
Journal of Mathematical Research with Applications

Jul., 2015, Vol. 35, No. 4, pp. 435–447

DOI:10.3770/j.issn:2095-2651.2015.04.009

Http://jmre.dlut.edu.cn

Hamilton’s Gradient Estimate for a Nonlinear Parabolic
Equation on Riemannian Manifolds

Xinrong JIANG1,∗, Caisheng LIAO2

1. Institute of Mathematics and Information Science, Jiangxi Normal University,

Jiangxi 330022, P. R. China;

2. Department of Mathematics, East China Normal University, Shanghai 200241, P. R. China
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1. Introduction

Let (Mn, g) be a complete Riemannian manifold. We consider the following equation on

(Mn, g),
∂vp−1

∂t
= (p− 1)p−1div(|∇v|p−2∇v), p > 1, (1.1)

where div and ∇ are, respectively, the divergence operator and the gradient operator of the

metric g.

In 2006, Souplet and Zhang [7] got a local Hamilton’s gradient estimate for heat equation

on Riemannian manifolds. That is,

Theorem 1.1 ([7]) LetM be a Riemannian manifold with dimension n ≥ 2, Ricci ≥ −k, k ≥ 0.

Suppose v is any positive solution to the heat equation in QR,T ≡ B(x0, R) × [t0 − T, t0] ⊂
M × (−∞,+∞). Suppose also v ≤ A in QR,T . Then there exists a dimensional constant c such

that
|∇v(x, t)|
v(x, t)

≤ c(
1

R
+

1

T 1/2
+

√
k)(1 + ln

A

v(x, t)
),

in QR/2,T/2. Moreover, if M has nonnegative Ricci curvature and v is any positive solution of

the heat equation on M × (0,∞), then there exist dimensional constants c1, c2 such that

|∇v(x, t)|
v(x, t)

≤ c1
1

t1/2
(c2 + ln

v(x, 2t)

v(x, t)
),
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for all x ∈M and t > 0.

Hamilton firstly got this gradient estimates for the heat equation on compact manifold in [2].

Recently, there are some interesting results on the Hamilton’s gradient estimates for nonlinear

parabolic equation on Riemannian manifold in [5,8,10–12] and references therein.

As we know the heat equation is p = 2 in (1.1). When 1 < p < 2 in (1.1), Hamilton’s

gradient estimates for positive continuous weak solutions to the equation (1.1) have been obtained

by Wang in [8] (see also [9]). In this paper, we consider the positive smoothing solution to the

equation (1.1) and p > 2. We derive a similar Hamilton’s gradient estimate, when 2 < p <

2 + 1+
√
2n+3

2n+2 .

Theorem 1.2 Let Mn be a Riemannian manifold and sectional curvature KM ≥ −k2, k ≥ 0.

Suppose that v is a positive and bounded solution to the equation (1.1) and 2 < p < 2+ 1+
√
2n+3

2n+2 ,

that is, 0 < v ≤ A, in QR,T = B(x0, R)× [t0 − T, t0] ⊂M × (−∞,+∞). Then we obtain

|∇v(x, t)|
v(x, t)

≤ C(n, p)(
1

R
+

1

T
1
p

+ k)(1 + (p− 1) ln
A

v(x, t)
) (1.2)

in QR/2,T/2, where C(n, p) depends on n and p.

Using the theorem, we get two corollaries. The first application is the following Harnack-

type inequality:

Corollary 1.3 LetM be a complete noncompact Riemannian manifold and sectional curvature

KM ≥ −k2, k ≥ 0. Suppose that v is a positive and bounded solution to the equation (1.1)

and 2 < p < 2 + 1+
√
2n+3

2n+2 , that is, 0 < v(x, t) ≤ A, (x, t) ∈ M × (0,+∞). Then for any

x1, x2 ∈M, t ∈ (0,+∞) there exists

v(x1, t) ≤ vγ(x2, t)e
α

p−1 (1−γ)

where α = 1+(p−1) lnA, γ = exp {−C(n, p)ρ( 1
t1/p

+ k)}, and ρ = ρ(x1, x2) denotes the geodesic

distance between x1 and x2.

The second application is the following Liouville-type theorem:

Corollary 1.4 Let M be a complete noncompact Riemannian manifold and nonnegative

sectional curvature, that is, KM ≥ 0. Suppose that v is a positive solution to the equation

(1.1), 2 < p < 2 + 1+
√
2n+3

2n+2 , and v = exp{o(d(x0, x) + |t|
1
p )}. And also suppose |∇v| > 0 in

M × (−∞, 0). Then the equation (1.1) does not have a positive ancient solution.

The equation (1.1) on Riemannian manifold has been studied in [3], where Li-Yau type

gradient estimates and an entropy formula were obtained.

The paper is organized as follows. In Section 2 we establish some lemmas for p > 1. In

Section 3, for 2 < p < 2 + 1+
√
2n+3

2n+2 , and using maximum principle, we prove Theorem 1.2. And

using Theorem 1.2, we prove Corollaries 1.3 and 1.4.

