi,$$

and Schwarz's inequality and Young's inequality, we obtain

$$\begin{split} \mathrm{IV} &= -\frac{1}{2}(p-2)\frac{|\nabla u|^{p-2}}{(\alpha-u)^2}\langle\nabla f,\nabla\varphi\rangle \\ &= -\frac{1}{2}(p-2)\frac{|\nabla u|^{p-2}}{(\alpha-u)^2}[(\alpha-u)^2\langle\nabla\omega,\nabla\varphi\rangle - \frac{2|\nabla u|^2}{(\alpha-u)}\langle\nabla u,\nabla\varphi\rangle] \\ &\leq [\varepsilon\omega^{\frac{p+2}{2}}\varphi + C(p,\varepsilon)\frac{|\nabla\varphi|^{p+2}}{\varphi^{p+1}}](\alpha-u)^{p-2} + \\ &\qquad \qquad [\varepsilon\omega^{\frac{p+2}{2}}\varphi + C(p,\varepsilon)\frac{|\nabla\varphi|^{p+2}}{\varphi^{p+1}}](\alpha-u)^{p-2} \\ &\leq [2\varepsilon\omega^{\frac{p+2}{2}}\varphi + C(p,\varepsilon)\frac{1}{R^{p+2}}](\alpha-u)^{p-2}. \end{split}$$

For the fifth term on the right-hand side of (3.6), using Young's inequality and Schwarz's inequality, we obtain

$$V = -(p-2)\frac{|\nabla u|^{p-2}}{(\alpha - u)^2} \langle \nabla u, \nabla \varphi \rangle \triangle u$$

$$\leq \frac{n}{2} (p-2)^2 \frac{|\nabla u|^p}{(\alpha - u)^2} \frac{|\nabla \varphi|^2}{\varphi} + \frac{1}{2n} \frac{|\nabla u|^{p-2}}{(\alpha - u)^2} |\triangle u|^2 \varphi$$

$$\leq \frac{n}{2}(p-2)^{2} \frac{|\nabla u|^{p}}{(\alpha-u)^{2}} \frac{|\nabla \varphi|^{2}}{\varphi} + \frac{|\nabla u|^{p-2}}{2(\alpha-u)^{2}} \varphi u_{ij}^{2}
\leq \left[\varepsilon \omega^{\frac{p+2}{2}} \varphi + C(n,p,\varepsilon) \frac{1}{R^{p+2}}\right] (\alpha-u)^{p-2} + \frac{|\nabla u|^{p-2}}{2(\alpha-u)^{2}} \varphi u_{ij}^{2}.$$

For the seventh term on the right-hand side of (3.6), using Schwarz's inequality and Young's inequality, we can get

$$VII = -\frac{p|\nabla u|^p}{(\alpha - u)^2} \langle \nabla u, \nabla \varphi \rangle \leq \left[\varepsilon \omega^{\frac{p+2}{2}} \varphi + C(p, \varepsilon) \frac{1}{R^{p+2}}\right] (\alpha - u)^{p-1}.$$

Choose a local orthonormal frame $\{e_i\}$ near any such given point such that $\nabla u = |\nabla u|e_1$. As in [3], using the Hessian Comparison Theorem [1,6], which states that $r_{ij} \leq \frac{1+kr}{r}g_{ij}$, noting that $|\nabla r| \leq 1$, and $\varphi'_r = 0$ if $r \leq \frac{R}{2}$, we have that

$$\Delta \varphi + (p-2) \frac{u_i u_j}{|\nabla u|^2} \varphi_{ij} = \Delta \varphi + (p-2) \varphi_{11}$$

$$\geq -(n+p-2) \frac{2+kR}{R} |\partial_r \varphi| - \max\{p-1,1\} |\partial_r^2 \varphi|. \tag{3.8}$$

