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Abstract In this paper, we propose two monitoring schemes to monitor change in the mean

vector of independent multivariate process after a period of size m. The first procedure is

based on the CUSUM of residuals, and the second procedure employs the CUSUM of recursive

residuals. The corresponding asymptotic distributions of the statistics are derived. Simula-

tions show that the proposed monitoring procedures perform well. The empirical application

illustrates the practicability and effectiveness of the procedures.
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1. Introduction

Since the seminal work of Page [1], change point problem attracts increasing attention. Bai

[2] estimated the change point in a linear process by the method of least squares. Bai [3] proposed

a likelihood approach related to multiple structural changes in regression models. Perron and

Qu [4] considered the multiple structural changes in a linear regression model where restrictions

are imposed on the parameters. In the last several years, considerable efforts have been made

to the change point of multivariate time series. Horváth et al. [5] proposed several statistics to

detect the changes in the mean of multivariate dependent stationary processes. Qu and Perron

[6] considered a model with changes in the covariance matrix of the errors and in the regression

coefficients at some unknown time. Boutahar [7] presented a nonparametric CUSUM test for

structural change in the mean of multivariate time series with varying covariance. For a general

review of the change point analysis, the readers are referred to Csörgő and Horváth [8], Perron

[9].

In practice, new data arrive steadily. Given the costs of failing to detect the change points,

it is desirable to detect them as rapidly as possible. Originated with Chu et al. [10], the on-

line change point monitoring arouses the interest of economists and statisticians. Chu et al. [10]

proposed a method on the basis of a historical data of fixed size, which can monitor the new
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observed samples and give an alarm quickly when a change point occurs. According to this idea,

Carsoule and Franses [11] proposed a sequential testing approach to monitor change point in

variance. Horváth et al. [12] proposed two CUSUM monitoring schemes respectively by employ-

ing residuals and recursive residuals for linear regression models. Aue et al. [13] developed the

asymptotic theory for the two monitoring schemes in a linear regression model by martingale

difference errors. Additionally, Andreou and Ghysels [14], Zeileis et al. [15] dealt with change

point monitoring problem for dynamic econometric models.

However, there is little literature to focus on the multivariate change point monitoring.

Considering this and motivated by Horváth et al. [5], we propose two monitoring procedures in

the mean vector of multivariate normal distribution in this paper. In this way, we can monitor

the factors of a product simultaneously, and alarming when any one of the factors changed. Thus

we do not need to monitor these factors one by one. The first procedure is based on the residuals

from a regression on a constant, and the second one is based on the recursive residuals. Under

the null hypothesis we derive the limiting distribution, and tabulate some critical values, we also

prove its consistency under the alternative hypothesis.

The rest of the paper is organized as follows: Section 2 introduces all the necessary as-

sumptions. In Section 3, we discuss the monitoring procedures and analyze their asymptotic

properties. In Section 4, we evaluate the performances of the two monitoring procedures by

Monte Carlo simulations. Additionally, an empirical application is also given in this section. All

proofs of the theorems are collected in Section 5.

2. Models and assumptions

We consider the following model:

X i = µi + e i, 1 6 i < ∞,

where X i is a d× 1 dimensional normal random vector, µi is a d× 1 vector and {e i} is a d× 1

dimensional error sequence.

First, we state the assumptions which are needed to prove the asymptotic properties of our

procedure.

Assumption 2.1 The components of vector X i are independent of each other, and we denote

X k =
1

k

∑
16i6k

X i.

Assumption 2.2 The error sequences satisfy:

Ee i,j = 0, 1 6 i < ∞ and 1 6 j 6 d,

{e i, 1 6 i < ∞} is an independent process,

E∥ei∥ν < ∞ for some ν > 2, (2.1)
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and there exists an integer m satisfying

σ{e i, 1 6 i < k} and σ{e i, l 6 i < ∞} (2.2)

are independent for each l and k satisfying l − k > m.