2. Preliminaires

Let v be a positive and bounded solution to the equation (1.1), and let u = (p− 1) ln v. It
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is easy to see that u satisfies

∂u

∂t
= div(|∇u|p−2∇u) + |∇u|p. (2.1)

Let f = |∇u|2, and assume that f > 0 over some region of M . Similarly to [3] or [4], we

use the linearized operator on right-hand side of the nonlinear equation (2.1).

Lemma 2.1 Let u be a solution to (2.1) and f = |∇u|2, and also assume that f > 0 over some

region of M . Then the linearized operator on right-hand side of the nonlinear equation (2.1) at

u is

L(ψ) =1

2
(p− 2)(p− 4)f

p
2−3⟨∇u,∇ψ⟩⟨∇f,∇u⟩+

(p− 2)f
p
2−2⟨∇⟨∇u,∇ψ⟩,∇u⟩+ 1

2
(p− 2)f

p
2−2⟨∇f,∇ψ⟩+

(p− 2)f
p
2−2⟨∇u,∇ψ⟩△u+ f

p
2−1△ψ + pf

p
2−1⟨∇u,∇ψ⟩. (2.2)

Proof Using variational method, we can get

L(ψ) = d

dϵ

∣∣∣
ϵ=0

{div[|∇(u+ ϵψ)|p−2∇(u+ ϵψ)] + |∇(u+ ϵψ)|p}

=
d

dϵ

∣∣∣
ϵ=0

{div[(|∇(u+ ϵψ)|2)
p−2
2 ∇(u+ ϵψ)] + (|∇(u+ ϵψ)|2)

p
2 }

=div
[
(p− 2)|∇u|p−4⟨∇u,∇ψ⟩∇u+ |∇u|p−2∇ψ

]
+ p|∇u|p−2⟨∇u,∇ψ⟩

=
1

2
(p− 2)(p− 4)f

p
2−3⟨∇u,∇ψ⟩⟨∇f,∇u⟩+

(p− 2)f
p
2−2⟨∇⟨∇u,∇ψ⟩,∇u⟩+ 1

2
(p− 2)f

p
2−2⟨∇f,∇ψ⟩+

(p− 2)f
p
2−2⟨∇u,∇ψ⟩△u+ f

p
2−1△ψ + pf

p
2−1⟨∇u,∇ψ⟩. �

Let u, f be as above, 0 < v ≤ A, α = 1 + (p− 1) lnA and ω = |∇(α − u)|2 = |∇u|2
(α−u)2 . Now

we will derive ωt − L(ω). Firstly, we need the following two lemmas.

Lemma 2.2 Let ω = |∇u|2
(α−u)2 . Then

L(ω) =1

2
(p− 2)(p− 4)(α− u)2|∇u|p−6(⟨∇u,∇ω⟩)2 + (p− 2)|∇u|p−4⟨∇⟨∇u,∇ω⟩,∇u⟩+

1

2
(p− 2)(α− u)2|∇u|p−4|∇ω|2 + (p− 2)|∇u|p−4⟨∇u,∇ω⟩△u+

2|∇u|p−2

(α− u)2
u2ij +

2|∇u|p−2

(α− u)2
uiuijj − (p2 − 5p+ 2)

|∇u|p−2

(α− u)
⟨∇u,∇ω⟩+

2|∇u|p

(α− u)3
△u− 2

|∇u|p+2

(α− u)4
+ p|∇u|p−2⟨∇u,∇ω⟩. (2.3)

Proof Using Lemma 2.1, we obtain

L(ω) =1

2
(p− 2)(p− 4)f

p
2−3⟨∇u,∇ω⟩⟨∇f,∇u⟩+ (p− 2)f

p
2−2⟨∇⟨∇u,∇ω⟩,∇u⟩+

1

2
(p− 2)f

p
2−2⟨∇f,∇ω⟩+ (p− 2)f

p
2−2⟨∇u,∇ω⟩△u

f
p
2−1△ω + pf

p
2−1⟨∇u,∇ω⟩ = I + II + III + IV + V+VI. (2.4)
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Firstly, f = ω(α− u)2,

∇f = (α− u)2∇ω − 2(α− u)ω∇u = (α− u)2∇ω − 2|∇u|2

(α− u)
∇u,

⟨∇f,∇u⟩ = (α− u)2⟨∇u,∇ω⟩ − 2|∇u|4

(α− u)
, (2.5)

⟨∇ω,∇f⟩ = (α− u)2|∇ω|2 − 2|∇u|2

(α− u)
⟨∇u,∇ω⟩, (2.6)

ωj =
2uiuij
(α− u)2

+
2|∇u|2

(α− u)3
uj ,

△ω = ωjj =
2u2ij

(α− u)2
+

2uiuijj
(α− u)2

+
8uiujuij
(α− u)3

+
2|∇u|2

(α− u)3
△u+

6|∇u|4

(α− u)4
. (2.7)

For the first term on the right-hand side of (2.4), using (2.5) and f = |∇u|2, we can get

I =
1

2
(p− 2)(p− 4)|∇u|p−6⟨∇u,∇ω⟩[(α− u)2⟨∇u,∇ω⟩ − 2|∇u|4

(α− u)
]

=
1

2
(p− 2)(p− 4)|∇u|p−6(α− u)2(⟨∇u,∇ω⟩)2−

(p− 2)(p− 4)
|∇u|p−2

(α− u)
⟨∇u,∇ω⟩.