Using the inequality (3.8), for the sixth term on the right-hand side of (3.6) and the third term on the right-hand side of (3.7), we can get

$$\begin{aligned} \text{VI} + \text{III}_3 &= -\frac{|\nabla u|^p}{(\alpha - u)^2} \triangle \varphi - (p - 2) \frac{|\nabla u|^{p-2}}{(\alpha - u)^2} u_i u_j \varphi_{ij} \\ &\leq \frac{|\nabla u|^p}{(\alpha - u)^2} ((n + p - 2) \frac{2 + kR}{R} |\partial_r \varphi| + \max\{p - 1, 1\} |\partial_r^2 \varphi|) \\ &\leq t [3\varepsilon \omega^{\frac{p+2}{2}} \varphi + C(n, p, \varepsilon) \frac{1}{R^{p+2}} + C(n, p, \varepsilon) k^{p+2}] (\alpha - u)^{p-2}. \end{aligned}$$

Combining the estimates above and (3.6), we get (3.5), where ε will be chosen later and $C(n, p, \varepsilon)$, $C(p, \varepsilon)$ are constants. \square

Proof of Theorem 1.2 If $|\nabla v| = 0$, the result is obvious. Now we assume $|\nabla v| > 0$, so $f = |\nabla u|^2 > 0$. Using the linear operation \mathcal{L} , we can obtain

$$\frac{\partial(\varphi\omega)}{\partial t} - \mathcal{L}(\varphi\omega) = \left[\frac{\partial\varphi}{\partial t} - \mathcal{L}(\varphi)\right]\omega + \left[\frac{\partial\omega}{\partial t} - \mathcal{L}(\omega)\right]\varphi - 2|\nabla u|^{p-2}\langle\nabla\omega,\nabla\varphi\rangle - 2(p-2)|\nabla u|^{p-4}\langle\nabla\omega,\nabla u\rangle\langle\nabla\varphi,\nabla u\rangle. \tag{3.9}$$

Suppose the maximum of $\omega \varphi$ is reached at (x_1, t_1) . By [6], we can assume, without loss of generality that x_1 is not in the cut-locus of M. Then at this point, one has, $\mathcal{L}(\omega \varphi) \leq 0$, $(\omega \varphi)_t \geq 0$ and $\nabla(\omega \varphi) = 0$.

Using Young's inequality, Schwarz's inequality and $0 = \nabla(\omega\varphi) = \varphi\nabla\omega + \omega\nabla\varphi$, we obtain

$$-2|\nabla u|^{p-2}\langle\nabla\omega,\nabla\varphi\rangle\leq 2\frac{|\nabla u|^p}{(\alpha-u)^2}\frac{|\nabla\varphi|^2}{\varphi}\leq \left[\varepsilon\omega^{\frac{p+2}{2}}\varphi+\frac{C(p,\varepsilon)}{R^{p+2}}\right](\alpha-u)^{p-2}.$$
 (3.10)

Similarly, we obtain

$$-2(p-2)|\nabla u|^{p-4}\langle\nabla\omega,\nabla u\rangle\langle\nabla\varphi,\nabla u\rangle \leq 2|p-2|\frac{|\nabla u|^p}{(\alpha-u)^2}\frac{|\nabla\varphi|^2}{\varphi}$$

$$\leq \left[\varepsilon\omega^{\frac{p+2}{2}}\varphi + \frac{C(p,\varepsilon)}{R^{p+2}}\right](\alpha-u)^{p-2}.$$
(3.11)