Assumption 2.3 If Assumption 2.2 holds, then there exists a d dimensional diagonal matrix

D such that

lim
n→∞

1

n
E
( ∑

16i6n

e i

)( ∑
16i6n

e i

)T

= D . (2.3)

Assumption 2.4 There is no change in the historical data set of size m, i.e.,

µi = µ0, 1 6 i 6 m. (2.4)

Remark 2.5 Assumption 2.1 is for the model. Assumptions 2.2 and 2.3 are same as Horváth

et al.[5], which are necessary to prove the limit distribution of the statistics in this paper. As-

sumption 2.4 is “non-contamination assumption” for monitoring the mean change.

Now we observe new incoming data sequentially and monitor if a change occurs in the mean

vector. Namely, we want to test the null hypothesis

H0 : µi = µ0, i = m+ 1,m+ 2, . . . , (2.5)

against the alternative hypothesis

H1 :there is a k∗ > 1 such that µi = µ0, i = m+ 1, . . . ,m+ k∗,

but µi = µ1, i = m+ k∗ + 1,m+ k∗ + 2, . . . ,with µ0 ̸= µ1. (2.6)

The mean vectors µ0,µ1 and the so called change point k∗ are assumed unknown.

3. Monitoring procedures and main results

In this section we define the two monitoring procedures and state their asymptotic properties

under both the null and the alternative.

3.1. The CUSUM of residuals

The CUSUM of residuals statistic we consider is given by

T (k) =
∑

m<i6m+k

(X i −Xm)TD−1
∑

m<i6m+k

(X i −Xm)

and

g(m, k) = cm1/2(1 +
k

m
)(

k

k +m
)γ

is chosen as the boundary function, where c = c(α) (α is the significance level) and

0 6 γ <
1

2
.

Next, we introduce two asymptotic results under the null hypothesis and alternative hy-

pothesis, respectively.
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Theorem 3.1 Assume that the previous assumptions (2.1)–(2.4) hold. Then under the null

hypothesis (H0), we have

lim
m→∞

P
{

sup
16k6∞

T (k)
/
g21(m, k) 6 c

}
= P

{
sup

0<t61

∑
16i6d

W 2
i (t)

/
t2γ 6 c

}
, (3.1)

where g1(m, k) = m1/2(1 + k
m )( k

k+m )γ , {Wi(t), 0 6 t < ∞} is a Wiener process.

Theorem 3.2 Assume that the previous assumptions (2.1)–(2.4) hold. Then under the null

hypothesis (H1), we have

sup
16k6∞

T (k)
/
g21(m, k)

p−→ ∞, m → ∞. (3.2)

3.2. The CUSUM of recursion residuals

In this section, we construct the test detector based on the recursion residuals:

T̃ (k) =
∑

m<i6m+k

(X i −X i−1)
TD−1

∑
m<i6m+k

(X i −X i−1)

and employ g(m, k) = cm1/2h( k
m ) as the boundary function with

lim
t→0

tγ

h(t)
= 0 with some 0 6 γ <

1

2
,

lim sup
t→∞

(t log log t)1/2

h(t)
< ∞ (3.3)

where h(t) is positive and continuous on (0,∞).

Similarly to Theorems 3.1 and 3.2, we have the following two asymptotic results:

Theorem 3.3 Assume that the previous assumptions (2.1)–(2.4) hold. Then under null hy-

pothesis (H0), we have

lim
m→∞

P
{

sup
16k6∞

T̃ (k)
/
g21(m, k) 6 c

}
= P

{
sup

0<t61

∑
16i6d

W 2
i (t)

/
h2(t) 6 c

}
, (3.4)

where g1(m, k) = m1/2h( k
m ), {Wi(t), 0 6 t < ∞} is a Wiener process.

Theorem 3.4 Assume that the previous assumptions (2.1)–(2.4) hold. Then under the alter-

native hypothesis (H1), we have

sup
16k<∞

T̃ (k)/g21(m, k)
p−→ ∞, m → ∞. (3.5)

4. Simulations and an empirical application

4.1. Simulations

In this section, we evaluate the performance of the previous monitoring procedures through

Monte Carlo simulations.

