Hamilton's Gradient Estimate for a Nonlinear Parabolic Equation on Riemannian Manifolds

Xinrong JIANG ${ }^{1, *}$, Caisheng LIAO ${ }^{2}$
1. Institute of Mathematics and Information Science, Jiangxi Normal University, Jiangxi 330022, P. R. China;
2. Department of Mathematics, East China Normal University, Shanghai 200241, P. R. China

Abstract

In this paper, we give a local Hamilton's gradient estimate for a nonlinear parabolic equation on Riemannian manifolds. As its application, a Harnack-type inequality and a Liouville-type theorem are obtained. Keywords Hamilton's gradient estimate; nonlinear parabolic equation; Riemannian manifold

MR(2010) Subject Classification 53C21; 35K05

1. Introduction

Let $\left(M^{n}, g\right)$ be a complete Riemannian manifold. We consider the following equation on $\left(M^{n}, g\right)$,

$$
\begin{equation*}
\frac{\partial v^{p-1}}{\partial t}=(p-1)^{p-1} \operatorname{div}\left(|\nabla v|^{p-2} \nabla v\right), \quad p>1 \tag{1.1}
\end{equation*}
$$

where div and ∇ are, respectively, the divergence operator and the gradient operator of the metric g.

In 2006, Souplet and Zhang [7] got a local Hamilton's gradient estimate for heat equation on Riemannian manifolds. That is,

Theorem 1.1 ([7]) Let M be a Riemannian manifold with dimension $n \geq 2$, Ricci $\geq-k, k \geq 0$. Suppose v is any positive solution to the heat equation in $Q_{R, T} \equiv B\left(x_{0}, R\right) \times\left[t_{0}-T, t_{0}\right] \subset$ $M \times(-\infty,+\infty)$. Suppose also $v \leq A$ in $Q_{R, T}$. Then there exists a dimensional constant c such that

$$
\frac{|\nabla v(x, t)|}{v(x, t)} \leq c\left(\frac{1}{R}+\frac{1}{T^{1 / 2}}+\sqrt{k}\right)\left(1+\ln \frac{A}{v(x, t)}\right)
$$

in $Q_{R / 2, T / 2}$. Moreover, if M has nonnegative Ricci curvature and v is any positive solution of the heat equation on $M \times(0, \infty)$, then there exist dimensional constants c_{1}, c_{2} such that

$$
\frac{|\nabla v(x, t)|}{v(x, t)} \leq c_{1} \frac{1}{t^{1 / 2}}\left(c_{2}+\ln \frac{v(x, 2 t)}{v(x, t)}\right)
$$

[^0]for all $x \in M$ and $t>0$.
Hamilton firstly got this gradient estimates for the heat equation on compact manifold in [2]. Recently, there are some interesting results on the Hamilton's gradient estimates for nonlinear parabolic equation on Riemannian manifold in $[5,8,10-12]$ and references therein.

As we know the heat equation is $p=2$ in (1.1). When $1<p<2$ in (1.1), Hamilton's gradient estimates for positive continuous weak solutions to the equation (1.1) have been obtained by Wang in [8] (see also [9]). In this paper, we consider the positive smoothing solution to the equation (1.1) and $p>2$. We derive a similar Hamilton's gradient estimate, when $2<p<$ $2+\frac{1+\sqrt{2 n+3}}{2 n+2}$.

Theorem 1.2 Let M^{n} be a Riemannian manifold and sectional curvature $K_{M} \geq-k^{2}, k \geq 0$. Suppose that v is a positive and bounded solution to the equation (1.1) and $2<p<2+\frac{1+\sqrt{2 n+3}}{2 n+2}$, that is, $0<v \leq A$, in $Q_{R, T}=B\left(x_{0}, R\right) \times\left[t_{0}-T, t_{0}\right] \subset M \times(-\infty,+\infty)$. Then we obtain

$$
\begin{equation*}
\frac{|\nabla v(x, t)|}{v(x, t)} \leq C(n, p)\left(\frac{1}{R}+\frac{1}{T^{\frac{1}{p}}}+k\right)\left(1+(p-1) \ln \frac{A}{v(x, t)}\right) \tag{1.2}
\end{equation*}
$$

in $Q_{R / 2, T / 2}$, where $C(n, p)$ depends on n and p.
Using the theorem, we get two corollaries. The first application is the following Harnacktype inequality:

Corollary 1.3 Let M be a complete noncompact Riemannian manifold and sectional curvature $K_{M} \geq-k^{2}, k \geq 0$. Suppose that v is a positive and bounded solution to the equation (1.1) and $2<p<2+\frac{1+\sqrt{2 n+3}}{2 n+2}$, that is, $0<v(x, t) \leq A,(x, t) \in M \times(0,+\infty)$. Then for any $x_{1}, x_{2} \in M, t \in(0,+\infty)$ there exists

$$
v\left(x_{1}, t\right) \leq v^{\gamma}\left(x_{2}, t\right) e^{\frac{\alpha}{p-1}(1-\gamma)}
$$

where $\alpha=1+(p-1) \ln A, \gamma=\exp \left\{-C(n, p) \rho\left(\frac{1}{t^{1 / p}}+k\right)\right\}$, and $\rho=\rho\left(x_{1}, x_{2}\right)$ denotes the geodesic distance between x_{1} and x_{2}.

The second application is the following Liouville-type theorem:
Corollary 1.4 Let M be a complete noncompact Riemannian manifold and nonnegative sectional curvature, that is, $K_{M} \geq 0$. Suppose that v is a positive solution to the equation (1.1), $2<p<2+\frac{1+\sqrt{2 n+3}}{2 n+2}$, and $v=\exp \left\{o\left(d\left(x_{0}, x\right)+|t|^{\frac{1}{p}}\right)\right\}$. And also suppose $|\nabla v|>0$ in $M \times(-\infty, 0)$. Then the equation (1.1) does not have a positive ancient solution.

The equation (1.1) on Riemannian manifold has been studied in [3], where Li-Yau type gradient estimates and an entropy formula were obtained.

The paper is organized as follows. In Section 2 we establish some lemmas for $p>1$. In Section 3 , for $2<p<2+\frac{1+\sqrt{2 n+3}}{2 n+2}$, and using maximum principle, we prove Theorem 1.2. And using Theorem 1.2, we prove Corollaries 1.3 and 1.4.

2. Preliminaires

Let v be a positive and bounded solution to the equation (1.1), and let $u=(p-1) \ln v$. It
is easy to see that u satisfies

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+|\nabla u|^{p} . \tag{2.1}
\end{equation*}
$$

Let $f=|\nabla u|^{2}$, and assume that $f>0$ over some region of M. Similarly to [3] or [4], we use the linearized operator on right-hand side of the nonlinear equation (2.1).

Lemma 2.1 Let u be a solution to (2.1) and $f=|\nabla u|^{2}$, and also assume that $f>0$ over some region of M. Then the linearized operator on right-hand side of the nonlinear equation (2.1) at u is

$$
\begin{align*}
\mathcal{L}(\psi)= & \frac{1}{2}(p-2)(p-4) f^{\frac{p}{2}-3}\langle\nabla u, \nabla \psi\rangle\langle\nabla f, \nabla u\rangle+ \\
& (p-2) f^{\frac{p}{2}-2}\langle\nabla\langle\nabla u, \nabla \psi\rangle, \nabla u\rangle+\frac{1}{2}(p-2) f^{\frac{p}{2}-2}\langle\nabla f, \nabla \psi\rangle+ \\
& (p-2) f^{\frac{p}{2}-2}\langle\nabla u, \nabla \psi\rangle \Delta u+f^{\frac{p}{2}-1} \triangle \psi+p f^{\frac{p}{2}-1}\langle\nabla u, \nabla \psi\rangle . \tag{2.2}
\end{align*}
$$