For the second term on the right-hand side of (2.4), using f = |∇u|2, we obtain

II = (p− 2)|∇u|p−4⟨∇⟨∇u,∇ω⟩,∇u⟩.

For the third term on the right-hand side of (2.4), using (2.6) and f = |∇u|2, we can get

III =
1

2
(p− 2)|∇u|p−4[(α− u)2|∇ω|2 − 2|∇u|2

(α− u)
⟨∇u,∇ω⟩]

=
1

2
(p− 2)(α− u)2|∇u|p−4|∇ω|2 − (p− 2)

|∇u|p−2

(α− u)
⟨∇u,∇ω⟩.

For the fourth term on the right-hand side of (2.4), using f = |∇u|2, we obtain

IV = (p− 2)|∇u|p−2⟨∇u,∇ω⟩△u.

For the fifth term on the right-hand side of (2.4), using (2.7) and f = |∇u|2, we can get

V =|∇u|p−2[
2u2ij

(α− u)2
+

2uiuijj
(α− u)2

+
8uiujuij
(α− u)3

+
2|∇u|2

(α− u)3
△u+

6|∇u|4

(α− u)4
]

=
2|∇u|p−2

(α− u)2
u2ij +

2|∇u|p−2

(α− u)2
uiuijj +

4|∇u|p−2

(α− u)3
⟨∇u,∇f⟩+ 2|∇u|p

(α− u)3
△u+

6|∇u|p+2

(α− u)4

=
2|∇u|p−2

(α− u)2
u2ij +

2|∇u|p−2

(α− u)2
uiuijj +

4|∇u|p−2

(α− u)
⟨∇u,∇ω⟩+ 2|∇u|p

(α− u)3
△u− 2|∇u|p+2

(α− u)4
.

For the sixth term on the right-hand side of (2.4), using f = |∇u|2, we obtain

VI = p|∇u|p−2⟨∇u,∇ω⟩.

Combining the equations above and (2.4), we obtain (2.3). �
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Lemma 2.3 Let ω = |∇u|2
(α−u)2 . Then

∂ω

∂t
=
1

2
(p− 2)(p− 4)(α− u)2|∇u|p−6(⟨∇u,∇ω⟩)2+

(p− 2)|∇u|p−4⟨∇⟨∇u,∇ω⟩,∇u⟩+ 2(1− p)
|∇u|p+2

(α− u)3
+

(p− 2)|∇u|p−4⟨∇u,∇ω⟩△u− 2|∇u|p−2

(α− u)2
Rijuiuj+

2|∇u|p−2

(α− u)2
uiuijj − (2p2 − 7p+ 6)

|∇u|p−2

(α− u)
⟨∇u,∇ω⟩+

2(3− p)
|∇u|p

(α− u)3
△u+ 2(p− 2)2

|∇u|p+2

(α− u)4
+

p|∇u|p−2⟨∇u,∇ω⟩.

Proof Firstly, we calculate
∂w

∂t
=

2uiuti
(α− u)2

+
2|∇u|2ut
(α− u)3

. (2.8)

Using

∂u

∂t
= div(|∇u|p−2∇u) + |∇u|p = div[f

p−2
2 ∇u] + f

p
2

=
p− 2

2
f

p
2−2⟨∇f,∇u⟩+ f

p
2−1△u+ f

p
2 ,

and ⟨∇f,∇u⟩ = (α− u)2⟨∇u,∇ω⟩ − 2|∇u|4
(α−u) , we have

2uiuti
(α− u)2

=
2

(α− u)2
ui(

p− 2

2
f

p
2−2⟨∇f,∇u⟩+ f

p
2−1△u+ f

p
2 )i

=
2

(α− u)2

(1
4
(p− 2)(p− 4)|∇u|(p−6)(⟨∇u,∇f⟩)2+

p− 2

2
|∇u|(p−4)⟨∇u,∇⟨∇u,∇f⟩⟩+ 1

2
(p− 2)|∇u|(p−4)⟨∇u,∇f⟩△u+

|∇u|(p−2)⟨∇u,∇△u⟩+ p

2
|∇u|(p−2)⟨∇u,∇f⟩

)
=

2

(α− u)2

{1

4
(p− 2)(p− 4)|∇u|(p−6)

(
(α− u)2⟨∇u,∇w⟩ − 2|∇u|4

(α− u)

)2

+

p− 2

2
|∇u|(p−4)⟨∇u,∇

(
(α− u)2⟨∇u,∇w⟩ − 2|∇u|4

(α− u)

)
⟩+

1

2
(p− 2)|∇u|(p−4)

(
(α− u)2⟨∇u,∇w⟩ − 2|∇u|4

(α− u)

)
△u+

|∇u|(p−2)⟨∇u,∇△u⟩+ p

2
|∇u|(p−2)

(
(α− u)2⟨∇u,∇w⟩ − 2|∇u|4

(α− u)