In order to simulate the results, we replace the matrix D with an appropriate estimator Dn
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satisfying:

∥ Dn −D ∥= op((log log n)
−1/2), (4.1)

which is based on the sample {X i, 1 6 i 6 n}. If the previous assumptions hold, we can estimate

D by

Dn =
1

n− 1

∑
16i6n

(X i −X n)(X i −X n)
T

and it can be verified that the previous theorems still hold.

For convenience, we define following notations firstly:

Dγ = T (k)
/
(m(1 +

k

m
)2(

k

k +m
)2γ), Da = T̃ (k)

/
(mh2(k/m)),

where ha(m, k) = [(t+ 1)(a2 + log(1 + t))]1/2 and a satisfies exp(−a2/2) = α.

γ α

0.010 0.025 0.050 0.100 0.250

0.00 12.5688 10.6249 9.0864 7.5673 5.3846

0.15 12.7989 10.9510 9.4475 7.9320 5.7459

0.25 13.3873 11.3953 9.8468 8.2786 6.1145

0.35 14.0561 12.0574 10.5146 8.9395 6.8383

0.45 16.0328 14.0248 12.4084 10.8205 8.6183

0.49 18.2926 16.2669 14.7174 13.0148 10.6133

Table 1 Critical values

Table 1 gives the critical values we obtain based on 50000 replications of

sup
0<t61

∑
16i6d

W 2
i (t)

/
t2γ

for d = 3 from a Monte Carlo simulation.

Table 2 reports the empirical size of the monitoring procedures based on Theorems 3.1 and

3.3. We generate data from i.i.d. N 3(0, I) random vectors and simulate the false alarm rate

under the null hypothesis with the historical sample size of m =25, 100 and 300. For each m,

the processes are monitored from time m + 1 until q which is set two, four, six and nine times

the historical sample size. The reported results are based on 2500 replications. From the table

we conclude: The false alarm rate increases with γ increasing at the same levels when m is 25,

100 and 300 respectively. If, however, the monitoring takes place over an interval of fixed length,

then increasing m visibly reduces the probability of a false rejection; Moreover, the crossing

probability approaches to the theoretical values 10% and 5% when m is large enough meanwhile

q raises towards infinity. From the table, we can see the monitoring based on the recursive

residuals is more sensitive than that based on Dγ . Though it is impossible setting q and m to

extend to infinity in the simulations, the results are appropriate except when m = 25.
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q γ = 0.00 γ = 0.25 γ = 0.45 Recurisive