Then, using Lemmas 3.1, 3.2 and Equation (3.9), Inequality (3.10) and (3.11), we obtain at maximum point (x_1, t_1)

$$\begin{split} 0 \leq & [(2n+2)(p-2)^2+1]\omega^{\frac{p+2}{2}}\varphi(\alpha-u)^{p-2}+2(1-p)\omega^{\frac{p+2}{2}}\varphi(\alpha-u)^{p-1}+\\ & [3\varepsilon\omega^{\frac{p+2}{2}}\varphi+C(n,\ p,\ \varepsilon)k^{p+2}+C(p,\ \varepsilon)\frac{1}{R^{p+2}}](\alpha-u)^{p-2}+\\ & \varepsilon\omega^{\frac{p+2}{2}}\varphi+\frac{1}{T^{\frac{p+2}{p}}}+[\varepsilon\omega^{\frac{p+2}{2}}\varphi+\frac{c(p,\varepsilon)}{R^{p+2}}](\alpha-u)^{p-1}+\\ & [10\varepsilon\omega^{\frac{p+2}{2}}\varphi+\frac{c(n,p,\varepsilon)}{R^{p+2}}+C(n,p,\varepsilon)k^{p+2}](\alpha-u)^{p-2}+\\ & [2\varepsilon\omega^{\frac{p+2}{2}}\varphi+\frac{C(p,\varepsilon)}{R^{p+2}}](\alpha-u)^{p-2}. \end{split}$$

Using $\alpha - u = 1 + (p - 1) \ln A - (p - 1) \ln v \ge 1$, and let $\beta = 2(p - 1) - (2n + 2)(p - 2)^2 - 1$, we obtain

$$\beta \omega^{\frac{p+2}{2}} \varphi \leq 17\varepsilon \omega^{\frac{p+2}{2}} \varphi + C(n,p,\varepsilon) \frac{1}{R^{p+2}} + C(p,\varepsilon) \frac{1}{T^{\frac{p+2}{p}}} + C(n,p,\varepsilon) k^{p+2}.$$

If $2 , we can get <math>\beta > 0$. Taking $\varepsilon = \frac{\beta}{34}$, we can get

$$\omega^{\frac{p+2}{2}}\varphi \le C(n,p)(\frac{1}{R^{p+2}} + \frac{1}{T^{\frac{p+2}{p}}} + k^{p+2}).$$

For all (x,t) in $Q_{R,T}$,

$$\omega^{\frac{p+2}{2}}(x,t)\varphi^{\frac{p+2}{2}}(x,t) \leq \omega^{\frac{p+2}{2}}(x_1,t_1)\varphi^{\frac{p+2}{2}}(x_1,t_1) \leq \omega^{\frac{p+2}{2}}(x_1,t_1)\varphi(x_1,t_1)$$
$$\leq C(n,p)\left(\frac{1}{R^{p+2}} + \frac{1}{T^{\frac{p+2}{p}}} + k^{p+2}\right).$$

Notice that $\varphi(x,t)=1$ in $Q_{R/2,T/2}$ and $\omega=|\nabla \ln(\alpha-u)|^2$, we finally get

$$\frac{|\nabla v(x,t)|}{v(x,t)} \le C(n,p)(\frac{1}{R} + \frac{1}{T^{\frac{1}{p}}} + k)(1 + (p-1)\ln\frac{A}{v(x,t)}).$$

So we arrive at (2.2). \square

Proof of Corollary 1.3 Let $\gamma(s)$ be a minimal geodesic joining x_1 and x_2 in M, $\gamma(s):[0,1] \to M$, $\gamma(0)=x_1,\gamma(1)=x_2$. Using $u(x,t)=(p-1)\ln v$, $\alpha=1+(p-1)\ln A$, and $u(\gamma(s),t)$, we obtain

$$\ln \frac{\alpha - u(x_2, t)}{\alpha - u(x_1, t)} = \int_0^1 \frac{\mathrm{d}(\ln(\alpha - u(\gamma(s), t)))}{\mathrm{d}s} \mathrm{d}s \le \int_0^1 |\dot{\gamma}| \cdot \frac{(p-1)|\nabla v|}{v(\alpha - (p-1)\ln v)} \mathrm{d}s$$
$$\le C(n, p)\rho(x_1, x_2)(\frac{1}{t^{\frac{1}{p}}} + k).$$

