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1. Introduction

Many number and polynomial sequences can be defined, characterized, evaluated, and clas-

sified by linear recurrence relations with certain orders. A number sequence {an} is called a

sequence of order 2 or a Horadam sequence if it satisfies the linear recurrence relation of order 2

an = p1an−1 + p2an−2, n ≥ 2, (1)

for some constants pj (j = 1, 2, . . . , r), p2 ̸= 0, with initial vector (a0, a1). Linear recurrence

relations with constant coefficients are important in subjects including combinatorics, pseudo-

random number generation, circuit design, and cryptography, and they have been studied ex-

tensively. To construct an explicit formula of the general term of a number sequence of order r,

one may use generating functions, characteristic equations, or matrix method [4,8,11–13]. Re-

cently, Shiue and the author give a reduction order method in [6]. Let A2 be the set of all linear

recurring sequences defined by the homogeneous linear recurrence relation (1) with coefficient

set E2 = {p1, p2}. To study the structure of A2 with respect to E2, we make use of the Lucas

sequence F̃n and its conjugate L̃n in A2, which are particular sequences in A2 with initials a0 = 0

and a1 = 1 and the initials a0 = 2 and a1 = p1.

In next section, we will give the generating function and the expression of the Lucas se-

quences F̃n and L̃n and find out the relationships between them and the sequences in the set A2

with the same E2. In Section 3, by using the symbolic method shown in [9], we derive a type of
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identities of Lucas sequences in A2 including a type of nonlinear expressions. The relationship

between the Lucas sequences and other linear recurring sequences in the same set is used to

transfer the identities of Lucas sequences to those of the linear recurring sequences in the same

set.

2. Impulse response sequences

Among all the homogeneous linear recurring sequences satisfying second order homogeneous

linear recurrence relation (1) with a nonzero p1 and arbitrary initials {a0, a1}, the Lucas sequence
with respect to E2 = {p1, p2} is the sequence satisfying (1) with initials a0 = 0 and a1 = 1 or the

initial vector (a0, a1) = (0, 1). For instance, Fibonacci sequence {Fn}n≥0 is the Lucas sequence

with respect to {1, 1}, Pell number sequence {Pn}n≥0 is the Lucas sequence with respect to

{2, 1}, and Jacobathal number sequence {Jn}n≥0 is the Lucas sequence with respect to {1, 2}.
For this reason, we may consider a Lucas sequence with respect to E2 as an extension of Fibonacci

number sequence and denote it by {F̃n}n≥0, namely, F̃n satisfies (1) with initials F̃0 = 0 and

F̃1 = 1.

In the following, we will present the structure of the linear recurring sequences defined by

(1) using their characteristic polynomial. Then, we may find the relationship of those sequences

with their corresponding Lucas sequences.

Proposition 2.1 Let {an} ∈ A2, i.e., let {an} be the linear recurring sequence defined by (1).

Then its generating function P2(t) can be written as

Pr(t) =
a0 + (a1 − p1a0)t

1− p1t− p2t2
. (2)

Hence, the generating function for the Lucas sequence with respect to {p1, p2} is

P̃r(t) =
tr−1

1− p1t− p2t2
. (3)

Proof (2) is easily to be checked by multiplying 1− p1t− p2t
2 on its both sides and noting

(1− p1t− p2t
2)

∑
n≥0

ant
n =

∑
n≥0

ant
n −

∑
n≥1

p1an−1t
n −

∑
n≥2

an−2t
n

= a0 + a1t− p1a0t+
∑
n≥2

(an − p1an−1 − p2an−2)t
n = a0 + (a1 − p1a0)t.

By substituting a0 = 0 and a1 = 1 into (2), we obtain (3). �
We now give the explicit expression of F̃n in terms of the roots of the characteristic polyno-

mial of recurrence relation shown in (1) as well as the relationships between the Lucas sequence

and the recurring sequences in the set A2 with the same E2.

Proposition 2.2 Let A2 be the set of all linear recurring sequences defined by the homoge-

neous linear recurrence relation (1) with coefficient set E2 = {p1, p2}, and let {F̃n} be the Lucas

sequence of A2. Suppose α and β are two roots of the characteristic polynomial of A2, which do



Construction of nonlinear expression for recursive number sequences 475

not need to be distinct. Then

F̃n =

{
αn−βn

α−β , if α ̸= β;

nαn−1, if α = β.
(4)

In addition, every {an} ∈ A2 can be written as

an = a1F̃n − αβa0F̃n−1, (5)

and an reduces to a1F̃n − α2a0F̃n−1 when α = β.