Proof Using variational method, we can get

$$
\begin{aligned}
\mathcal{L}(\psi)= & \left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0}\left\{\operatorname{div}\left[|\nabla(u+\epsilon \psi)|^{p-2} \nabla(u+\epsilon \psi)\right]+|\nabla(u+\epsilon \psi)|^{p}\right\} \\
= & \left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0}\left\{\operatorname{div}\left[\left(|\nabla(u+\epsilon \psi)|^{2}\right)^{\frac{p-2}{2}} \nabla(u+\epsilon \psi)\right]+\left(|\nabla(u+\epsilon \psi)|^{2}\right)^{\frac{p}{2}}\right\} \\
= & \operatorname{div}\left[(p-2)|\nabla u|^{p-4}\langle\nabla u, \nabla \psi\rangle \nabla u+|\nabla u|^{p-2} \nabla \psi\right]+p|\nabla u|^{p-2}\langle\nabla u, \nabla \psi\rangle \\
= & \frac{1}{2}(p-2)(p-4) f^{\frac{p}{2}-3}\langle\nabla u, \nabla \psi\rangle\langle\nabla f, \nabla u\rangle+ \\
& (p-2) f^{\frac{p}{2}-2}\langle\nabla\langle\nabla u, \nabla \psi\rangle, \nabla u\rangle+\frac{1}{2}(p-2) f^{\frac{p}{2}-2}\langle\nabla f, \nabla \psi\rangle+ \\
& (p-2) f^{\frac{p}{2}-2}\langle\nabla u, \nabla \psi\rangle \triangle u+f^{\frac{p}{2}-1} \triangle \psi+p f^{\frac{p}{2}-1}\langle\nabla u, \nabla \psi\rangle .
\end{aligned}
$$

Let u, f be as above, $0<v \leq A, \alpha=1+(p-1) \ln A$ and $\omega=|\nabla(\alpha-u)|^{2}=\frac{|\nabla u|^{2}}{(\alpha-u)^{2}}$. Now we will derive $\omega_{t}-\mathcal{L}(\omega)$. Firstly, we need the following two lemmas.

Lemma 2.2 Let $\omega=\frac{|\nabla u|^{2}}{(\alpha-u)^{2}}$. Then

$$
\begin{align*}
\mathcal{L}(\omega)= & \frac{1}{2}(p-2)(p-4)(\alpha-u)^{2}|\nabla u|^{p-6}(\langle\nabla u, \nabla \omega\rangle)^{2}+(p-2)|\nabla u|^{p-4}\langle\nabla\langle\nabla u, \nabla \omega\rangle, \nabla u\rangle+ \\
& \frac{1}{2}(p-2)(\alpha-u)^{2}|\nabla u|^{p-4}|\nabla \omega|^{2}+(p-2)|\nabla u|^{p-4}\langle\nabla u, \nabla \omega\rangle \triangle u+ \\
& \frac{2|\nabla u|^{p-2}}{(\alpha-u)^{2}} u_{i j}^{2}+\frac{2|\nabla u|^{p-2}}{(\alpha-u)^{2}} u_{i} u_{i j j}-\left(p^{2}-5 p+2\right) \frac{|\nabla u|^{p-2}}{(\alpha-u)}\langle\nabla u, \nabla \omega\rangle+ \\
& \frac{2|\nabla u|^{p}}{(\alpha-u)^{3}} \triangle u-2 \frac{|\nabla u|^{p+2}}{(\alpha-u)^{4}}+p|\nabla u|^{p-2}\langle\nabla u, \nabla \omega\rangle \tag{2.3}
\end{align*}
$$

Proof Using Lemma 2.1, we obtain

$$
\begin{align*}
\mathcal{L}(\omega)= & \frac{1}{2}(p-2)(p-4) f^{\frac{p}{2}-3}\langle\nabla u, \nabla \omega\rangle\langle\nabla f, \nabla u\rangle+(p-2) f^{\frac{p}{2}-2}\langle\nabla\langle\nabla u, \nabla \omega\rangle, \nabla u\rangle+ \\
& \frac{1}{2}(p-2) f^{\frac{p}{2}-2}\langle\nabla f, \nabla \omega\rangle+(p-2) f^{\frac{p}{2}-2}\langle\nabla u, \nabla \omega\rangle \Delta u \\
& f^{\frac{p}{2}-1} \Delta \omega+p f^{\frac{p}{2}-1}\langle\nabla u, \nabla \omega\rangle=\mathrm{I}+\mathrm{II}+\mathrm{III}+\mathrm{IV}+\mathrm{V}+\mathrm{VI} . \tag{2.4}
\end{align*}
$$

Firstly, $f=\omega(\alpha-u)^{2}$,

$$
\begin{gather*}
\nabla f=(\alpha-u)^{2} \nabla \omega-2(\alpha-u) \omega \nabla u=(\alpha-u)^{2} \nabla \omega-\frac{2|\nabla u|^{2}}{(\alpha-u)} \nabla u, \\
\langle\nabla f, \nabla u\rangle=(\alpha-u)^{2}\langle\nabla u, \nabla \omega\rangle-\frac{2|\nabla u|^{4}}{(\alpha-u)}, \tag{2.5}\\
\langle\nabla \omega, \nabla f\rangle=(\alpha-u)^{2}|\nabla \omega|^{2}-\frac{2|\nabla u|^{2}}{(\alpha-u)}\langle\nabla u, \nabla \omega\rangle, \tag{2.6}\\
\omega_{j}=\frac{2 u_{i} u_{i j}}{(\alpha-u)^{2}}+\frac{2|\nabla u|^{2}}{(\alpha-u)^{3}} u_{j}, \\
\Delta \omega=\omega_{j j}=\frac{2 u_{i j}^{2}}{(\alpha-u)^{2}}+\frac{2 u_{i} u_{i j j}}{(\alpha-u)^{2}}+\frac{8 u_{i} u_{j} u_{i j}}{(\alpha-u)^{3}}+\frac{2|\nabla u|^{2}}{(\alpha-u)^{3}} \triangle u+\frac{6|\nabla u|^{4}}{(\alpha-u)^{4}} . \tag{2.7}
\end{gather*}
$$

For the first term on the right-hand side of (2.4), using (2.5) and $f=|\nabla u|^{2}$, we can get

$$
\begin{aligned}
\mathrm{I}= & \frac{1}{2}(p-2)(p-4)|\nabla u|^{p-6}\langle\nabla u, \nabla \omega\rangle\left[(\alpha-u)^{2}\langle\nabla u, \nabla \omega\rangle-\frac{2|\nabla u|^{4}}{(\alpha-u)}\right] \\
= & \frac{1}{2}(p-2)(p-4)|\nabla u|^{p-6}(\alpha-u)^{2}(\langle\nabla u, \nabla \omega\rangle)^{2}- \\
& (p-2)(p-4) \frac{|\nabla u|^{p-2}}{(\alpha-u)}\langle\nabla u, \nabla \omega\rangle .
\end{aligned}
$$

For the second term on the right-hand side of (2.4), using $f=|\nabla u|^{2}$, we obtain

$$
\mathrm{II}=(p-2)|\nabla u|^{p-4}\langle\nabla\langle\nabla u, \nabla \omega\rangle, \nabla u\rangle .
$$

For the third term on the right-hand side of (2.4), using (2.6) and $f=|\nabla u|^{2}$, we can get

$$
\begin{aligned}
\text { III } & =\frac{1}{2}(p-2)|\nabla u|^{p-4}\left[(\alpha-u)^{2}|\nabla \omega|^{2}-\frac{2|\nabla u|^{2}}{(\alpha-u)}\langle\nabla u, \nabla \omega\rangle\right] \\
& =\frac{1}{2}(p-2)(\alpha-u)^{2}|\nabla u|^{p-4}|\nabla \omega|^{2}-(p-2) \frac{|\nabla u|^{p-2}}{(\alpha-u)}\langle\nabla u, \nabla \omega\rangle .
\end{aligned}
$$

For the fourth term on the right-hand side of (2.4), using $f=|\nabla u|^{2}$, we obtain

$$
\mathrm{IV}=(p-2)|\nabla u|^{p-2}\langle\nabla u, \nabla \omega\rangle \Delta u .
$$