10% 5% 10% 5% 10% 5% 10% 5%

m = 25 2m 1.92 1.24 6.56 3.56 12.78 8.40 16.04 8.96

4m 8.44 5.10 14.16 8.42 16.34 11.30 23.78 12.98

6m 12.04 7.12 15.74 10.06 18.36 11.38 25.66 13.36

9m 13.70 9.26 17.34 11.60 19.02 13.34 25.76 13.78

m = 100 2m 0.64 0.24 2.90 1.44 7.34 3.88 11.30 4.86

4m 4.06 1.90 7.36 3.44 9.48 5.16 15.46 6.52

6m 6.34 3.30 8.76 4.16 9.78 5.96 15.68 6.68

9m 8.48 4.16 10.62 5.52 10.08 6.06 16.56 6.86

m = 300 2m 0.36 0.10 2.30 0.82 6.48 3.20 9.68 4.54

4m 3.38 1.62 5.90 2.84 8.54 4.70 14.30 5.12

6m 5.50 2.50 8.08 3.86 9.34 4.78 14.46 5.70

9m 6.98 2.96 9.24 4.40 9.60 5.04 15.02 5.86

Table 2 Empirical sizes

m = 25, k∗ = 1 m = 100, k∗ = 1

D0.00 D0.25 D0.45 D̃a D0.00 D0.25 D0.45 D̃a

min 3 1 1 1 min 9 3 1 3

Q1 8 5 2 3 Q1 16 8 3 6

med 10 6 4 4 med 18 10 5 8

Q3 13 9 6 6 Q3 21 12 7 9

max 47 38 91 19 max 44 30 17 17

m = 50, k∗ = 5 m = 100, k∗ = 100

D0.00 D0.25 D0.45 D̃a D0.00 D0.25 D0.45 D̃a

min 9 5 1 3 min 40 17 1 8

Q1 16 11 9 9 Q1 125 120 119 111

med 19 13 11 11 med 133 128 129 117

Q3 22 16 13 12 Q3 142 137 138 122

max 50 38 36 26 max 206 179 207 144

Table 3 Five number summary for the detect time distribution

Table 3 reports the summary statistics for the distribution of the detection time. The mean

vector is (0, 0, 0)′ before the change point and (1, 1, 1)′ after it. As the table shows: If the

historical sample was fixed, then the procedures are relatively sensitive when the change point

occurs at the early beginning of the monitoring. Otherwise the detecting time is a little longer.

If the location of the change point stays the same, then the detecting time decreases as the

historical sample increases.

Figures 1 – 4 show the estimated densities of the stopping time. All the density curves are

asymptotic normality. Just as in Table 2, m is the length of the training period, and m + k∗

is the point at which a change in the mean occurred. If the change point occurs at the early
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stage of the monitoring, then the detector with γ = 0.45 has the shortest detection delay time,

see Figures 1 and 3. But we do not recommend when the change point occurs after a longer

period of the monitoring because of the high false alarm rate, see Figures 2 and 4. The truth

of D̃a is almost exactly opposite to the detects D̃γ , that is to say, D̃a is worse than the detects

Dγ when k∗ is very small and outclass Dγ when k∗ is large. The detector with γ = 0.25 is

relatively moderate no matter the change point occurs in the early or the later. Additionally, the

distributions of the stoping time do not vary much with the change of m and are only associated

with the location of the change point.
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0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
probability density function of detect time

 

 
Gamma=0.00
Gamma=0.25
Gamma=0.45
Recursive

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06
probability density function of detect time

 

 
Gamma=0.00
Gamma=0.25
Gamma=0.45
Recursive

Figure 3 m = 100, k∗ = 10 Figure 4 m = 100, k∗ = 100

Table 4 reports the ARL (Average Run Length) of the procedures. As the table shows, the

ARL decreases as the γ increases under the same significance level. Additionally, if the change

point occurs at the early stage of the monitoring, then the delay time is relatively short. If,

however, the change point occurs after a longer monitoring time, then the delay time increases

significantly.

Table 5 shows the empirical powers of the procedures. From the table we can see: It grows

as the q increases when m , k∗ and γ were fixed, that is to say the longer the monitoring time

is, the easier to detect the change point. And it increases as γ grows when m , k∗ and q were

constants, which suggests that the larger the γ is chosen, the more sensitive this procedure is,

but the limit of γ is 1/2 and not equal to 1/2.
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k∗ γ = 0.00 γ = 0.25 γ = 0.45 Recurisive

