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Abstract Consider the partly linear model Y = xβ + g(t) + e where the explanatory x is

erroneously measured, and both t and the response Y are measured exactly, the random error

e is a martingale difference sequence. Let x̃ be a surrogate variable observed instead of the true

x in the primary survey data. Assume that in addition to the primary data set containing N

observations of {(Yj , x̃j , tj)
n+N
j=n+1}, the independent validation data containing n observations

of {(x̃j , xj , tj)
n
j=1} is available. In this paper, a semiparametric method with the primary data

is employed to obtain the estimator of β and g(·) based on the least squares criterion with the

help of validation data. The proposed estimators are proved to be strongly consistent. Finite

sample behavior of the estimators is investigated via simulations too.

Keywords partial linear error-in-variables models; martingale difference sequence; validation

data; strong consistency
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1. Introduction

Consider the partial linear regression model:

Y = xβ + g(t) + e, (1.1)

where (x, t) ∈ R × [0, 1] are the nonrandom design points, β is an unknown parameter and g(·)
is an unknown smooth function defined on [0, 1] and e = Y − xβ − g(t) are the random errors.

Model (1.1) was first introduced by Engle et al. in [6] and has been widely studied in the

literature and the majority of the work was done so far assuming that the random errors are

independent and identically distributed (i.i.d), see [4,10,12,20] and the monograph of Hädle et

al. in [11]. However, the independence assumption for the errors is not always appropriate in

applications, many authors investigated the model (1.1) when the errors are dependent, such
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as, when the errors are assumed to be negatively associated random variable, the investigation

related to the model (1.1) can be found in [13,14]. Among other works [1,8,9,22]. When the

error is a sequence of martingale difference [5,7,16]. Heteroscedasticity also has been applied to

the model (1.1) by many researchers [15,25].

In many research settings, the exact measurement of some important variable is difficult,

time consuming, or expensive, and can only be performed for a few items in a large scale study.

Thus, they are usually replaced by surrogate observations, which are available by some relative

simple measuring methods. Some statisticians developed statistical inference techniques based

on surrogate data [17,18,23,24]. However, there are few studies for the statistical inference based

on surrogate data when the errors are dependent.

For model (1.1), if the x is mismeasured, it is well known that ignoring the measurement

error and naively performing a usual regression analysis may lead to incorrect conclusions. Let

x̃ be a surrogate variable observed instead of the true x in the primary survey data. Assume

that in addition to the primary data set containing N observations of {(Yj , x̃j , tj)
n+N
j=n+1}, an

independent validation data containing n observations of {(xj , x̃j , tj)
n
j=1} is available. Cai [2]

gave a consistent estimator in model (1.1) when there are measurement errors in variables with

ρ-mixing random errors.

The main purpose of this paper is to show how we can obtain a consistent estimator when

there are measurement errors in variables with martingale difference errors, that is, the x is

mismeasured and the random errors {ei} in (1.1) is a martingale difference sequence with respect

to an increase sequence of σ-fields {Fi}; i.e., ei is Fi-measurable and E(ei|Fi−1) = 0. Further,

assume that E(e2i |Fi−1) = σ2 and 0 < σ2 < ∞ is unknown.

2. Methodology and main results

By employing the validation data, the estimator of the true xi can be defined as

un(νi) =

∑n
j=1 xjK1((νj − νi)/bn)∑n
j=1 K1((νj − νi)/bn)

, i = n+ 1, . . . , n+N, (2.1)

where νj = (x̃j , tj), j = 1, . . . , n + N , K1(·) is a two-dimensional kernel function and bn is a

bandwith tending to zero as n → ∞. Let

ωNi(t) =
K2((t− ti)/hN )∑n+N

i=n+1 K2((t− ti)/hN )
, i = n+ 1, . . . , n+N, (2.2)

where K2(·) is also a kernel function and hN is a bandwith tending to zero as N → ∞.