For the fifth term on the right-hand side of (2.4), using (2.7) and $f=|\nabla u|^{2}$, we can get

$$
\begin{aligned}
\mathrm{V} & =|\nabla u|^{p-2}\left[\frac{2 u_{i j}^{2}}{(\alpha-u)^{2}}+\frac{2 u_{i} u_{i j j}}{(\alpha-u)^{2}}+\frac{8 u_{i} u_{j} u_{i j}}{(\alpha-u)^{3}}+\frac{2|\nabla u|^{2}}{(\alpha-u)^{3}} \Delta u+\frac{6|\nabla u|^{4}}{(\alpha-u)^{4}}\right] \\
& =\frac{2|\nabla u|^{p-2}}{(\alpha-u)^{2}} u_{i j}^{2}+\frac{2|\nabla u|^{p-2}}{(\alpha-u)^{2}} u_{i} u_{i j j}+\frac{4|\nabla u|^{p-2}}{(\alpha-u)^{3}}\langle\nabla u, \nabla f\rangle+\frac{2|\nabla u|^{p}}{(\alpha-u)^{3}} \Delta u+\frac{6|\nabla u|^{p+2}}{(\alpha-u)^{4}} \\
& =\frac{2|\nabla u|^{p-2}}{(\alpha-u)^{2}} u_{i j}^{2}+\frac{2|\nabla u|^{p-2}}{(\alpha-u)^{2}} u_{i} u_{i j j}+\frac{4|\nabla u|^{p-2}}{(\alpha-u)}\langle\nabla u, \nabla \omega\rangle+\frac{2|\nabla u|^{p}}{(\alpha-u)^{3}} \Delta u-\frac{2|\nabla u|^{p+2}}{(\alpha-u)^{4}} .
\end{aligned}
$$

For the sixth term on the right-hand side of (2.4), using $f=|\nabla u|^{2}$, we obtain

$$
\mathrm{VI}=p|\nabla u|^{p-2}\langle\nabla u, \nabla \omega\rangle .
$$

Combining the equations above and (2.4), we obtain (2.3).

Lemma 2.3 Let $\omega=\frac{|\nabla u|^{2}}{(\alpha-u)^{2}}$. Then

$$
\begin{aligned}
\frac{\partial \omega}{\partial t}= & \frac{1}{2}(p-2)(p-4)(\alpha-u)^{2}|\nabla u|^{p-6}(\langle\nabla u, \nabla \omega\rangle)^{2}+ \\
& (p-2)|\nabla u|^{p-4}\langle\nabla\langle\nabla u, \nabla \omega\rangle, \nabla u\rangle+2(1-p) \frac{|\nabla u|^{p+2}}{(\alpha-u)^{3}}+ \\
& (p-2)|\nabla u|^{p-4}\langle\nabla u, \nabla \omega\rangle \triangle u-\frac{2|\nabla u|^{p-2}}{(\alpha-u)^{2}} R_{i j} u_{i} u_{j}+ \\
& \frac{2|\nabla u|^{p-2}}{(\alpha-u)^{2}} u_{i} u_{i j j}-\left(2 p^{2}-7 p+6\right) \frac{|\nabla u|^{p-2}}{(\alpha-u)}\langle\nabla u, \nabla \omega\rangle+ \\
& 2(3-p) \frac{|\nabla u|^{p}}{(\alpha-u)^{3}} \triangle u+2(p-2)^{2} \frac{|\nabla u|^{p+2}}{(\alpha-u)^{4}}+ \\
& p|\nabla u|^{p-2}\langle\nabla u, \nabla \omega\rangle .
\end{aligned}
$$

Proof Firstly, we calculate

$$
\begin{equation*}
\frac{\partial w}{\partial t}=\frac{2 u_{i} u_{t i}}{(\alpha-u)^{2}}+\frac{2|\nabla u|^{2} u_{t}}{(\alpha-u)^{3}} . \tag{2.8}
\end{equation*}
$$

Using

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+|\nabla u|^{p}=\operatorname{div}\left[f^{\frac{p-2}{2}} \nabla u\right]+f^{\frac{p}{2}} \\
& =\frac{p-2}{2} f^{\frac{p}{2}-2}\langle\nabla f, \nabla u\rangle+f^{\frac{p}{2}-1} \triangle u+f^{\frac{p}{2}},
\end{aligned}
$$

and $\langle\nabla f, \nabla u\rangle=(\alpha-u)^{2}\langle\nabla u, \nabla \omega\rangle-\frac{2|\nabla u|^{4}}{(\alpha-u)}$, we have

$$
\begin{aligned}
\frac{2 u_{i} u_{t i}}{(\alpha-u)^{2}}= & \frac{2}{(\alpha-u)^{2}} u_{i}\left(\frac{p-2}{2} f^{\frac{p}{2}-2}\langle\nabla f, \nabla u\rangle+f^{\frac{p}{2}-1} \triangle u+f^{\frac{p}{2}}\right)_{i} \\
= & \frac{2}{(\alpha-u)^{2}}\left(\frac{1}{4}(p-2)(p-4)|\nabla u|^{(p-6)}(\langle\nabla u, \nabla f\rangle)^{2}+\right. \\
& \frac{p-2}{2}|\nabla u|^{(p-4)}\langle\nabla u, \nabla\langle\nabla u, \nabla f\rangle\rangle+\frac{1}{2}(p-2)|\nabla u|^{(p-4)}\langle\nabla u, \nabla f\rangle \triangle u+ \\
& \left.|\nabla u|^{(p-2)}\langle\nabla u, \nabla \triangle u\rangle+\frac{p}{2}|\nabla u|^{(p-2)}\langle\nabla u, \nabla f\rangle\right) \\
= & \frac{2}{(\alpha-u)^{2}}\left\{\frac{1}{4}(p-2)(p-4)|\nabla u|^{(p-6)}\left((\alpha-u)^{2}\langle\nabla u, \nabla w\rangle-\frac{2|\nabla u|^{4}}{(\alpha-u)}\right)^{2}+\right. \\
& \frac{p-2}{2}|\nabla u|^{(p-4)}\left\langle\nabla u, \nabla\left((\alpha-u)^{2}\langle\nabla u, \nabla w\rangle-\frac{2|\nabla u|^{4}}{(\alpha-u)}\right)\right\rangle+ \\
& \frac{1}{2}(p-2)|\nabla u|^{(p-4)}\left((\alpha-u)^{2}\langle\nabla u, \nabla w\rangle-\frac{2|\nabla u|^{4}}{(\alpha-u)}\right) \triangle u+ \\
& \left.|\nabla u|^{(p-2)}\langle\nabla u, \nabla \Delta u\rangle+\frac{p}{2}|\nabla u|^{(p-2)}\left((\alpha-u)^{2}\langle\nabla u, \nabla w\rangle-\frac{2|\nabla u|^{4}}{(\alpha-u)}\right)\right\} \\
= & \frac{1}{2}(p-2)(p-4)|\nabla u|^{(p-6)}(\alpha-u)^{2}(\langle\nabla u, \nabla w\rangle)^{2}- \\
& 2(p-1)(p-2) \frac{|\nabla u|^{(p-2)}}{(\alpha-u)}\langle\nabla u, \nabla w\rangle+2(p-2)(p-4) \frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}}+ \\
& (p-2)|\nabla u|^{(p-4)}\langle\nabla u, \nabla\langle\nabla u, \nabla w\rangle\rangle+6(p-2) \frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}}+
\end{aligned}
$$

$$
\begin{align*}
& (p-2)|\nabla u|^{(p-4)}\langle\nabla u, \nabla w\rangle \Delta u-2(p-2) \frac{|\nabla u|^{p}}{(\alpha-u)^{3}} \Delta u+ \\
& \frac{2|\nabla u|^{(p-2)}}{(\alpha-u)^{2}}\langle\nabla u, \nabla \Delta u\rangle+p|\nabla u|^{(p-2)}\langle\nabla u, \nabla w\rangle-2 p \frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{3}}, \tag{2.9}
\end{align*}
$$