)}
=
1

2
(p− 2)(p− 4)|∇u|(p−6)(α− u)2(⟨∇u,∇w⟩)2−

2(p− 1)(p− 2)
|∇u|(p−2)

(α− u)
⟨∇u,∇w⟩+ 2(p− 2)(p− 4)

|∇u|(p+2)

(α− u)4
+

(p− 2)|∇u|(p−4)⟨∇u,∇⟨∇u,∇w⟩⟩+ 6(p− 2)
|∇u|(p+2)

(α− u)4
+



440 Xinrong JIANG and Caisheng LIAO

(p− 2)|∇u|(p−4)⟨∇u,∇w⟩△u− 2(p− 2)
|∇u|p

(α− u)3
△u+

2|∇u|(p−2)

(α− u)2
⟨∇u,∇△u⟩+ p|∇u|(p−2)⟨∇u,∇w⟩ − 2p

|∇u|(p+2)

(α− u)3
, (2.9)

and

2|∇u|2ut
(α− u)3

=
2|∇u|2

(α− u)3
(
p− 2

2
f

p
2−2⟨∇f,∇u⟩+ f

p
2−1△u+ f

p
2 )

=(p− 2)
|∇u|(p−2)

(α− u)3
[(α− u)2⟨∇u,∇ω⟩ − 2|∇u|4

(α− u)
]+

2|∇u|p

(α− u)3
△u+

2|∇u|(p+2)

(α− u)3

=(p− 2)
|∇u|(p−2)

(α− u)
⟨∇u,∇ω⟩ − 2(p− 2)

|∇u|(p+2)

(α− u)4
+

2|∇u|p

(α− u)3
△u+

2|∇u|(p+2)

(α− u)3
. (2.10)

Using (2.8), (2.9), (2.10) and ujji − ujij = −Rijuj , we can obtain the result.

Proposition 2.4 Let ω = |∇u|2
(α−u)2 . Then

∂ω

∂t
− L(ω) =

[
2(p− 2)2 + 2

] |∇u|p+2

(α− u)4
+

2(1− p)
|∇u|p+2

(α− u)3
+ 2(2− p)

|∇u|p

(α− u)3
△u−

(p2 − 2p+ 4)
|∇u|p−2

(α− u)
⟨∇u,∇ω⟩ − 2|∇u|p−2

(α− u)2
uiujRij−

1

2
(p− 2)(α− u)2|∇u|p−4|∇ω|2 − 2|∇u|p−2

(α− u)2
u2ij . (2.11)

Proof Using Lemmas 2.2 and 2.3, we can get (2.11). �

3. Proofs of Theorem 1.2 and Corollaries 1.3 and 1.4

Let φ = φ(x, t) be a smooth cut-off function supported in QR,T , satisfying the following

properties:

(1) φ = φ(d(x, x0), t) ≡ φ(r, t);φ(x, t) = 1 in QR/2,T/2 and ∂rφ = 0 in QR/2,T ; 0 ≤ φ ≤ 1.

(2) φ is decreasing as a radial function in the spatial variables.

(3) |∂rφ|
φa ≤ Ca

R ,
|∂2

rφ|
φa ≤ Ca

R2 , when 0 < a < 1.

(4) |∂tφ|

φ
2

p+2
≤ C

T .

Lemma 3.1 If p > 1, and let ∇(φω) = 0, also Ric(M) ≥ −(n− 1)k2, then

[
∂ω

∂t
− L(ω)]φ ≤[(2n+ 2)(p− 2)2 + 1]ω

p+2
2 φ(α− u)p−2 + 2(1− p)ω

p+2
2 φ(α− u)p−1+

[3εω
p+2
2 φ+ C(n, p, ε)kp+2 + C(p, ε)

1

Rp+2
](α− u)p−2−
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|∇u|p−2

2(α− u)2
u2ijφ, (3.1)

where ε is a positive constant and will be chosen later, and C(n, p, ε), C(p, ε) are positive con-

stants, depending on n, p, ε.

Proof Using Proposition 2.4 and f = |∇u|2, we can get[∂ω
∂t

− L(ω)
]
φ =

[
2(p− 2)2 + 2

] |∇u|p+2

(α− u)4
φ+

2(1− p)
|∇u|p+2

(α− u)3
φ+ 2(2− p)

|∇u|p

(α− u)3
φ△u−

(p2 − 2p+ 4)
|∇u|p−2

(α− u)
⟨∇u,∇ω⟩φ− 2|∇u|p−2

(α− u)2
uiujRijφ−

1

2
(p− 2)(α− u)2|∇u|p−4|∇ω|2φ− |∇u|p−2

(α− u)2
u2ijφ− |∇u|p−2

(α− u)2
u2ijφ.