10% 5% 10% 5% 10% 5% 10% 5%

m = 50 5 19.3916 21.2674 14.0490 15.5298 11.7140 12.7088 10.7130 10.9746

50 75.0274 78.9274 70.9194 74.8330 71.8250 76.6748 58.4420 62.4592

m = 100 10 29.4708 31.8708 22.0812 23.5934 18.2630 19.5556 18.0388 18.2312

100 133.6872 138.2840 127.8190 132.7320 127.7902 134.0710 111.1418 117.0960

m = 300 30 61.8152 65.6110 79.0064 81.4256 72.6190 84.2880 73.4454 73.4506

300 354.9752 361.9664 344.7468 352.6002 333.3176 344.6128 312.5988 325.0098

Table 4 The ARLs of the procedures

k∗ q γ = 0.00 γ = 0.25 γ = 0.45 Recurisive

10% 5% 10% 5% 10% 5% 10% 5%

m = 50 5 2m 0.9068 0.9972 0.9798 0.9400 0.9824 0.9512 1 1

4m 1 1 1 1 1 1 1 1

6m 1 1 1 1 1 1 1 1

50 2m 0.3690 0.2182 0.4820 0.3706 0.3888 0.2572 1 1

4m 0.9968 0.9908 0.9974 0.9928 0.9930 0.8666 1 1

6m 1 0.9998 1 0.9994 0.9998 0.9938 1 1

m = 100 10 2m 1 1 1 1 1 1 1 1

4m 1 1 1 1 1 1 1 1

6m 1 1 1 1 1 1 1 1

100 3m 0.9230 0.8216 0.9570 0.8948 0.9324 0.8636 1 1

4m 1 1 1 1 1 1 1 1

6m 1 1 1 1 1 1 1 1

m = 300 30 2m 1 1 1 1 1 1 1 1

4m 1 1 1 1 1 1 1 1

6m 1 1 1 1 1 1 1 1

300 3m 1 1 1 1 1 1 1 1

4m 1 1 1 1 1 1 1 1

6m 1 1 1 1 1 1 1 1

Table 5 The Empirical powers of the procedures

4.2. Empirical application

In this section, we illustrate our previous monitoring schemes by a real data example of

a white wine production process from May 2004 to February 2007. The data contains totally

4898 observations, and is publicly available in the “Wine Quality Data Set” of the UCI Ma-

chine Learning Repository (http://archive.ics.uci.edu/ml/datasets/Wine+Quality). The data

were recorded by a computerized system and contains eleven variables, indicating the quality

of the wine, including fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free

sulfur dioxide, total sulfur dioxide, density, pH, sulphates and alcohol(denoted by y1, y2, . . . , y11,

respectively). Another categorical quality variable between 0 (very bad) and 10 (very excellent)
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is also provided based on sensory analysis. For more detail about this example we refer to Cortez

et al. [16].
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Figure 5 Line chart of y1, y7 and y9 respectively Figure 6 Q-Q plot of y1, y7 and y9 respectively

The goal is to monitor the production process of Vinho Verde wine to guarantee its quality.

For convenience, we just select three variables here, fixed acidity(y1), total sulfur dioxide(y7),

PH(y9), based on the first 1000 samples. The sample correlation coefficient matrix of this data

(not reported here) implies that the variables are not correlated. Figure 5 shows the Line Chart

of the raw data for the three variables. The Q-Q plots in Figure 6 indicates that the marginal

distributions of these variables are close to normal distributions. And the Chi-square test of

this three variables are 7.4252e-016, 0.59 and 7.3715e-094 respectively, which indicates that

the original data obey the normal distribution. Furthermore, Figure 7 also illustrates that the

distribution of raw data is close to a multinormal distribution.

Then, we begin to monitor the change point. Let initial 150 data be the historical samples
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and we monitor from the 151st data at the level α = 0.1 and γ = 0.25. As a result, the stoping

time is 191 which indicates that there occurs the change point before 191, which coincides with

the real change point at 165 based on the sensory analysis.
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Figure 7 Q-Q plot of y1, y7 and y9 jointly

5. Proofs of theorems

Let

Um(k) =
∑

m<i6m+k

ei −
k

m

∑
16i6m

e i, Wm(k) = W 1,m(k)− k

m
W 2,m(m).

Lemma 5.1 If the conditions in Theorem 3.1 hold, then there exist two independent multivariate

Wiener processes {W1,m(t), 0 6 t < ∞} and {W2,m(t), 0 6 t < ∞} such that

sup
16k<∞

|UT
m(k)D−1Um(k)−WT

m(k)Wm(k)|
/
g21(m, k) = op(1), (5.1)

where g1(m, k) = m1/2(1 + k
m )( k

k+m )γ .