and

$$
\begin{align*}
\frac{2|\nabla u|^{2} u_{t}}{(\alpha-u)^{3}}= & \frac{2|\nabla u|^{2}}{(\alpha-u)^{3}}\left(\frac{p-2}{2} f^{\frac{p}{2}-2}\langle\nabla f, \nabla u\rangle+f^{\frac{p}{2}-1} \triangle u+f^{\frac{p}{2}}\right) \\
= & (p-2) \frac{|\nabla u|^{(p-2)}}{(\alpha-u)^{3}}\left[(\alpha-u)^{2}\langle\nabla u, \nabla \omega\rangle-\frac{2|\nabla u|^{4}}{(\alpha-u)^{2}}\right]+ \\
& \frac{2|\nabla u|^{p}}{(\alpha-u)^{3}} \Delta u+\frac{2|\nabla u|^{(p+2)}}{(\alpha-u)^{3}} \\
= & (p-2) \frac{|\nabla u|^{(p-2)}}{(\alpha-u)}\langle\nabla u, \nabla \omega\rangle-2(p-2) \frac{|\nabla u|^{(p+2)}}{(\alpha-u)^{4}}+ \\
& \frac{2|\nabla u|^{p}}{(\alpha-u)^{3}} \Delta u+\frac{2|\nabla u|^{(p+2)}}{(\alpha-u)^{3}} . \tag{2.10}
\end{align*}
$$

Using (2.8), (2.9), (2.10) and $u_{j j i}-u_{j i j}=-R_{i j} u_{j}$, we can obtain the result.
Proposition 2.4 Let $\omega=\frac{|\nabla u|^{2}}{(\alpha-u)^{2}}$. Then

$$
\begin{align*}
\frac{\partial \omega}{\partial t}-\mathcal{L}(\omega)= & {\left[2(p-2)^{2}+2\right] \frac{|\nabla u|^{p+2}}{(\alpha-u)^{4}}+} \\
& 2(1-p) \frac{|\nabla u|^{p+2}}{(\alpha-u)^{3}}+2(2-p) \frac{|\nabla u|^{p}}{(\alpha-u)^{3}} \triangle u- \\
& \left(p^{2}-2 p+4\right) \frac{|\nabla u|^{p-2}}{(\alpha-u)}\langle\nabla u, \nabla \omega\rangle-\frac{2|\nabla u|^{p-2}}{(\alpha-u)^{2}} u_{i} u_{j} R_{i j}- \\
& \frac{1}{2}(p-2)(\alpha-u)^{2}|\nabla u|^{p-4}|\nabla \omega|^{2}-\frac{2|\nabla u|^{p-2}}{(\alpha-u)^{2}} u_{i j}^{2} . \tag{2.11}
\end{align*}
$$

Proof Using Lemmas 2.2 and 2.3, we can get (2.11). \square

3. Proofs of Theorem 1.2 and Corollaries 1.3 and 1.4

Let $\varphi=\varphi(x, t)$ be a smooth cut-off function supported in $Q_{R, T}$, satisfying the following properties:
(1) $\varphi=\varphi\left(d\left(x, x_{0}\right), t\right) \equiv \varphi(r, t) ; \varphi(x, t)=1$ in $Q_{R / 2, T / 2}$ and $\partial_{r} \varphi=0$ in $Q_{R / 2, T} ; 0 \leq \varphi \leq 1$.
(2) φ is decreasing as a radial function in the spatial variables.
(3) $\frac{\left|\partial_{r} \varphi\right|}{\varphi^{a}} \leq \frac{C_{a}}{R}, \frac{\left|\partial_{r}^{2} \varphi\right|}{\varphi^{a}} \leq \frac{C_{a}}{R^{2}}$, when $0<a<1$.
(4) $\frac{\left|\partial_{t} \varphi\right|}{\varphi^{\frac{1}{p+2}}} \leq \frac{C}{T}$.

Lemma 3.1 If $p>1$, and let $\nabla(\varphi \omega)=0$, also $\operatorname{Ric}(M) \geq-(n-1) k^{2}$, then

$$
\begin{gathered}
{\left[\frac{\partial \omega}{\partial t}-\mathcal{L}(\omega)\right] \varphi \leq\left[(2 n+2)(p-2)^{2}+1\right] \omega^{\frac{p+2}{2}} \varphi(\alpha-u)^{p-2}+2(1-p) \omega^{\frac{p+2}{2}} \varphi(\alpha-u)^{p-1}+} \\
{\left[3 \varepsilon \omega^{\frac{p+2}{2}} \varphi+C(n, p, \varepsilon) k^{p+2}+C(p, \varepsilon) \frac{1}{R^{p+2}}\right](\alpha-u)^{p-2}-}
\end{gathered}
$$

$$
\begin{equation*}
\frac{|\nabla u|^{p-2}}{2(\alpha-u)^{2}} u_{i j}^{2} \varphi \tag{3.1}
\end{equation*}
$$

where ε is a positive constant and will be chosen later, and $C(n, p, \varepsilon), C(p, \varepsilon)$ are positive constants, depending on n, p, ε.

Proof Using Proposition 2.4 and $f=|\nabla u|^{2}$, we can get

$$
\begin{aligned}
{\left[\frac{\partial \omega}{\partial t}-\mathcal{L}(\omega)\right] \varphi=} & {\left[2(p-2)^{2}+2\right] \frac{|\nabla u|^{p+2}}{(\alpha-u)^{4}} \varphi+} \\
& 2(1-p) \frac{|\nabla u|^{p+2}}{(\alpha-u)^{3}} \varphi+2(2-p) \frac{|\nabla u|^{p}}{(\alpha-u)^{3}} \varphi \Delta u- \\
& \left(p^{2}-2 p+4\right) \frac{|\nabla u|^{p-2}}{(\alpha-u)}\langle\nabla u, \nabla \omega\rangle \varphi-\frac{2|\nabla u|^{p-2}}{(\alpha-u)^{2}} u_{i} u_{j} R_{i j} \varphi- \\
& \frac{1}{2}(p-2)(\alpha-u)^{2}|\nabla u|^{p-4}|\nabla \omega|^{2} \varphi-\frac{|\nabla u|^{p-2}}{(\alpha-u)^{2}} u_{i j}^{2} \varphi-\frac{|\nabla u|^{p-2}}{(\alpha-u)^{2}} u_{i j}^{2} \varphi .
\end{aligned}
$$

Using $\langle\nabla u, \nabla \omega\rangle=\frac{2 u_{i} u_{j} u_{i j}}{(\alpha-u)^{2}}+\frac{2|\nabla u|^{4}}{(\alpha-u)^{3}}$ and

$$
-\frac{|\nabla u|^{p-2}}{(\alpha-u)^{2}} u_{i j}^{2} \varphi-2 \frac{|\nabla u|^{p-2}}{(\alpha-u)^{3}} u_{i} u_{j} u_{i j} \varphi-\frac{|\nabla u|^{p+2}}{(\alpha-u)^{4}} \varphi \leq 0,
$$

we obtain

$$
\begin{align*}
{\left[\frac{\partial \omega}{\partial t}-\mathcal{L}(\omega)\right] \varphi \leq } & {\left[2(p-2)^{2}+1\right] \frac{|\nabla u|^{p+2}}{(\alpha-u)^{4}} \varphi+} \\
& 2(1-p) \frac{|\nabla u|^{p+2}}{(\alpha-u)^{3}} \varphi+2(2-p) \frac{|\nabla u|^{p}}{(\alpha-u)^{3}} \varphi \Delta u- \\
& \left(p^{2}-2 p+3\right) \frac{|\nabla u|^{p-2}}{(\alpha-u)}\langle\nabla u, \nabla \omega\rangle \varphi-\frac{2|\nabla u|^{p-2}}{(\alpha-u)^{2}} u_{i} u_{j} R_{i j} \varphi- \\
& \frac{1}{2}(p-2)(\alpha-u)^{2}|\nabla u|^{p-4}|\nabla \omega|^{2} \varphi-\frac{|\nabla u|^{p-2}}{2(\alpha-u)^{2}} u_{i j}^{2} \varphi-\frac{|\nabla u|^{p-2}}{2(\alpha-u)^{2}} u_{i j}^{2} \varphi \\
= & \mathrm{I}+\mathrm{II}+\mathrm{III}+\mathrm{IV}+\mathrm{V}+\mathrm{VI}+\mathrm{VII}+\mathrm{VIII} . \tag{3.2}
\end{align*}
$$