Using ⟨∇u,∇ω⟩ = 2uiujuij

(α−u)2 + 2|∇u|4
(α−u)3 and

− |∇u|p−2

(α− u)2
u2ijφ− 2

|∇u|p−2

(α− u)3
uiujuijφ− |∇u|p+2

(α− u)4
φ ≤ 0,

we obtain[∂ω
∂t

− L(ω)
]
φ ≤

[
2(p− 2)2 + 1

] |∇u|p+2

(α− u)4
φ+

2(1− p)
|∇u|p+2

(α− u)3
φ+ 2(2− p)

|∇u|p

(α− u)3
φ△u−

(p2 − 2p+ 3)
|∇u|p−2

(α− u)
⟨∇u,∇ω⟩φ− 2|∇u|p−2

(α− u)2
uiujRijφ−

1

2
(p− 2)(α− u)2|∇u|p−4|∇ω|2φ− |∇u|p−2

2(α− u)2
u2ijφ− |∇u|p−2

2(α− u)2
u2ijφ

=I + II + III + IV + V+VI + VII + VIII. (3.2)

For the first and the second term on the right-hand side of (3.2), using ω = |∇u|2
(α−u)2 , we obtain

I =
[
2(p− 2)2 + 1

]
ω

p+2
2 φ(α− u)p−2, II = 2(1− p)ω

p+2
2 φ(α− u)p−1.

For the third and the seventh term on the right-hand side of (3.2), using Schwarz’s inequality

and −x2 + bx ≤ b2

4 , we get

III + VII = 2(2− p)
|∇u|p

(α− u)3
φ△u− |∇u|p−2

2(α− u)2
u2ijφ

≤ |∇u|p−2

2n(α− u)2
[−(△u)2 + 4n|2− p||∇u|2

(α− u)
|△u|]φ

≤ 2n(2− p)2
|∇u|p+2

(α− u)4
φ = 2n(2− p)2ω

p+2
2 φ(α− u)p−2.

For the fourth term on the right-hand side of (3.2), using Young’s inequality and Schwarz’s
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inequality, and 0 = ∇(ωφ) = φ∇ω + ω∇φ, we get

IV = −(p2 − 2p+ 3)
|∇u|p−2

(α− u)
⟨∇u,∇ω⟩φ ≤ (p2 − 2p+ 3)

|∇u|p+1

(α− u)3
|∇φ|

= (p2 − 2p+ 3)

(
|∇u|2

(α− u)2

) p+1
2

φ
p+1
p+2

|∇φ|
φ

p+1
p+2

(α− u)p−2

≤ [εω
p+2
2 φ+ C(p, ε)

|∇φ|p+2

φp+1
](α− u)p−2

≤ [εω
p+2
2 φ+ C(p, ε)

1

Rp+2
](α− u)p−2. (3.3)

For the fifth term on the right-hand side of (3.2), using Young’s inequality and Ric(M) ≥
−(n− 1)k2, we get

V = −2|∇u|p−2

(α− u)2
Rijuiujφ ≤ 2(n− 1)k2

|∇u|p

(α− u)2
φ

= 2(n− 1)k2(
|∇u|2

(α− u)2
)

p
2φ(α− u)p−2

≤ [εω
p+2
2 φ+ C(n, p, ε)kp+2](α− u)p−2.

For the sixth term on the right-hand side of (3.2), using Young’s inequality and 0 = ∇(ωφ) =

φ∇ω + ω∇φ, we get

VI = −1

2
(p− 2)(α− u)2|∇u|p−4|∇ω|2φ ≤ 1

2
|p− 2| |∇u|p

(α− u)2
|∇φ|2

φ

=
1

2
|p− 2|( |∇u|2

(α− u)2
)

p
2φ

p
p+2

|∇φ|2

φ
2p+2
p+2

(α− u)p−2

≤ [εω
p+2
2 φ+ C(p, ε)

|∇φ|p+2

φp+1
](α− u)p−2

≤ [εω
p+2
2 φ+ C(p, ε)

1

Rp+2
](α− u)p−2. (3.4)

In inequalities (3.3) and (3.4), we have used φ’s properties. Combining the estimates above and

equation (3.2), we get (3.1), where ε will be chosen later and C(n, p, ε), C(p, ε) are constants. �

Lemma 3.2 If p > 1, and we assume ∇(φω) = 0, and sectional curvature KM ≥ −k2, k ≥ 0,

then

[
∂φ

∂t
− L(φ)]ω ≤εω

p+2
2 φ+

1

T
p+2
p

+ [εω
p+2
2 φ+

c(p, ε)

Rp+2
](α− u)p−1+

[10εω
p+2
2 φ+

c(n, p, ε)

Rp+2
+ C(n, p, ε)kp+2](α− u)p−2+

|∇u|p−2

2(α− u)2
u2ijφ, (3.5)

where ε is a positive constant and will be chosen later, C(p, ε), C(n, p, ε) are positive constants,

depending on n, p, ε.
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Proof Using Lemma 2.1 and f = |∇u|2, we get[∂φ
∂t

− L(φ)
]
ω =

∂φ

∂t
ω − 1

2
(p− 2)(p− 4)

|∇u|p−4

(α− u)2
⟨∇u,∇φ⟩⟨∇u,∇f⟩−

(p− 2)
|∇u|p−2

(α− u)2
⟨∇⟨∇u,∇φ⟩,∇u⟩ − 1

2
(p− 2)

|∇u|p−2

(α− u)2
⟨∇f,∇φ⟩−

(p− 2)
|∇u|p−2

(α− u)2
⟨∇u,∇φ⟩△u− |∇u|p

(α− u)2
△φ−

p|∇u|p

(α− u)2
⟨∇u,∇φ⟩

=I + II + III + IV + V+VI + VII. (3.6)

For the first term on the right-hand side of (3.6), using Young’s inequality and φ′s properties,

we obtain

I = φtω ≤ |∇u|2

(α− u)2
φ

2
p+2

|φt|
φ

2
p+2

≤ εω
p+2
2 φ+ C(p, ε)

|φt|
p+2
p

φ
2
p

≤ εω
p+2
2 φ+ C(p, ε)

1

T
p+2
p

.