If β is known to be the true parameter in (1.1), then Yi−xiβ = g(ti)+ei. Hence, the natural

estimator of g(·) is

gnN (t, β) =
n+N∑
i=n+1

ωNi(t)(Yi − un(νi)β) =: g1N (t)− g2N (t)β. (2.3)
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The least square estimator, say βnN , of β is defined by

n+N∑
i=n+1

(Yi − un(νi)β − g1N (ti) + g2N (ti)β)
2 = min.

Solving the equation

n+N∑
i=n+1

[(un(νi)− g2N (ti))(Yi − g1N (ti)− [un(νi)− g2N (ti)]β)] = 0,

we have

βnN =

n+N∑
i=n+1

un(νi)Y i/S
2
nN , (2.4)

where

un(νi) = un(νi)−
n+N∑
j=n+1

ωNj(ti)un(νj) = un(νi)− g2N (ti),

Y i = Yi −
n+N∑
j=n+1

ωNj(ti)Yj = Yi − g1N (ti),

S2
nj =

n+j∑
i=n+1

[un(νi)]
2, j = 1, . . . , N.

(2.3), (2.4) together then yield the final estimator of g(·), as follows

g̃nN (t) =: g1N (t)− g2N (t)βnN . (2.5)

Now the model (1.1) can be rewritten as

Yi = un(νi)β + g(ti) + εi, εi = xiβ + ei − un(νi)β, (2.6)

where i = n + 1, . . . , n + N. ei = Yi − xiβ − g(ti) is a martingale difference sequence errors,

εi − E(εi|Fi−1) = ei and E[(εi − E(εi|Fi−1))
2|Fi−1] = E(e2i |Fi−1) = σ2 < +∞.

Throughout this paper, C and Ck, k = 1, 2, . . . will represent positive constants. Let ν =

(x̃, t), ∥ ν ∥= |x̃|+ |t|.
In order to obtain the main results in this section, we shall need the following assumptions:

(A1) C1I(∥ ν ∥≤ C) ≤ K1(ν) ≤ C2, C3I(|t| ≤ C) ≤ K2(t) ≤ C4.

(A2) lim∥ν∥→∞ K1(ν) = 0, lim|t|→∞ K2(t) = 0.

(A3) n−1
∑n

i=1 |xi| ≤ C, N−1
∑n+N

i=n+1 |x̃i| ≤ C.

(A4)
∑n+N

i=n+1 |un(νi)| ≤ C
∑n+N

i=n+1[un(νi)]
2.

(A5) ∃N1, as N > N1, C5 ≤ S2
nN

N ≤ C6.

(A6) g(t) satisfies the Lipschitz condition of order 1 on the interval [0, 1].

(A7) ∃λ > 1, such that N/n −→ λ.

Remark 2.1 By assumption (A1) and (A3), it is easy to obtain that

max
n+1≤i,j≤n+N

|ωNj(ti)| ≤ CN−1,
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max
n+1≤i≤n+N

n+N∑
j=n+1

|ωNj(ti)| ≤ C,

max
n+1≤i≤n+N

|un(νi)| ≤ C
n∑

j=1

|xj |
n

≤ C7.

Theorem 2.2 ([2]) Under the conditions (A1)–(A6), if there exists α > 2 such that

sup
i≥1

∥E(|ei|α|Fi−1)∥ ≤ C < ∞,

then

lim
n,N→∞

βn,N = β a.s.. (2.7)

lim
n,N→∞

sup
t∈[0,1]

|g̃nN (t)− g(t)| = 0 a.s.. (2.8)

3. Simulation study

In this section, we carry out some simulations to show the finite sample performance of the

proposed method. The surrogate variable x̃ was generated such that x̃ = 1.15x+ δϵ, where the

design points xi = Φ−1(i/n + 1) and ϵ is N(0, 1) distributed, and δ is the standard deviation

of the measurement error. Results for δ = 0.2 and δ = 0.4 are reported. Simulations were

run with validation and primary data size (n,N) = (30, 90), (60, 180), (100, 300) and (n,N) =

(30, 150), (60, 300), (100, 500). The kernel function K1(·) was taken to be the product kernel

K1(x1, x2) = K0(x1)K0(x2), where K0(x) and the kernel function K2(·) were taken to be the

Gaussian kernels and the bandwidth bn = n−1/5, hN = N−1/5.