For the first and the second term on the right-hand side of (3.2), using $\omega=\frac{|\nabla u|^{2}}{(\alpha-u)^{2}}$, we obtain

$$
\mathrm{I}=\left[2(p-2)^{2}+1\right] \omega^{\frac{p+2}{2}} \varphi(\alpha-u)^{p-2}, \quad \mathrm{II}=2(1-p) \omega^{\frac{p+2}{2}} \varphi(\alpha-u)^{p-1}
$$

For the third and the seventh term on the right-hand side of (3.2), using Schwarz's inequality and $-x^{2}+b x \leq \frac{b^{2}}{4}$, we get

$$
\begin{aligned}
\mathrm{III}+\mathrm{VII} & =2(2-p) \frac{|\nabla u|^{p}}{(\alpha-u)^{3}} \varphi \triangle u-\frac{|\nabla u|^{p-2}}{2(\alpha-u)^{2}} u_{i j}^{2} \varphi \\
& \leq \frac{|\nabla u|^{p-2}}{2 n(\alpha-u)^{2}}\left[-(\triangle u)^{2}+\frac{4 n|2-p||\nabla u|^{2}}{(\alpha-u)}|\triangle u|\right] \varphi \\
& \leq 2 n(2-p)^{2} \frac{|\nabla u|^{p+2}}{(\alpha-u)^{4}} \varphi=2 n(2-p)^{2} \omega^{\frac{p+2}{2}} \varphi(\alpha-u)^{p-2} .
\end{aligned}
$$

For the fourth term on the right-hand side of (3.2), using Young's inequality and Schwarz's
inequality, and $0=\nabla(\omega \varphi)=\varphi \nabla \omega+\omega \nabla \varphi$, we get

$$
\begin{align*}
\mathrm{IV} & =-\left(p^{2}-2 p+3\right) \frac{|\nabla u|^{p-2}}{(\alpha-u)}\langle\nabla u, \nabla \omega\rangle \varphi \leq\left(p^{2}-2 p+3\right) \frac{|\nabla u|^{p+1}}{(\alpha-u)^{3}}|\nabla \varphi| \\
& =\left(p^{2}-2 p+3\right)\left(\frac{|\nabla u|^{2}}{(\alpha-u)^{2}}\right)^{\frac{p+1}{2}} \varphi^{\frac{p+1}{p+2}} \frac{|\nabla \varphi|}{\varphi^{\frac{p+1}{p+2}}}(\alpha-u)^{p-2} \\
& \leq\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+C(p, \varepsilon) \frac{|\nabla \varphi|^{p+2}}{\varphi^{p+1}}\right](\alpha-u)^{p-2} \\
& \leq\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+C(p, \varepsilon) \frac{1}{R^{p+2}}\right](\alpha-u)^{p-2} . \tag{3.3}
\end{align*}
$$

For the fifth term on the right-hand side of (3.2), using Young's inequality and $\operatorname{Ric}(M) \geq$ $-(n-1) k^{2}$, we get

$$
\begin{aligned}
\mathrm{V} & =-\frac{2|\nabla u|^{p-2}}{(\alpha-u)^{2}} R_{i j} u_{i} u_{j} \varphi \leq 2(n-1) k^{2} \frac{|\nabla u|^{p}}{(\alpha-u)^{2}} \varphi \\
& =2(n-1) k^{2}\left(\frac{|\nabla u|^{2}}{(\alpha-u)^{2}}\right)^{\frac{p}{2}} \varphi(\alpha-u)^{p-2} \\
& \leq\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+C(n, p, \varepsilon) k^{p+2}\right](\alpha-u)^{p-2} .
\end{aligned}
$$

For the sixth term on the right-hand side of (3.2), using Young's inequality and $0=\nabla(\omega \varphi)=$ $\varphi \nabla \omega+\omega \nabla \varphi$, we get

$$
\begin{align*}
\mathrm{VI} & =-\frac{1}{2}(p-2)(\alpha-u)^{2}|\nabla u|^{p-4}|\nabla \omega|^{2} \varphi \leq \frac{1}{2}|p-2| \frac{|\nabla u|^{p}}{(\alpha-u)^{2}} \frac{|\nabla \varphi|^{2}}{\varphi} \\
& =\frac{1}{2}|p-2|\left(\frac{|\nabla u|^{2}}{(\alpha-u)^{2}}\right)^{\frac{p}{2}} \varphi^{\frac{p}{p+2}} \frac{|\nabla \varphi|^{2}}{\varphi^{\frac{2 p+2}{p+2}}}(\alpha-u)^{p-2} \\
& \leq\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+C(p, \varepsilon) \frac{|\nabla \varphi|^{p+2}}{\varphi^{p+1}}\right](\alpha-u)^{p-2} \\
& \leq\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+C(p, \varepsilon) \frac{1}{R^{p+2}}\right](\alpha-u)^{p-2} . \tag{3.4}
\end{align*}
$$

In inequalities (3.3) and (3.4), we have used φ 's properties. Combining the estimates above and equation (3.2), we get (3.1), where ε will be chosen later and $C(n, p, \varepsilon), C(p, \varepsilon)$ are constants.

Lemma 3.2 If $p>1$, and we assume $\nabla(\varphi \omega)=0$, and sectional curvature $K_{M} \geq-k^{2}, k \geq 0$, then

$$
\begin{align*}
{\left[\frac{\partial \varphi}{\partial t}-\mathcal{L}(\varphi)\right] \omega \leq } & \varepsilon \omega^{\frac{p+2}{2}} \varphi+\frac{1}{T^{\frac{p+2}{p}}}+\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+\frac{c(p, \varepsilon)}{R^{p+2}}\right](\alpha-u)^{p-1}+ \\
& {\left[10 \varepsilon \omega^{\frac{p+2}{2}} \varphi+\frac{c(n, p, \varepsilon)}{R^{p+2}}+C(n, p, \varepsilon) k^{p+2}\right](\alpha-u)^{p-2}+} \\
& \frac{|\nabla u|^{p-2}}{2(\alpha-u)^{2}} u_{i j}^{2} \varphi \tag{3.5}
\end{align*}
$$

where ε is a positive constant and will be chosen later, $C(p, \varepsilon), C(n, p, \varepsilon)$ are positive constants, depending on n, p, ε.