For the second term on the right-hand side of (3.6), using Young’s inequality and φ′s properties,

and the following two equalities

⟨∇f,∇u⟩ = (α− u)2⟨∇u,∇ω⟩ − 2|∇u|4

(α− u)
, 0 = ∇(ωφ) = φ∇ω + ω∇φ,

we obtain

II =− 1

2
(p− 2)(p− 4)

|∇u|p−4

(α− u)β
⟨∇u,∇φ⟩⟨∇u,∇f⟩

≤1

2
|(p− 2)(p− 4)| |∇u|p

(α− u)2
|∇φ|2

φ
+ |(p− 2)(p− 4)| |∇u|

p+1

(α− u)3
|∇φ|

≤[εω
p+2
2 φ+ C(p, ε)

|∇φ|p+2

φp+1
](α− u)p−2+

[εω
p+2
2 φ+ C(p, ε)

|∇φ|p+2

φp+1
](α− u)p−2

≤[2εω
p+2
2 φ+ C(p, ε)

1

Rp+2
](α− u)p−2.

For the third term on the right-hand side of (3.6), using

⟨∇f,∇φ⟩ = (α− u)2⟨∇φ,∇ω⟩ − 2|∇u|2

(α− u)
⟨∇φ,∇u⟩,

we obtain

III =− (p− 2)
|∇u|p−2

(α− u)2
⟨∇⟨∇u,∇φ⟩,∇u⟩

=
2− p

2

|∇u|p−2

(α− u)2
⟨∇f,∇φ⟩ − (p− 2)

|∇u|p−2

(α− u)2
uiujφij

=
2− p

2
|∇u|p−2⟨∇ω,∇φ⟩+ (p− 2)

|∇u|p

(α− u)3
⟨∇u,∇φ⟩−
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(p− 2)
|∇u|p−2

(α− u)2
uiujφij

=III1 + III2 + III3. (3.7)

For the first and the second term on the right-hand side of (3.7), using Young’s inequality,

Schwarz’s inequality and 0 = ∇(ωφ) = φ∇ω + ω∇φ, we can get

III1 =
2− p

2
|∇u|p−2⟨∇ω,∇φ⟩ ≤ |p− 2|

2

|∇u|p

(α− u)2
|∇φ|2

φ

=
|p− 2|

2

[
|∇u|2

(α− u)2

] p
2

φ
p

p+2
|∇φ|2

φ
2p+2
p+2

(α− u)p−2

≤[εω
p+2
2 φ+ C(p, ε)

|∇φ|p+2

φp+1
](α− u)p−2

≤[εω
p+2
2 φ+ C(p, ε)

1

Rp+2
](α− u)p−2,

III2 =(p− 2)
|∇u|p

(α− u)3
⟨∇u,∇φ⟩ ≤ |p− 2| |∇u|

p+1

(α− u)3
|∇φ|

=|p− 2|[ |∇u|2

(α− u)2
]
p+1
2 φ

p+1
p+2

|∇φ|
φ

p+1
p+2

(α− u)p−2

≤[εω
p+2
2 φ+ C(p, ε)

|∇φ|p+2

φp+1
](α− u)p−2

≤[εω
p+2
2 φ+ C(p, ε)

1

Rp+2
](α− u)p−2.

For the fourth term on the right-hand side of (3.6), using

⟨∇f,∇φ⟩ = (α− u)2⟨∇φ,∇ω⟩ − 2|∇u|2

(α− u)
⟨∇φ,∇u⟩ and 0 = ∇(ωφ) = φ∇ω + ω∇φ,

and Schwarz’s inequality and Young’s inequality, we obtain

IV =− 1

2
(p− 2)

|∇u|p−2

(α− u)2
⟨∇f,∇φ⟩

=− 1

2
(p− 2)

|∇u|p−2

(α− u)2
[(α− u)2⟨∇ω,∇φ⟩ − 2|∇u|2

(α− u)
⟨∇u,∇φ⟩]

≤[εω
p+2
2 φ+ C(p, ε)

|∇φ|p+2

φp+1
](α− u)p−2+

[εω
p+2
2 φ+ C(p, ε)

|∇φ|p+2

φp+1
](α− u)p−2

≤[2εω
p+2
2 φ+ C(p, ε)

1

Rp+2
](α− u)p−2.