Proof We note that

Um(k) = (Um1(k), . . . , Umd(k)),

where Umj(k) =
∑

m<i6m+k eij −
k
m

∑
16i6m eij with 1 6 j 6 d.

Let djj be the jth row of the jth column of D for 1 6 j 6 d. By Lemma 5.3 in Horváth et

al. [12], we have

sup
16k<∞

∣∣Umj(k)− djj(W1,mj(k)−
k

m
W2,mj(m))

∣∣/g1(m, k)

= Op(1) sup
16k<∞

{k1/ν +
k

m
m1/ν}

/
{m1/2(1 +

k

m
)(

k

m+ k
)γ}

= Op(1)I. (5.2)

We denote I = sup16k<∞{k1/ν + k
mm1/ν}/{m1/2(1 + k

m )( k
m+k )

γ}.

When γ <
1

2
and ν > 2, we have

I 6 2γ{mγ−1/2 max
16k6m

k1/ν−γ +m1/ν−1/2} = o(1), as 1 6 k 6 m (5.3)
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and

I 6 2γ+1m1/ν−1/2 = o(1), as m 6 k < ∞ (5.4)

Hence

sup
16k<∞

|U T
m(k)D−1Um(k)−W T

m(k)Wm(k)|
/
g21(m, k)

= |(Op1(1)I, . . . , Opd(1)I)
TD−1(Op1(1)I, . . . , Opd(1)I)−W T

m(k)Wm(k)|
/
g21(m, k)

6 Op(1)|(I, . . . , I)TD−1(I, . . . , I)−W T
m(k)Wm(k)|

6 Op(1)
∑

16i6d

sup
16k<∞

(k1/ν +
k

m
m1/ν)2

/
g21(m, k)

= Op(1)I
2. (5.5)

Putting together (5.2)–(5.5), we prove the Lemma 5.1. �

Proof of Theorem 3.1 Horváth et al. [12] has proved that

sup
16k<∞

W1,mj(k)− k
mW2,mj(m)

g1(m, k)

D−→ sup
0<t<∞

W1j(t)− tW2j(t)

(1 + t)(t/(1 + t))γ
D
= sup

0<t61

Wj(t)

tγ
.

Considering that the distribution of {W 1,m(t),W 2,m(t), 0 6 t < ∞} does not depend on

m, we can prove that

sup
16k<∞

W T
m(k)Wm(k)

g21(m, k)

= sup
16k<∞

(W 1,m(k)− k
mW 2,m(m))T(W 1,m(k)− k

mW 2,m(m))

g21(m, k)

D−→ sup
0<t<∞

(W 1(t)− tW 2(1))
T(W 1(t)− tW 2(1))

(1 + t)2( t
1+t )

2γ

D
= sup

0<t61

W T(t)W (t)

t2γ
, (5.6)

where W (t) is a d dimensional Wiener process.

Under the null hypothesis, it is obvious that

T (k) = U T
m(k)D−1Um(k). (5.7)

Hence, Theorem 3.1 follows from Lemma 5.1 and (5.6)–(5.7). �

Proof of Theorem 3.2 Let k̃ = k∗ +m. By the alternative hypothesis we have

T (k̃) =
∑

m<i6m+k̃

(X i − X̄m)TD−1
∑

m<i6m+k̃

(X i − X̄m)

=
( m+k̃∑

i=m+k∗

(µ∗ − µ0) +

m+k̃∑
i=m+1

(ei −
1

m

∑
16i6m

e i)
)T

D−1

( m+k̃∑
i=m+k∗

(µ∗ − µ0) +

m+k̃∑
i=m+1

(ei −
1

m

∑
16i6m

e i)
)
. (5.8)
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Let

Vm(k) =
m+k∑

i=m+1

(X i −Xm). (5.9)

Then

Vm(k̃) =
m+k̃∑

i=m+k∗

(µ∗ − µ0) +Um(k̃). (5.10)