Proof Using Lemma 2.1 and $f=|\nabla u|^{2}$, we get

$$
\begin{align*}
{\left[\frac{\partial \varphi}{\partial t}-\mathcal{L}(\varphi)\right] \omega=} & \frac{\partial \varphi}{\partial t} \omega-\frac{1}{2}(p-2)(p-4) \frac{|\nabla u|^{p-4}}{(\alpha-u)^{2}}\langle\nabla u, \nabla \varphi\rangle\langle\nabla u, \nabla f\rangle- \\
& (p-2) \frac{|\nabla u|^{p-2}}{(\alpha-u)^{2}}\langle\nabla\langle\nabla u, \nabla \varphi\rangle, \nabla u\rangle-\frac{1}{2}(p-2) \frac{|\nabla u|^{p-2}}{(\alpha-u)^{2}}\langle\nabla f, \nabla \varphi\rangle- \\
& (p-2) \frac{|\nabla u|^{p-2}}{(\alpha-u)^{2}}\langle\nabla u, \nabla \varphi\rangle \Delta u-\frac{|\nabla u|^{p}}{(\alpha-u)^{2}} \Delta \varphi- \\
& \frac{p|\nabla u|^{p}}{(\alpha-u)^{2}}\langle\nabla u, \nabla \varphi\rangle \\
= & \mathrm{I}+\mathrm{II}+\mathrm{III}+\mathrm{IV}+\mathrm{V}+\mathrm{VI}+\mathrm{VII} . \tag{3.6}
\end{align*}
$$

For the first term on the right-hand side of (3.6), using Young's inequality and φ^{\prime} s properties, we obtain

$$
\begin{aligned}
\mathrm{I} & =\varphi_{t} \omega \leq \frac{|\nabla u|^{2}}{(\alpha-u)^{2}} \varphi^{\frac{2}{p+2}} \frac{\left|\varphi_{t}\right|}{\varphi^{\frac{2}{p+2}}} \leq \varepsilon \omega^{\frac{p+2}{2}} \varphi+C(p, \varepsilon) \frac{\left|\varphi_{t}\right|^{\frac{p+2}{p}}}{\varphi^{\frac{2}{p}}} \\
& \leq \varepsilon \omega^{\frac{p+2}{2}} \varphi+C(p, \varepsilon) \frac{1}{T^{\frac{p+2}{p}}} .
\end{aligned}
$$

For the second term on the right-hand side of (3.6), using Young's inequality and φ^{\prime} s properties, and the following two equalities

$$
\langle\nabla f, \nabla u\rangle=(\alpha-u)^{2}\langle\nabla u, \nabla \omega\rangle-\frac{2|\nabla u|^{4}}{(\alpha-u)}, \quad 0=\nabla(\omega \varphi)=\varphi \nabla \omega+\omega \nabla \varphi
$$

we obtain

$$
\begin{aligned}
\mathrm{II}= & -\frac{1}{2}(p-2)(p-4) \frac{|\nabla u|^{p-4}}{(\alpha-u)^{\beta}}\langle\nabla u, \nabla \varphi\rangle\langle\nabla u, \nabla f\rangle \\
& \leq \frac{1}{2}|(p-2)(p-4)| \frac{|\nabla u|^{p}}{(\alpha-u)^{2}} \frac{|\nabla \varphi|^{2}}{\varphi}+|(p-2)(p-4)| \frac{|\nabla u|^{p+1}}{(\alpha-u)^{3}}|\nabla \varphi| \\
& \leq\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+C(p, \varepsilon) \frac{|\nabla \varphi|^{p+2}}{\varphi^{p+1}}\right](\alpha-u)^{p-2}+ \\
& {\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+C(p, \varepsilon) \frac{|\nabla \varphi|^{p+2}}{\varphi^{p+1}}\right](\alpha-u)^{p-2} } \\
& \leq\left[2 \varepsilon \omega^{\frac{p+2}{2}} \varphi+C(p, \varepsilon) \frac{1}{R^{p+2}}\right](\alpha-u)^{p-2} .
\end{aligned}
$$

For the third term on the right-hand side of (3.6), using

$$
\langle\nabla f, \nabla \varphi\rangle=(\alpha-u)^{2}\langle\nabla \varphi, \nabla \omega\rangle-\frac{2|\nabla u|^{2}}{(\alpha-u)}\langle\nabla \varphi, \nabla u\rangle
$$

we obtain

$$
\begin{aligned}
\mathrm{III} & =-(p-2) \frac{|\nabla u|^{p-2}}{(\alpha-u)^{2}}\langle\nabla\langle\nabla u, \nabla \varphi\rangle, \nabla u\rangle \\
& =\frac{2-p}{2} \frac{|\nabla u|^{p-2}}{(\alpha-u)^{2}}\langle\nabla f, \nabla \varphi\rangle-(p-2) \frac{|\nabla u|^{p-2}}{(\alpha-u)^{2}} u_{i} u_{j} \varphi_{i j} \\
& =\frac{2-p}{2}|\nabla u|^{p-2}\langle\nabla \omega, \nabla \varphi\rangle+(p-2) \frac{|\nabla u|^{p}}{(\alpha-u)^{3}}\langle\nabla u, \nabla \varphi\rangle-
\end{aligned}
$$

$$
\begin{align*}
& (p-2) \frac{|\nabla u|^{p-2}}{(\alpha-u)^{2}} u_{i} u_{j} \varphi_{i j} \\
= & \mathrm{III}_{1}+\mathrm{III}_{2}+\mathrm{III}_{3} . \tag{3.7}
\end{align*}
$$

For the first and the second term on the right-hand side of (3.7), using Young's inequality, Schwarz's inequality and $0=\nabla(\omega \varphi)=\varphi \nabla \omega+\omega \nabla \varphi$, we can get

$$
\begin{aligned}
\mathrm{III}_{1} & =\frac{2-p}{2}|\nabla u|^{p-2}\langle\nabla \omega, \nabla \varphi\rangle \leq \frac{|p-2|}{2} \frac{|\nabla u|^{p}}{(\alpha-u)^{2}} \frac{|\nabla \varphi|^{2}}{\varphi} \\
& =\frac{|p-2|}{2}\left[\frac{|\nabla u|^{2}}{(\alpha-u)^{2}}\right]^{\frac{p}{2}} \varphi^{\frac{p}{p+2}} \frac{|\nabla \varphi|^{2}}{\varphi^{\frac{2 p+2}{p+2}}}(\alpha-u)^{p-2} \\
& \leq\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+C(p, \varepsilon) \frac{|\nabla \varphi|^{p+2}}{\varphi^{p+1}}\right](\alpha-u)^{p-2} \\
& \leq\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+C(p, \varepsilon) \frac{1}{R^{p+2}}\right](\alpha-u)^{p-2}, \\
\mathrm{III}_{2} & =(p-2) \frac{|\nabla u|^{p}}{(\alpha-u)^{3}}\langle\nabla u, \nabla \varphi\rangle \leq|p-2| \frac{|\nabla u|^{p+1}}{(\alpha-u)^{3}}|\nabla \varphi| \\
& =|p-2|\left[\frac{|\nabla u|^{2}}{(\alpha-u)^{2}}\right]^{\frac{p+1}{2}} \varphi^{\frac{p+1}{p+2}} \frac{|\nabla \varphi|}{\varphi^{\frac{p+1}{p+2}}}(\alpha-u)^{p-2} \\
& \leq\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+C(p, \varepsilon) \frac{|\nabla \varphi|^{p+2}}{\varphi^{p+1}}\right](\alpha-u)^{p-2} \\
& \leq\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+C(p, \varepsilon) \frac{1}{R^{p+2}}\right](\alpha-u)^{p-2} .
\end{aligned}
$$

For the fourth term on the right-hand side of (3.6), using

$$
\langle\nabla f, \nabla \varphi\rangle=(\alpha-u)^{2}\langle\nabla \varphi, \nabla \omega\rangle-\frac{2|\nabla u|^{2}}{(\alpha-u)}\langle\nabla \varphi, \nabla u\rangle \text { and } 0=\nabla(\omega \varphi)=\varphi \nabla \omega+\omega \nabla \varphi,
$$

and Schwarz's inequality and Young's inequality, we obtain

$$
\begin{aligned}
\mathrm{IV}= & -\frac{1}{2}(p-2) \frac{|\nabla u|^{p-2}}{(\alpha-u)^{2}}\langle\nabla f, \nabla \varphi\rangle \\
= & -\frac{1}{2}(p-2) \frac{|\nabla u|^{p-2}}{(\alpha-u)^{2}}\left[(\alpha-u)^{2}\langle\nabla \omega, \nabla \varphi\rangle-\frac{2|\nabla u|^{2}}{(\alpha-u)}\langle\nabla u, \nabla \varphi\rangle\right] \\
\leq & {\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+C(p, \varepsilon) \frac{|\nabla \varphi|^{p+2}}{\varphi^{p+1}}\right](\alpha-u)^{p-2}+} \\
& {\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+C(p, \varepsilon) \frac{|\nabla \varphi|^{p+2}}{\varphi^{p+1}}\right](\alpha-u)^{p-2} } \\
& \leq\left[2 \varepsilon \omega^{\frac{p+2}{2}} \varphi+C(p, \varepsilon) \frac{1}{R^{p+2}}\right](\alpha-u)^{p-2} .
\end{aligned}
$$