For the fifth term on the right-hand side of (3.6), using Young’s inequality and Schwarz’s in-

equality, we obtain

V = −(p− 2)
|∇u|p−2

(α− u)2
⟨∇u,∇φ⟩△u

≤ n

2
(p− 2)2

|∇u|p

(α− u)2
|∇φ|2

φ
+

1

2n

|∇u|p−2

(α− u)2
|△u|2φ
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≤ n

2
(p− 2)2

|∇u|p

(α− u)2
|∇φ|2

φ
+

|∇u|p−2

2(α− u)2
φu2ij

≤ [εω
p+2
2 φ+ C(n, p, ε)

1

Rp+2
](α− u)p−2 +

|∇u|p−2

2(α− u)2
φu2ij .

For the seventh term on the right-hand side of (3.6), using Schwarz’s inequality and Young’s

inequality, we can get

VII = − p|∇u|p

(α− u)2
⟨∇u,∇φ⟩ ≤ [εω

p+2
2 φ+ C(p, ε)

1

Rp+2
](α− u)p−1.

Choose a local orthonormal frame {ei} near any such given point such that ∇u = |∇u|e1. As in

[3], using the Hessian Comparison Theorem [1,6], which states that rij ≤ 1+kr
r gij , noting that

|∇r| ≤ 1, and φ′
r = 0 if r ≤ R

2 , we have that

△φ+ (p− 2)
uiuj
|∇u|2

φij = △φ+ (p− 2)φ11

≥ −(n+ p− 2)
2 + kR

R
|∂rφ| −max{p− 1, 1}|∂2rφ|. (3.8)

Using the inequality (3.8), for the sixth term on the right-hand side of (3.6) and the third term

on the right-hand side of (3.7), we can get

VI + III3 = − |∇u|p

(α− u)2
△φ− (p− 2)

|∇u|p−2

(α− u)2
uiujφij

≤ |∇u|p

(α− u)2
((n+ p− 2)

2 + kR

R
|∂rφ|+max{p− 1, 1}|∂2rφ|)

≤ t[3εω
p+2
2 φ+ C(n, p, ε)

1

Rp+2
+ C(n, p, ε)kp+2](α− u)p−2.

Combining the estimates above and (3.6), we get (3.5), where ε will be chosen later and C(n, p, ε),

C(p, ε) are constants. �

Proof of Theorem 1.2 If |∇v| = 0, the result is obvious. Now we assume |∇v| > 0, so

f = |∇u|2 > 0. Using the linear operation L, we can obtain

∂(φω)

∂t
− L(φω) =

[∂φ
∂t

− L(φ)
]
ω +

[∂ω
∂t

− L(ω)
]
φ− 2|∇u|p−2⟨∇ω,∇φ⟩−

2(p− 2)|∇u|p−4⟨∇ω,∇u⟩⟨∇φ,∇u⟩. (3.9)

Suppose the maximum of ωφ is reached at (x1, t1). By [6], we can assume, without loss of

generality that x1 is not in the cut-locus ofM. Then at this point, one has, L(ωφ) ≤ 0, (ωφ)t ≥ 0

and ∇(ωφ) = 0.

Using Young’s inequality, Schwarz’s inequality and 0 = ∇(ωφ) = φ∇ω + ω∇φ, we obtain

−2|∇u|p−2⟨∇ω,∇φ⟩ ≤ 2
|∇u|p

(α− u)2
|∇φ|2

φ
≤ [εω

p+2
2 φ+

C(p, ε)

Rp+2
](α− u)p−2. (3.10)

Similarly, we obtain

− 2(p− 2)|∇u|p−4⟨∇ω,∇u⟩⟨∇φ,∇u⟩ ≤ 2|p− 2| |∇u|p

(α− u)2
|∇φ|2

φ

≤ [εω
p+2
2 φ+

C(p, ε)

Rp+2
](α− u)p−2. (3.11)
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Then, using Lemmas 3.1, 3.2 and Equation (3.9), Inequality (3.10) and (3.11), we obtain at

maximum point (x1, t1)

0 ≤[(2n+ 2)(p− 2)2 + 1]ω
p+2
2 φ(α− u)p−2 + 2(1− p)ω

p+2
2 φ(α− u)p−1+

[3εω
p+2
2 φ+ C(n, p, ε)kp+2 + C(p, ε)

1

Rp+2
](α− u)p−2+

εω
p+2
2 φ+

1

T
p+2
p

+ [εω
p+2
2 φ+

c(p, ε)

Rp+2
](α− u)p−1+

[10εω
p+2
2 φ+

c(n, p, ε)

Rp+2
+ C(n, p, ε)kp+2](α− u)p−2+

[2εω
p+2
2 φ+

C(p, ε)

Rp+2
](α− u)p−2.

Using α− u = 1+ (p− 1) lnA− (p− 1) ln v ≥ 1, and let β = 2(p− 1)− (2n+ 2)(p− 2)2 − 1, we

obtain

βω
p+2
2 φ ≤ 17εω

p+2
2 φ+ C(n, p, ε)

1

Rp+2
+ C(p, ε)

1

T
p+2
p

+ C(n, p, ε)kp+2.