On the other hand, the design points ti = i/N , the function g(·) is chosen to be g(t) = sin2πt.

Since {ei,Fi, i ∈ Z} is a sequence of martingale differences, we first take the martingale sequence

{ξi, σ(ξi), i ≥ 1}, and let ei = ξi+1− ξi. We generate the first random number ξ1 ∼ N(0, 1), then

take the following ξ2, . . . , ξn+1 according to the conditional distribution ξi+1|ξi ∼ N(ξi, 0.2
2), i =

1, . . . , n.

For each sample size (n,N) and selected value of δ, we calculated the estimator βnN of

β = 0.5, which is given by (2.4). In each case the number of simulated realization is 500. We

calculate the sample means and the average square error (ASE) of βnN , The simulation results

are summarized in Table 1. Moreover, we also display a set of the corresponding nonparametric

component estimator g̃nN (ti) given by (2.5) in Figures 1 and 2.

(n,N) (30,90) (60,180) (100,300) (30,150) (60,300) (100,500)

δ = 0.2 Mean(βnN ) 0.4426 0.4749 0.5194 0.4365 0.4647 0.5158

βnNASE 0.0684 0.0231 0.0185 0.0748 0.0439 0.0318

δ = 0.4 Mean(βnN ) 0.4377 0.4678 0.5226 0.4351 0.4632 0.5213

βnNASE 0.0691 0.0380 0.0335 0.0788 0.0535 0.0353

Table 1 Sample means and ASE for βnN with β = 0.5
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Moreover, we also display a set of the corresponding nonparametric component estimator

g̃nN (ti) given by (2.5). Figures 1 and 2 show the curves of g(x) and its semiparametric estimator

g̃nN (x) under the two types of models, respectively. The solid line is the regression function

g(x), the broken line is the estimator g̃nN (x).
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Figure 1 (n,N) = (60, 180), δ = 0.2 Figure 2 (n,N) = (60, 180), δ = 0.4

4. The proofs

In order to prove our results, we need the following lemmas.

Lemma 4.1 Let {ξi,Fi, i ≥ 1} be a martingale difference sequence |ξi| ≤ b a.s. i = 1, 2, . . . .

Then, for ∀ε > 0, we have

P (|
n∑

i=1

ξi| > ε) ≤ 2 exp{− ε2

2(2σ2
n + bε)

},

where σ2
n =

∑n
i=1 ∥ E(ξ2i |Fi−1) ∥ .

Proof of Lemma 4.1 The proof of Lemma 4.1 is similar to the proof of Inference 3.1 by Li

and Liu in [16]. �

Lemma 4.2 Let {Sn =
∑n

i=1 ξi, n ≥ 1} be a random sequence, and {Fn, n ≥ 1} be a non-

decreasing σ-fields such that Sn ∈ Fn, n ≥ 1. If

(i)
∑n

i=1 P (|ξi| ≥ C|Fi−1) < ∞;

(ii)
∑n

i=1 E(ξiI(|ξi| ≤ C)|Fi−1) < ∞;

(iii)
∑n

i=1{E(ξ2i I(|ξi| ≤ C)|Fi−1)− (E(ξiI(|ξi| ≤ C)|Fi−1))
2} < ∞,

then {Sn, n ≥ 1} converges a.s..