For the fifth term on the right-hand side of (3.6), using Young's inequality and Schwarz's inequality, we obtain

$$
\begin{aligned}
\mathrm{V} & =-(p-2) \frac{|\nabla u|^{p-2}}{(\alpha-u)^{2}}\langle\nabla u, \nabla \varphi\rangle \triangle u \\
& \leq \frac{n}{2}(p-2)^{2} \frac{|\nabla u|^{p}}{(\alpha-u)^{2}} \frac{|\nabla \varphi|^{2}}{\varphi}+\frac{1}{2 n} \frac{|\nabla u|^{p-2}}{(\alpha-u)^{2}}|\triangle u|^{2} \varphi
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{n}{2}(p-2)^{2} \frac{|\nabla u|^{p}}{(\alpha-u)^{2}} \frac{|\nabla \varphi|^{2}}{\varphi}+\frac{|\nabla u|^{p-2}}{2(\alpha-u)^{2}} \varphi u_{i j}^{2} \\
& \leq\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+C(n, p, \varepsilon) \frac{1}{R^{p+2}}\right](\alpha-u)^{p-2}+\frac{|\nabla u|^{p-2}}{2(\alpha-u)^{2}} \varphi u_{i j}^{2}
\end{aligned}
$$

For the seventh term on the right-hand side of (3.6), using Schwarz's inequality and Young's inequality, we can get

$$
\mathrm{VII}=-\frac{p|\nabla u|^{p}}{(\alpha-u)^{2}}\langle\nabla u, \nabla \varphi\rangle \leq\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+C(p, \varepsilon) \frac{1}{R^{p+2}}\right](\alpha-u)^{p-1}
$$

Choose a local orthonormal frame $\left\{e_{i}\right\}$ near any such given point such that $\nabla u=|\nabla u| e_{1}$. As in [3], using the Hessian Comparison Theorem [1,6], which states that $r_{i j} \leq \frac{1+k r}{r} g_{i j}$, noting that $|\nabla r| \leq 1$, and $\varphi_{r}^{\prime}=0$ if $r \leq \frac{R}{2}$, we have that

$$
\begin{align*}
\Delta \varphi+(p-2) \frac{u_{i} u_{j}}{|\nabla u|^{2}} \varphi_{i j} & =\Delta \varphi+(p-2) \varphi_{11} \\
& \geq-(n+p-2) \frac{2+k R}{R}\left|\partial_{r} \varphi\right|-\max \{p-1,1\}\left|\partial_{r}^{2} \varphi\right| \tag{3.8}
\end{align*}
$$

Using the inequality (3.8), for the sixth term on the right-hand side of (3.6) and the third term on the right-hand side of (3.7), we can get

$$
\begin{aligned}
\mathrm{VI}+\mathrm{III}_{3} & =-\frac{|\nabla u|^{p}}{(\alpha-u)^{2}} \Delta \varphi-(p-2) \frac{|\nabla u|^{p-2}}{(\alpha-u)^{2}} u_{i} u_{j} \varphi_{i j} \\
& \leq \frac{|\nabla u|^{p}}{(\alpha-u)^{2}}\left((n+p-2) \frac{2+k R}{R}\left|\partial_{r} \varphi\right|+\max \{p-1,1\}\left|\partial_{r}^{2} \varphi\right|\right) \\
& \leq t\left[3 \varepsilon \omega^{\frac{p+2}{2}} \varphi+C(n, p, \varepsilon) \frac{1}{R^{p+2}}+C(n, p, \varepsilon) k^{p+2}\right](\alpha-u)^{p-2}
\end{aligned}
$$

Combining the estimates above and (3.6), we get (3.5), where ε will be chosen later and $C(n, p, \varepsilon)$, $C(p, \varepsilon)$ are constants.

Proof of Theorem 1.2 If $|\nabla v|=0$, the result is obvious. Now we assume $|\nabla v|>0$, so $f=|\nabla u|^{2}>0$. Using the linear operation \mathcal{L}, we can obtain

$$
\begin{align*}
\frac{\partial(\varphi \omega)}{\partial t}-\mathcal{L}(\varphi \omega)= & {\left[\frac{\partial \varphi}{\partial t}-\mathcal{L}(\varphi)\right] \omega+\left[\frac{\partial \omega}{\partial t}-\mathcal{L}(\omega)\right] \varphi-2|\nabla u|^{p-2}\langle\nabla \omega, \nabla \varphi\rangle-} \\
& 2(p-2)|\nabla u|^{p-4}\langle\nabla \omega, \nabla u\rangle\langle\nabla \varphi, \nabla u\rangle \tag{3.9}
\end{align*}
$$

Suppose the maximum of $\omega \varphi$ is reached at $\left(x_{1}, t_{1}\right)$. By [6], we can assume, without loss of generality that x_{1} is not in the cut-locus of M. Then at this point, one has, $\mathcal{L}(\omega \varphi) \leq 0,(\omega \varphi)_{t} \geq 0$ and $\nabla(\omega \varphi)=0$.

Using Young's inequality, Schwarz's inequality and $0=\nabla(\omega \varphi)=\varphi \nabla \omega+\omega \nabla \varphi$, we obtain

$$
\begin{equation*}
-2|\nabla u|^{p-2}\langle\nabla \omega, \nabla \varphi\rangle \leq 2 \frac{|\nabla u|^{p}}{(\alpha-u)^{2}} \frac{|\nabla \varphi|^{2}}{\varphi} \leq\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+\frac{C(p, \varepsilon)}{R^{p+2}}\right](\alpha-u)^{p-2} \tag{3.10}
\end{equation*}
$$

Similarly, we obtain

$$
\begin{align*}
& -2(p-2)|\nabla u|^{p-4}\langle\nabla \omega, \nabla u\rangle\langle\nabla \varphi, \nabla u\rangle \leq 2|p-2| \frac{|\nabla u|^{p}}{(\alpha-u)^{2}} \frac{|\nabla \varphi|^{2}}{\varphi} \\
& \quad \leq\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+\frac{C(p, \varepsilon)}{R^{p+2}}\right](\alpha-u)^{p-2} \tag{3.11}
\end{align*}
$$

Then, using Lemmas 3.1, 3.2 and Equation (3.9), Inequality (3.10) and (3.11), we obtain at maximum point $\left(x_{1}, t_{1}\right)$

$$
\begin{aligned}
0 \leq & {\left[(2 n+2)(p-2)^{2}+1\right] \omega^{\frac{p+2}{2}} \varphi(\alpha-u)^{p-2}+2(1-p) \omega^{\frac{p+2}{2}} \varphi(\alpha-u)^{p-1}+} \\
& {\left[3 \varepsilon \omega^{\frac{p+2}{2}} \varphi+C(n, p, \varepsilon) k^{p+2}+C(p, \varepsilon) \frac{1}{R^{p+2}}\right](\alpha-u)^{p-2}+} \\
& \varepsilon \omega^{\frac{p+2}{2}} \varphi+\frac{1}{T^{\frac{p+2}{p}}}+\left[\varepsilon \omega^{\frac{p+2}{2}} \varphi+\frac{c(p, \varepsilon)}{R^{p+2}}\right](\alpha-u)^{p-1}+ \\
& {\left[10 \varepsilon \omega^{\frac{p+2}{2}} \varphi+\frac{c(n, p, \varepsilon)}{R^{p+2}}+C(n, p, \varepsilon) k^{p+2}\right](\alpha-u)^{p-2}+} \\
& {\left[2 \varepsilon \omega^{\frac{p+2}{2}} \varphi+\frac{C(p, \varepsilon)}{R^{p+2}}\right](\alpha-u)^{p-2} . }
\end{aligned}
$$