If 2 < p < 2 + 1+
√
2n+3

2n+2 , we can get β > 0. Taking ε = β
34 , we can get

ω
p+2
2 φ ≤ C(n, p)(

1

Rp+2
+

1

T
p+2
p

+ kp+2).

For all (x, t) in QR,T ,

ω
p+2
2 (x, t)φ

p+2
2 (x, t) ≤ ω

p+2
2 (x1, t1)φ

p+2
2 (x1, t1) ≤ ω

p+2
2 (x1, t1)φ(x1, t1)

≤ C(n, p)(
1

Rp+2
+

1

T
p+2
p

+ kp+2).

Notice that φ(x, t) = 1 in QR/2,T/2 and ω = |∇ ln(α− u)|2, we finally get

|∇v(x, t)|
v(x, t)

≤ C(n, p)(
1

R
+

1

T
1
p

+ k)(1 + (p− 1) ln
A

v(x, t)
).

So we arrive at (2.2). �

Proof of Corollary 1.3 Let γ(s) be a minimal geodesic joining x1 and x2 in M, γ(s) : [0, 1] →
M, γ(0) = x1, γ(1) = x2. Using u(x, t) = (p − 1) ln v, α = 1 + (p − 1) lnA, and u(γ(s), t), we

obtain

ln
α− u(x2, t)

α− u(x1, t)
=

∫ 1

0

d(ln(α− u(γ(s), t)))

ds
ds ≤

∫ 1

0

|γ̇| · (p− 1)|∇v|
v(α− (p− 1) ln v)

ds

≤ C(n, p)ρ(x1, x2)(
1

t
1
p

+ k).

Then,
α− u(x2, t)

α− u(x1, t)
≤ exp {C(n, p)ρ(x1, x2)(

1

t1/p
+ k)}. (3.12)

Let γ = exp {−C(n, p)ρ( 1
t1/p

+ k)}. Then (3.12) implies that

α− (p− 1) ln v(x2, t)

α− (p− 1) ln v(x1, t)
≤ 1

γ
.
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Then, we get

v(x1, t) ≤ vγ(x2, t)e
α

(p−1)
(1−γ),

where γ = exp {−C(n, p)ρ( 1
t1/p

+ k)}, and ρ = ρ(x1, x2) denotes the geodesic distance between

x1 and x2. �

Proof of Corollary 1.4 Fixing (x0, t0) in space-time and using Theorem 1.2 for v on the cube

B(x0, R)× [t0 −Rp, t0], we obtain

|∇v(x0, t0)|
v(x0, t0)

≤ C(n, p)(
o(R)

R
).

Suppose that R → ∞, it follows that |∇v(x0, t0)| = 0. Since (x0, t0) is arbitrary, we get v = c.

But |∇v| > 0, so it is a contradiction. �

Acknowledgements We would like to thank the referees for their helpful comments and sug-

gestions.

References

[1] R. E. GREENE, H. WU. Function Theory on Manifolds which Possess A Pole. Springer, Berlin, 1979.

[2] R. HAMILTON. A matrix Harnack estimates for the heat equation. Comm. Anal. Geom., 1993, 1: 113–126.

[3] B. KOTSCHWAR, Lei NI. Local gradient estimates of p-harmonic functions, 1/H-flow, and an entropy

formula. Ann. Sci. Éc. Norm. Supér. (4), 2009, 42(1): 1–36.

[4] R. MOSER. The inverse mean curvature flow and p-harmonic functions. J. Eur. Math. Soc. (JEMS), 2007,

9(1): 77–83.

[5] Li MA, Lin ZHAO, Xianfa SONG. Gradient estimate for the degenerate parabolic equation ut = △F (u) +

H(u) on manifolds. J. Differential Equations, 2008, 244(5): 1157–1177.

[6] R. SCHOEN, S. T. YAU. Lectures on Differential Geometry. International Press, Cambridge, MA, 1994.

[7] P. SOUPLET, Q. S. ZHANG. Sharp gradient estimates and Yau’s Liouville theorem for the heat equation

on noncompact manifold. Bull. Lond. Math. Soc., 2006, 38(6): 1045–1053.

[8] Linfeng WANG. Elliptic type gradient estimates for the p-Laplace Schrödinger heat equation. Acta Math.

Sinica (Chin. Ser.), 2010, 53(4): 643-–654.

[9] Linfeng WANG. Gradient estimates for the p-Laplace heat equation under the Ricci flow. Adv. Geom., 2013,

13(2): 349–368.

[10] Xiangjin XU. Gradient estimates for the degenerate parabolic equation ut = △F (u) on manifolds and some

Liouville-type theorems. J. Differential Equations, 2012, 252(2): 1403–1420.

[11] Xiaobao ZHU. Hamilton’s gradient estimates and Liouville theorems for fast diffusion equations on noncom-

pact Riemannian manifolds. Proc. Amer. Math. Soc., 2011, 139(5): 1637–1644.

[12] Xiaobao ZHU. Gradient estimates and Liouville theorems for nonlinear parabolic equations on noncompact

Riemannian manifolds. Nonlinear Anal., 2011, 74(15): 5141–5146.