Proof of Theorem 2.2 It is easy to see

βn,N − β

= S−2
n,N

n+N∑
i=n+1

un(νi)
[
(un(νi)β + g(ti) + εi)−

n+N∑
j=n+1

ωNj(ti)(un(νj)β + g(tj) + εj)
]
− β

= S−2
n,N

n+N∑
i=n+1

un(νi)εi − S−2
n,N

n+N∑
i=n+1

[
un(νi)

( n+N∑
j=n+1

ωNj(ti)εj

)]
+
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S−2
n,N

n+N∑
i=n+1

un(νi)
(
g(ti)−

n+N∑
j=n+1

ωNj(ti)g(tj)
)
+

S−2
n,N

n+N∑
i=n+1

un(νi)
(
un(νi)β −

n+N∑
j=n+1

ωNj(ti)un(νj)β
)
− β

= S−2
n,N

n+N∑
j=n+1

(
un(νj)−

n+N∑
i=n+1

ωNj(ti)un(νi)
)
εj + S−2

n,N

n+N∑
i=n+1

un(νi)
(
g(ti)−

n+N∑
j=n+1

ωNj(ti)g(tj)
)

= S−2
n,N

n+N∑
j=n+1

(
un(νj)−

n+N∑
i=n+1

ωNj(ti)un(νi)
)
(εj − E(εj |Fj−1))+

S−2
n,N

n+N∑
j=n+1

(
un(νj)−

n+N∑
i=n+1

ωNj(ti)un(νi)
)
(xj − un(νj))β+

S−2
n,N

n+N∑
i=n+1

un(νi)
(
g(ti)−

n+N∑
j=n+1

ωNj(ti)g(tj)
)

=: I1 + I2 + I3.

By the uniform continuity of the function g(·) on the interval [0, 1], (2.2), and the conditions

(A1), (A2) and (A4), similarly to the proof of Theorem 2 in [2], we have, as N −→ ∞,

I3 = S−2
n,N

n+N∑
i=n+1

un(νi)
(
g(ti)−

n+N∑
j=n+1

ωNj(ti)g(tj)
)
= o(1). (4.1)

Clearly, I1 can be decomposed as

I1 = S−2
n,N

n+N∑
j=n+1

(
un(νj)−

n+N∑
i=n+1

ωNj(ti)un(νi)
)
(εj − E(εj |Fj−1))

= S−2
n,N

n+N∑
j=n+1

(
un(νj)−

n+N∑
i=n+1

ωNj(ti)un(νi)
)
ej

=
n+N∑
j=n+1

S−2
n,Nun(νj)ej −

n+N∑
j=n+1

[
S−2
n,N

( n+N∑
i=n+1

ωNj(ti)un(νi)
)]

ej

=: I11 − I12.

I11 =
n+N∑
j=n+1

S−2
n,Nun(νj)ej =:

n+N∑
j=n+1

bjej .

By assumptions (A1), (A3) and (A5), it follows that

n+N∑
j=n+1

b2j =

n+N∑
j=n+1

u2
n(νj)

S4
n,N

=
1

S2
n,N

= O(N−1),

max
n+1≤j≤n+N

|bj | = max
n+1≤j≤n+N

∣∣un(νj)

S2
n,N

∣∣ ≤ C7

S2
n,N

= O(N−1).

For µN = 1
log logN , let δN =

√
µN

2C8
, e′Nj = ejI(|ej | ≤ δ2N j

1
2 ), e′′Nj = ej − e′Nj , eNj =



Estimation of partial linear error-in-variables models under martingale difference sequence 469

bj(e
′
Nj − E(e′Nj |Fj−1)), so {eNj ,Fj , n+ 1 ≤ j ≤ n+N} is a martingale difference sequence,

max
n+1≤j≤n+N

|eNj | ≤ 2 max
n+1≤j≤n+N

|bj |δ2N (n+N)
1
2 = O(N− 1

2 (log logN)−1),

n+N∑
j=n+1

∥ E(e2Nj |Fj−1) ∥≤
n+N∑
j=n+1

b2j ∥ E(e
′2
Nj |Fj−1) ∥≤

σ2

S2
nN

= O(N−1).

By Lemma 4.1, we have

P
(∣∣∣ n+N∑

j=n+1

eNj

∣∣∣ ≥ µN

)
≤ 2 exp

{ −µ2
N

4σ2

S2
nN

+
2µ2

N (n+N)
1
2

S2
nN

}
≤ 2S−4

nN (n+N)
1
2 = O(N− 3

2 ).