Putting (5.8)–(5.10) together, we get

T (k̃) =
m+k̃∑

i=m+k∗

(µ∗ − µ0)
TD−1

m+k̃∑
i=m+k∗

(µ∗ − µ0) +
m+k̃∑

i=m+k∗

(µ∗ − µ0)
TD−1Um(k̃)+

U T
m(k̃)D−1

m+k̃∑
i=m+k∗

(µ∗ − µ0) +U T
m(k̃)D−1Um(k̃). (5.11)

Moreover, we have

U T
m(k̃)D−1

m+k̃∑
i=m+k∗

(µ∗ − µ0)/g
2
1(m, k)

=
m+k̃∑

i=m+k∗

(µ∗ − µ0)
TD−1Um(k̃)/g21(m, k)

= (µ∗ − µ0)
TD−1

m+k̃∑
i=m+k∗

Um(k̃)/g21(m, k) = op(1), (5.12)

and
m+k̃∑

i=m+k∗

(µ∗ − µ0)
TD−1

m+k̃∑
i=m+k∗

(µ∗ − µ0)
/
g21(m, k) = Op(m). (5.13)

Using the previous proof, we can obtain

U T
m(k̃)D−1Um(k̃)

/
g21(m, k) = Op(1). (5.14)

Putting (5.12)–(5.14), we have lim infm→∞ T (k̃)/g21(m, k) > 0, i.e.,

sup
16k6∞

T (k)
/
g21(m, k)

p−→ ∞,

as m → ∞, and the proof of Theorem 3.2 is completed. �
In order to prove Theorems 3.3 and 3.4, let

Ũm(k) =
∑

m<i6m+k

e i −
k

i− 1

∑
16j6i−1

ej ,

W (k) = W 1,m(k)−
m+k∑

i=m+1

i

m
W 1,m(i−m)− log(1 +

k

m
)W 2,m(m),

and denote that

Ũm(k) = (Ũm1(k), . . . , Ũmd(k)), W (k) = (W1(k), . . . ,Wd(k)),
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where Ũml(k) =
∑m+k

i=m+1 eil −
k

i−1

∑
16j6i−1 ejl, Wl(k) = W1,ml(k)−

∑m+k
i=m+1

i
mW1,ml(i−m)−

log(1 + k
m )W2,ml(m), with 1 6 l 6 d.

Lemma 5.2 If the conditions of Theorem 3.3 are satisfied, then there exist two independent

Wiener processes {W1,m(t), 0 6 t < ∞} and {W2,m(t), 0 6 t < ∞} such that

sup
16m<∞

|Ũ T

m(k)D−1Ũm(k)−W (k)TW (k)|
/
(mh2(k/m)) = op(1).

Proof Let djj be the jth row of the jth column of D for 1 6 l 6 d. By Lemma 6.4 in Horváth

et al. [12], we have

sup
16k<∞

|Uml(k)− djjWl(k)|
/
mh(k/m) = op(1). (5.15)

Hence, we can prove

sup
16k<∞

|Ũ T

m(k)D−1Ũm(k)−W T
m(k)Wm(k)|

/
mh2(k/m) = op(1). (5.16)

So the proof of Lemma 5.2 is completed. �

Lemma 5.3 If the conditions of Theorem 3.3 hold, then

sup
16k<∞

W T
m(k)Wm(k)

/
mh2(k/m)

D−→ sup
0<t<∞

Γ(t)2

h(t)2
.

Proof By Lemma 6.5 in Horváth et al. [12]. For any 1 6 l 6 d, we have

sup
16k<∞

Wl(k)
D−→ sup

0<t<∞

Γ(t)

h(t)
,

so we can deduce

sup
16k<∞

W T
m(k)Wm(k) = sup

16k<∞

∑
16l6d

Wl(k)
2 6

∑
16l6d

sup
16k<∞

Wl(k)
2

D−→
∑

16l6d

sup
0<t<∞

Γ(t)2

h(t)2
= sup

0<t<∞

∑
16l6d

Γ(t)2

h(t)2
.