Then,

$$\frac{\alpha - u(x_2, t)}{\alpha - u(x_1, t)} \le \exp\left\{C(n, p)\rho(x_1, x_2)\left(\frac{1}{t^{1/p}} + k\right)\right\}. \tag{3.12}$$

Let $\gamma = \exp \left\{ -C(n,p) \rho(\frac{1}{t^{1/p}} + k) \right\}$. Then (3.12) implies that

$$\frac{\alpha - (p-1)\ln v(x_2, t)}{\alpha - (p-1)\ln v(x_1, t)} \le \frac{1}{\gamma}.$$

Then, we get

$$v(x_1,t) \le v^{\gamma}(x_2,t)e^{\frac{\alpha}{(p-1)}(1-\gamma)},$$

where $\gamma = \exp\{-C(n,p)\rho(\frac{1}{t^{1/p}}+k)\}$, and $\rho = \rho(x_1,x_2)$ denotes the geodesic distance between x_1 and x_2 . \square

Proof of Corollary 1.4 Fixing (x_0, t_0) in space-time and using Theorem 1.2 for v on the cube $B(x_0, R) \times [t_0 - R^p, t_0]$, we obtain

$$\frac{|\nabla v(x_0,t_0)|}{v(x_0,t_0)} \leq C(n,p)(\frac{o(R)}{R}).$$

Suppose that $R \to \infty$, it follows that $|\nabla v(x_0, t_0)| = 0$. Since (x_0, t_0) is arbitrary, we get v = c. But $|\nabla v| > 0$, so it is a contradiction. \square

Acknowledgements We would like to thank the referees for their helpful comments and suggestions.

References

- [1] R. E. GREENE, H. WU. Function Theory on Manifolds which Possess A Pole. Springer, Berlin, 1979.
- [2] R. HAMILTON. A matrix Harnack estimates for the heat equation. Comm. Anal. Geom., 1993, 1: 113-126.
- [3] B. KOTSCHWAR, Lei NI. Local gradient estimates of p-harmonic functions, 1/H-flow, and an entropy formula. Ann. Sci. Éc. Norm. Supér. (4), 2009, 42(1): 1–36.
- [4] R. MOSER. The inverse mean curvature flow and p-harmonic functions. J. Eur. Math. Soc. (JEMS), 2007, 9(1): 77–83.
- [5] Li MA, Lin ZHAO, Xianfa SONG. Gradient estimate for the degenerate parabolic equation $u_t = \Delta F(u) + H(u)$ on manifolds. J. Differential Equations, 2008, **244**(5): 1157–1177.
- [6] R. SCHOEN, S. T. YAU. Lectures on Differential Geometry. International Press, Cambridge, MA, 1994.
- [7] P. SOUPLET, Q. S. ZHANG. Sharp gradient estimates and Yau's Liouville theorem for the heat equation on noncompact manifold. Bull. Lond. Math. Soc., 2006, 38(6): 1045–1053.
- [8] Linfeng WANG. Elliptic type gradient estimates for the p-Laplace Schrödinger heat equation. Acta Math. Sinica (Chin. Ser.), 2010, 53(4): 643- 654.
- [9] Linfeng WANG. Gradient estimates for the p-Laplace heat equation under the Ricci flow. Adv. Geom., 2013, 13(2): 349–368.
- [10] Xiangjin XU. Gradient estimates for the degenerate parabolic equation $u_t = \Delta F(u)$ on manifolds and some Liouville-type theorems. J. Differential Equations, 2012, **252**(2): 1403–1420.
- [11] Xiaobao ZHU. Hamilton's gradient estimates and Liouville theorems for fast diffusion equations on noncompact Riemannian manifolds. Proc. Amer. Math. Soc., 2011, 139(5): 1637–1644.
- [12] Xiaobao ZHU. Gradient estimates and Liouville theorems for nonlinear parabolic equations on noncompact Riemannian manifolds. Nonlinear Anal., 2011, 74(15): 5141–5146.