Conversely, there holds an expression of F̃n in terms of {an} as

F̃n = c1an+1 + c2an−1, (6)

where

c1 =
a1 − a0p1

p1(a21 − a0a1p1 − a20p2)
, c2 = − a1p2

p1(a21 − a0a1p1 − a20p2)
, (7)

provided that p1 ̸= 0, and a21 − a0a1p1 − a20p2 ̸= 0.

Proof Recall that [6] presented the following result in its Proposition 2.1:

an =

{
(a1−βa0

α−β )αn − (a1−αa0

α−β )βn, if α ̸= β;

na1α
n−1 − (n− 1)a0α

n, if α = β,
(8)

for every {an} ⊂ A2. By substituting a0 = 0 and a1 = 1 into (8), one may obtain (4).

Denote by L : Z × Z 7→ Z the operator L(an−1, an−2) := p1an−1 + p2an−2 = an. It is

obvious that L is linear, and the sequence {an} is uniquely determined by L from a given initial

vector (a0, a1). Define a−1 = (a1 − p1a0)/p2, then (a−1, a0) is the initial vector that generates

{an−1}n≥0 by L. Similarly, the vector (a1, p1a1 + p2a0) generates sequence {an+1}n≥ by using

L. Note the initial vector of F̃n is (0, 1). Thus (6) holds if and only if the initial vectors on the

two sides are equal:

(0, 1) = c1(a1, p1a1 + p2a0) + c2(
a1 − p1a0

p2
, a0), (9)

which yields the solutions (7) for c1 and c2 and completes the proof of the corollary. �
Proposition 2.2 presents the interrelationship between a linear recurring sequence with re-

spect to E2 = {p1, p2) and its Lucas sequence, which can be used to establish the identities of

one sequence from the identities of other sequences in the same set.

Example 2.3 Let us consider A2, the set of all linear recurring sequences defined by the homo-

geneous linear recurrence relation (1) with coefficient set E2 = {p1, p2}. If E2 = {1, 1}, then the

corresponding characteristic polynomial has roots α = (1 +
√
5)/2 and β = (1−

√
5)/2, and (6)

gives the expression of the ISR of A2, which is Fibonacci sequence {Fn}:

Fn =
1√
5

{
(
1 +

√
5

2
)n − (

1−
√
5

2
)n
}
.

The sequence in A2 with the initial vector (2, 1) is Lucas sequence {Ln}. From (5) and (6) and

noting αβ = −1, we have the well-known formulas [10]:

Ln = Fn + 2Fn−1 = Fn+1 + Fn−1, Fn =
1

5
Ln+1 +

1

5
Ln−1. (10)
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By using the above formulas, one may transfer identities of Fibonacci number sequence to those

of Lucas number sequence and vice verse. For instance, the above relationship can be used to

prove that the following two identities are equivalent:

Fn+1Fn+2 − Fn−1Fn = F2n+1, L2
n+1 + L2

n = L2n + L2n+2.

It is clear that both of the identities are equivalent to the Carlitz identity, Fn+1Ln+2−Fn+2Ln =

F2n+1, shown in [3].

Example 2.4 Let us consider A2, the set of all linear recurring sequences defined by the

homogeneous linear recurrence relation (1) with coefficient set E2 = {p1 = p, p2 = 1}. Then (8)

tell us that {an} ∈ A2 satisfies

an =
2a1 − (p−

√
4 + p2)a0

2
√

4 + p2
αn − 2a1 − (p+

√
4 + p2)a0

2
√

4 + p2
(− 1

α
)n, (11)

where α is defined by

α =
p+

√
4 + p2

2
and β = − 1

α
=

p−
√
4 + p2

2
. (12)

Similarly, let E2 = {1, q}. Then

an =

{
2a1−(1−

√
1+4q)a0

2
√
1+4q

αn
1 − 2a1−(1+

√
1+4q)a0

2
√
1+4q

αn
2 , if q ̸= −1

4 ;
1
2n (2na1 − (n− 1)a0), if q = −1

4 ,

where α = 1
2 (1+

√
1 + 4q) and β = 1

2 (1−
√
1 + 4q) are solutions of equation x2−x− q = 0. The

first special case (11) was studied by Falbo in [5]. If p = 1, the sequence is clearly the Fibonacci

sequence. If p = 2 (q = 1), the corresponding sequence is the sequence of numerators (when

two initial conditions are 1 and 3) or denominators (when two initial conditions are 1 and 2)

of the convergent of a continued fraction to
√
2 : { 1

1 ,
3
2 ,

7
5 ,

17
12 ,

41
29 . . .}, called the closest rational

approximation sequence to
√
2. The second special case is for the case of q = 2 (p = 1), the

resulting {an} is the Jacobsthal type sequences [2].