For ∀µ > 0, ∃N , such that µN < µ, then

P
(∣∣∣ n+N∑

j=n+1

eNj

∣∣∣ ≥ µ
)
≤ P

(∣∣∣ n+N∑
j=n+1

eNj

∣∣∣ ≥ µN

)
≤ O(N− 3

2 ),

by the Borel-Cantelli Lemma, it follows that

n+N∑
j=n+1

eNj −→ 0 a.s., n,N −→ ∞. (4.2)

Since e′′Nj = ej − e′Nj = ejI(|ej | > δ2N j
1
2 ) = ejI(ej > δ2N j

1
2 ) + ejI(ej < −δ2N j

1
2 ), let

e
′′+
Nj = ejI(ej > δ2N j

1
2 ), e

′′−
Nj = ejI(ej < −δ2N j

1
2 ).

For a fixed constant d > 0, we have

P (|e
′′+
Nj | > d|Fj−1) = P (eNj > max{d, δ2N j

1
2 }|Fj−1)

≤ P (eNj > δ2N j
1
2 |Fj−1) ≤ P (|eNj |2 > δ4N j|Fj−1).

Then
n+N∑
j=n+1

P (|e
′′+
Nj | > d|Fj−1) ≤

n+N∑
j=n+1

P (|eNj |2 > δ4N j|Fj−1)

≤
n+N∑
j=n+1

supj≥1 ∥ E|ej |α|Fj−1 ∥
δ2αN j

α
2

< ∞. (4.3)

Let

(e
′′+
Nj)d =: e

′′+
NjI(|e

′′+
Nj | < d) = ejI(ej > δ2N j

1
2 )I(δ2N j

1
2 < ej ≤ d) = ejI(δ

2
N j

1
2 < ej ≤ d).

Then
n+N∑
j=n+1

E{(e
′′+
Nj)d|Fj−1} ≤

n+N∑
j=n+1

dE(I(δ2N j
1
2 < ej ≤ d)|Fj−1)

≤
n+N∑
j=n+1

dE(I(|ej | > δ2N j
1
2 )|Fj−1)

≤ d

n+N∑
j=n+1

P (|ej |2 > δ4N j|Fj−1) < ∞. (4.4)
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Note that

n+N∑
j=n+1

{E{(e
′′+
Nj)

2
d|Fj−1} − E2{(e

′′+
Nj)d|Fj−1}}

≤
n+N∑
j=n+1

{E{(e
′′+
Nj)

2
d|Fj−1} =

n+N∑
j=n+1

E{e2jI(δ2N j
1
2 < ej ≤ d)|Fj−1}

≤ d2
n+N∑
j=n+1

E(I(|ej | > δ2N j
1
2 )|Fj−1) ≤ d2

n+N∑
j=n+1

P (|ej |2 > δ4N j|Fj−1) < ∞. (4.5)

Using Lemma 4.2, together with (4.3), (4.4) and (4.5) gives

n+N∑
j=n+1

|e
′′+
Nj | < ∞ a.s.. (4.6)

Similarly to the arguments used in the proof of (4.6), we can prove that
∑n+N

j=n+1 |e
′′−
Nj | < ∞ a.s..

So we have
n+N∑
j=n+1

|e
′′

Nj | < ∞ a.s.. (4.7)

From (4.7),

|
n+N∑
j=n+1

bje
′′

Nj | ≤ ( max
n+1≤j≤n+N

|bj |)(
n+N∑
j=n+1

|e
′′

Nj |) = O(S−2
nN ), n,N −→ ∞. (4.8)

|
n+N∑
j=n+1

bjE(e
′′

Nj |Fj−1)| ≤ ( max
n+1≤j≤n+N

|bj |)
( n+N∑

j=n+1

E(|ej |I(|ej | ≥ δ2N j
1
2 )|Fj−1)

)

≤ CS−2
nN

n+N∑
j=n+1

δ−2
N j−

1
2E(e2jI(|ej | ≥ δ2N j

1
2 )|Fj−1)