The proof of Lemma 5.3 is completed. �

Proof of Theorem 3.3 Computing the expectation and covariance functions, we can obtain

EΓ(t) = 0 and EΓ(t)Γ(s) = min(t, s),

and

{Γ(t), 0 6 t < ∞} D
= {W (t), 0 6 t < ∞},

where {W (t), 0 6 t < ∞} is a Wiener process. Then Theorem 3.3 follows from Lemmas 5.2 and

5.3. �

Proof of Theorem 3.4 Let k̃ = k∗ +m. By the alternative hypothesis we have

T (k̃) =
∑

m<i6m+k̃

(X i − X̄ i−1)
TD−1

∑
m<i6m+k̃

(X i − X̄ i−1)
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=
( m+k̃∑

i=m+k∗

(
µ∗ −

1

i− 1

∑
16j6i−1

µj

)
+

m+k̃∑
i=m+1

(
e i −

1

i− 1

∑
16j6i−1

ej

))T

D−1

( m+k̃∑
i=m+k∗

(
µ∗ −

1

i− 1

∑
16j6i−1

µj

)
+

m+k̃∑
i=m+1

(
e i −

1

i− 1

∑
16j6i−1

ej

))
. (5.17)

Let

Ṽm(k) =
m+k∑

i=m+1

(X i −X i−1). (5.18)

Then

Ṽm(k̃) =
m+k̃∑

i=m+k∗

(
µ∗ −

1

i− 1

∑
16j6i−1

µj

)
+ Ũm(k̃). (5.19)

Putting (5.17)–(5.19) together, we get

T (k̃) =

m+k̃∑
i=m+k∗

(
µ∗ −

1

i− 1

∑
16j6i−1

µj

)T

D−1
m+k̃∑

i=m+k∗

(
µ∗ −

1

i− 1

∑
16j6i−1

µj

)
+

m+k̃∑
i=m+k∗

(
µ∗ −

1

i− 1

∑
16j6i−1

µj

)T

D−1Ũm(k̃)+

Ũ
T

m(k̃)D−1
m+k̃∑

i=m+k∗

(
µ∗ −

1

i− 1

∑
16j6i−1

µj

)
+ Ũ

T

m(k̃)D−1Ũm(k̃). (5.20)

Moreover, we have

Ũ
T

m(k̃)D−1
m+k̃∑

i=m+k∗

(
µ∗ −

1

i− 1

∑
16j6i−1

µj

)/
mh2(k/m)

=
m+k̃∑

i=m+k∗

(
µ∗ −

1

i− 1

∑
16j6i−1

µj

)T

D−1Ũm(k̃)
/
mh2(k/m)

= op(1), (5.21)

and

m+k̃∑
i=m+k∗

(
µ∗ −

1

i− 1

∑
16j6i−1

µj

)T

D−1
m+k̃∑

i=m+k∗

(
µ∗ −

1

i− 1

∑
16j6i−1

µj

)
= Op(m). (5.22)

From the previous derivation Ũ
T

m(k̃)D−1Ũ (k̃)
/
mh2(k/m) = Op(1), that is to say

Ṽm(k̃)/mh2(k/m) =
m+k̃∑

i=m+k∗

(
µ∗ −

1

i− 1

∑
16j6i−1

µj

)
+Op(g1(m, k)),

however,

m+k̃∑
i=m+k∗

(
µ∗ −

1

i− 1

∑
16j6i−1

µj

)T

D−1
m+k̃∑

i=m+k∗

(
µ∗ −

1

i− 1

∑
16j6i−1

µj

)
> 0,
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so we get

lim inf
m→∞

∑m+k̃
i=m+k∗(µ∗ − 1

i−1

∑
16j6i−1 µj)

TD−1 ∑m+k̃
i=m+k∗(µ∗ − 1

i−1

∑
16j6i−1 µj)

mh2(m, k)
> 0.

The proof of Theorem 3.4 is completed. �
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