Using $\alpha-u=1+(p-1) \ln A-(p-1) \ln v \geq 1$, and let $\beta=2(p-1)-(2 n+2)(p-2)^{2}-1$, we obtain

$$
\beta \omega^{\frac{p+2}{2}} \varphi \leq 17 \varepsilon \omega^{\frac{p+2}{2}} \varphi+C(n, p, \varepsilon) \frac{1}{R^{p+2}}+C(p, \varepsilon) \frac{1}{T^{\frac{p+2}{p}}}+C(n, p, \varepsilon) k^{p+2}
$$

If $2<p<2+\frac{1+\sqrt{2 n+3}}{2 n+2}$, we can get $\beta>0$. Taking $\varepsilon=\frac{\beta}{34}$, we can get

$$
\omega^{\frac{p+2}{2}} \varphi \leq C(n, p)\left(\frac{1}{R^{p+2}}+\frac{1}{T^{\frac{p+2}{p}}}+k^{p+2}\right) .
$$

For all (x, t) in $Q_{R, T}$,

$$
\begin{aligned}
\omega^{\frac{p+2}{2}}(x, t) \varphi^{\frac{p+2}{2}}(x, t) & \leq \omega^{\frac{p+2}{2}}\left(x_{1}, t_{1}\right) \varphi^{\frac{p+2}{2}}\left(x_{1}, t_{1}\right) \leq \omega^{\frac{p+2}{2}}\left(x_{1}, t_{1}\right) \varphi\left(x_{1}, t_{1}\right) \\
& \leq C(n, p)\left(\frac{1}{R^{p+2}}+\frac{1}{T^{\frac{p+2}{p}}}+k^{p+2}\right)
\end{aligned}
$$

Notice that $\varphi(x, t)=1$ in $Q_{R / 2, T / 2}$ and $\omega=|\nabla \ln (\alpha-u)|^{2}$, we finally get

$$
\frac{|\nabla v(x, t)|}{v(x, t)} \leq C(n, p)\left(\frac{1}{R}+\frac{1}{T^{\frac{1}{p}}}+k\right)\left(1+(p-1) \ln \frac{A}{v(x, t)}\right) .
$$

So we arrive at (2.2).
Proof of Corollary 1.3 Let $\gamma(s)$ be a minimal geodesic joining x_{1} and x_{2} in $M, \gamma(s):[0,1] \rightarrow$ $M, \gamma(0)=x_{1}, \gamma(1)=x_{2}$. Using $u(x, t)=(p-1) \ln v, \alpha=1+(p-1) \ln A$, and $u(\gamma(s), t)$, we obtain

$$
\begin{aligned}
\ln \frac{\alpha-u\left(x_{2}, t\right)}{\alpha-u\left(x_{1}, t\right)} & =\int_{0}^{1} \frac{\mathrm{~d}(\ln (\alpha-u(\gamma(s), t)))}{\mathrm{d} s} \mathrm{~d} s \leq \int_{0}^{1}|\dot{\gamma}| \cdot \frac{(p-1)|\nabla v|}{v(\alpha-(p-1) \ln v)} \mathrm{d} s \\
& \leq C(n, p) \rho\left(x_{1}, x_{2}\right)\left(\frac{1}{t^{\frac{1}{p}}}+k\right) .
\end{aligned}
$$

Then,

$$
\begin{equation*}
\frac{\alpha-u\left(x_{2}, t\right)}{\alpha-u\left(x_{1}, t\right)} \leq \exp \left\{C(n, p) \rho\left(x_{1}, x_{2}\right)\left(\frac{1}{t^{1 / p}}+k\right)\right\} \tag{3.12}
\end{equation*}
$$

Let $\gamma=\exp \left\{-C(n, p) \rho\left(\frac{1}{t^{1 / p}}+k\right)\right\}$. Then (3.12) implies that

$$
\frac{\alpha-(p-1) \ln v\left(x_{2}, t\right)}{\alpha-(p-1) \ln v\left(x_{1}, t\right)} \leq \frac{1}{\gamma} .
$$

Then, we get

$$
v\left(x_{1}, t\right) \leq v^{\gamma}\left(x_{2}, t\right) e^{\frac{\alpha}{(p-1)}(1-\gamma)}
$$

where $\gamma=\exp \left\{-C(n, p) \rho\left(\frac{1}{t^{1 / p}}+k\right)\right\}$, and $\rho=\rho\left(x_{1}, x_{2}\right)$ denotes the geodesic distance between x_{1} and x_{2}.

Proof of Corollary 1.4 Fixing $\left(x_{0}, t_{0}\right)$ in space-time and using Theorem 1.2 for v on the cube $B\left(x_{0}, R\right) \times\left[t_{0}-R^{p}, t_{0}\right]$, we obtain

$$
\frac{\left|\nabla v\left(x_{0}, t_{0}\right)\right|}{v\left(x_{0}, t_{0}\right)} \leq C(n, p)\left(\frac{o(R)}{R}\right) .
$$

Suppose that $R \rightarrow \infty$, it follows that $\left|\nabla v\left(x_{0}, t_{0}\right)\right|=0$. Since $\left(x_{0}, t_{0}\right)$ is arbitrary, we get $v=c$. But $|\nabla v|>0$, so it is a contradiction.

Acknowledgements We would like to thank the referees for their helpful comments and suggestions.

References

[1] R. E. GREENE, H. WU. Function Theory on Manifolds which Possess A Pole. Springer, Berlin, 1979.
[2] R. HAMILTON. A matrix Harnack estimates for the heat equation. Comm. Anal. Geom., 1993, 1: 113-126.
[3] B. KOTSCHWAR, Lei NI. Local gradient estimates of p-harmonic functions, $1 / H$-flow, and an entropy formula. Ann. Sci. Éc. Norm. Supér. (4), 2009, 42(1): 1-36.
[4] R. MOSER. The inverse mean curvature flow and p-harmonic functions. J. Eur. Math. Soc. (JEMS), 2007, 9(1): 77-83.
[5] Li MA, Lin ZHAO, Xianfa SONG. Gradient estimate for the degenerate parabolic equation $u_{t}=\triangle F(u)+$ $H(u)$ on manifolds. J. Differential Equations, 2008, 244(5): 1157-1177.
[6] R. SCHOEN, S. T. YAU. Lectures on Differential Geometry. International Press, Cambridge, MA, 1994.
[7] P. SOUPLET, Q. S. ZHANG. Sharp gradient estimates and Yau's Liouville theorem for the heat equation on noncompact manifold. Bull. Lond. Math. Soc., 2006, 38(6): 1045-1053.
[8] Linfeng WANG. Elliptic type gradient estimates for the p-Laplace Schrödinger heat equation. Acta Math. Sinica (Chin. Ser.), 2010, 53(4): 643- 654.
[9] Linfeng WANG. Gradient estimates for the p-Laplace heat equation under the Ricci flow. Adv. Geom., 2013, 13(2): 349-368.
[10] Xiangjin XU. Gradient estimates for the degenerate parabolic equation $u_{t}=\triangle F(u)$ on manifolds and some Liouville-type theorems. J. Differential Equations, 2012, 252(2): 1403-1420.
[11] Xiaobao ZHU. Hamilton's gradient estimates and Liouville theorems for fast diffusion equations on noncompact Riemannian manifolds. Proc. Amer. Math. Soc., 2011, 139(5): 1637-1644.
[12] Xiaobao ZHU. Gradient estimates and Liouville theorems for nonlinear parabolic equations on noncompact Riemannian manifolds. Nonlinear Anal., 2011, 74(15): 5141-5146.

[^0]: Received August 29, 2014; Accepted March 20, 2015
 Supported by the National Natural Science Foundation of China (Grant Nos. 11261038; 11271132) and the Jiangxi Normal University Youth Development Fund.

 * Corresponding author

 E-mail address: jiangxr1979@yahoo.com (Xinrong JIANG); cliao@math.ecnu.edu.cn (Caisheng LIAO)