≤ CS−2
nN

n+N∑
j=n+1

δ−2
N j−

1
2 ≤ CS−2

nNN log logN/(n+ 1)
1
2

= O(N− 1
2 log logN). (4.9)

Combining (4.2), (4.7), (4.8) and (4.9), we have

|I11| = |
n+N∑
j=n+1

bj(e
′

Nj + e
′′

Nj)|

= |
n+N∑
j=n+1

eNj +
n+N∑
j=n+1

bje
′′

Nj +
n+N∑
j=n+1

bjE(e
′

Nj + e
′′

Nj |Fj−1)−
n+N∑
j=n+1

bjE(e
′′

Nj |Fj−1)|

≤ |
n+N∑
j=n+1

eNj |+ |
n+N∑
j=n+1

bje
′′

Nj |+ |
n+N∑
j=n+1

bjE(e
′′

Nj |Fj−1)| −→ 0 a.s., n,N −→ ∞.

It follows that

I11 −→ 0 a.s. n,N −→ ∞. (4.10)
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Since

I12 =
n+N∑
j=n+1

[
S−2
n,N

( n+N∑
i=n+1

ωNj(ti)un(νi)
)]

ej =:
n+N∑
j=n+1

b̄jej ,

from Remark 2.1, we have

max
n+1≤j≤n+N

|b̄j | ≤ S−2
n,N max

n+1≤i≤n+N

n+N∑
j=n+1

|ωNj(ti)| max
n+1≤i≤n+N

|un(νi)| = O(N−1). (4.11)

n+N∑
j=n+1

b̄2j ≤ S−4
n,N

n+N∑
j=n+1

max
n+1≤i,j≤n+N

|ωNj(ti)|2
n+N∑
i=n+1

[un(νi)]
2 = O(N−1). (4.12)

Similarly to the proof of (4.10), we can prove that

I12 −→ 0 a.s. n,N −→ ∞. (4.13)

With the definition of (2.1) and the conditions of (A1), (A2), (A3), (A5), similarly to the proof

of Theorem 2 in [2], we have, as n,N −→ ∞,

I2 = S−2
n,N

n+N∑
j=n+1

(
un(νj)−

n+N∑
i=n+1

ωNj(ti)un(νi)
)
(xj − un(νj))β = o(1). (4.14)

(4.1), (4.10), (4.13) and (4.14) together imply (2.7) of Theorem 2.2.

Observe that

g̃nN (t)− g(t) = (β − βnN )g2N (t) +
( n+N∑

j=n+1

ωNj(t)g(tj)− g(t)
)
+

n+N∑
j=n+1

ωNj(t)εj

=: AnN (t) +BnN (t) + CnN (t).

By (2.7) and sup0≤t≤1 |g2N (t)| ≤ C, it follows that

sup
0≤t≤1

AnN (t) −→ 0 a.s., n,N −→ ∞. (4.15)

Using the reasoning similar to the proof of (4.1), we have

sup
0≤t≤1

BnN (t) −→ 0, as N −→ ∞. (4.16)

Since E(εj |Fj−1) = (xj − un(υj))β, noting that

n+N∑
j=n+1

ωNj(t)εj =

n+N∑
j=n+1

ωNj(t)(εj − E(εj |Fj−1)) +

n+N∑
j=n+1

ωNj(t)(xj − un(υj))β

=
n+N∑
j=n+1

ωNj(t)ej +
n+N∑
j=n+1

ωNj(t)(xj − un(υj))β,

by the same arguments as in the proofs of (4.10) and (4.14), we can prove

n+N∑
j=n+1

ωNj(t)ej −→ 0 a.s., n,N −→ ∞. (4.17)

n+N∑
j=n+1

ωNj(t)(xj − un(υj))β −→ 0, as n,N −→ ∞. (4.18)
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(4.17) and (4.18) show that

sup
0≤t≤1

CnN (t) −→ 0 a.s., n,N −→ ∞. (4.19)

Hence, Theorem 2.2 is proved. �
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