From Proposition 2.2, for E2 = {p, 1}, the Lucas sequence of A2 with respect to E2 is

F̃n =
1√

4 + p4

{
(
p+

√
4 + p2

2
)n − (

p−
√

4 + p2

2
)n
}
.

In particular, the Lucas sequence for E2 = {2, 1} is the well-known Pell number sequence {Pn} =

{0, 1, 2, 5, 12, 29, . . .} with the expression

Pn =
1

2
√
2
{(1 +

√
2)n − (1−

√
2)n}.

The Pell-Lucas number sequence, denoted by {qn}n≥0, is the sequence in A2 with respect to E2 =

{2, 1} and initial vector (q0, q1) = (2, 1), which has the first few elements as {2, 1, 4, 9, 22, . . .}.
From (6) and (7), we obtain

Pn =
3

14
qn+1 +

1

14
qn−1, n ≥ 1. (13)
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Similarly, for E2 = {1, q}, the Lucas sequence of A2 with respect to E2 is

F̃n =
1√

1 + 4q

{
(
1 +

√
1 + 4q

2
)n − (

1−
√
1 + 4q

2
)n
}
.

In particular, the ISR for E2 = {1, 2} is the well-known Jacobsthal number sequence {Jn} =

{0, 1, 1, 3, 5, 11, 21, . . .} with the expression

Jn =
1

3
(2n − (−1)n).

The Jacobsthal-Lucas number {jn} in A2 with respect to E2 = {1, 2} satisfying j0 = 2 and

j1 = 1 has the first few elements as {2, 1, 5, 7, 17, 31, . . .}. From (5), one may have

jn = Jn + 4Jn−1 = 2n + (−1)n.

In addition, the above formula can transform all identities of Jacobsthal-Lucas number sequence

to those of Jacobsthal number sequence. For example, we have

J2
n + 4Jn−1Jn = J2n, JmJn−1 − JnJm−1 = (−1)n2n−1Jm−n,

JmJn + 2JmJn−1 + 2JnJm−1 = Jm+n

from

jnJn = J2n, Jmjn − Jnjm = (−1)n2n+1Jm−n,

Jmjn − Jnjm = 2Jm+n,

respectively. Similarly, we can show that the following two identities are equivalent:

jn = Jn+1 + 2Jn−1, Jn+1 = Jn + 2Jn−1.

Furthermore, using (6) and (7), one may have

Jn =
1

9
jn+1 +

2

9
jn−1, n ≥ 1, (14)

which can be used to transform all identities of Jacobsthal number sequence to those of Jacobsthal-

Lucas number sequence.

Remark 2.5 Proposition 2.2 can be extended to the linear nonhomogeneous recurrence rela-

tions of order 2 with the form: an = pan−1 + qan−2 + ℓ for p + q ̸= 1. It can be seen that the

above recurrence relation is equivalent to the homogeneous form (1) bn = pbn−1 + qbn−2, where

bn = an − k and k = ℓ
1−p−q . More details can be found in [6].

Example 2.6 An obvious example of Remark 2.5 is the Mersenne number Mn = 2n−1 (n ≥ 0),

which satisfies the linear recurrence relation of order 2 : Mn = 3Mn−1 − 2Mn−2 (with M0 = 0

and M1 = 1) and the non-homogeneous recurrence relation of order 1 : Mn = 2Mn−1 + 1 (with

M0 = 0). It is easy to check that sequence Mn = (kn − 1)/(k − 1) satisfies both the homoge-

neous recurrence relation of order 2, Mn = (k + 1)Mn−1 − kMn−2, and the non-homogeneous

recurrence relation of order 1, Mn = kMn−1 + 1, where M0 = 0 and M1 = 1. Here, Mn is the

Lucas sequence with respect to E2 = {3,−2}. Another example is Pell number sequence that
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satisfies both homogeneous recurrence relation Pn = 2Pn−1 + Pn−2 and the non-homogeneous

relation P̄n = 2P̄n−1 + P̄n−2 + 1, where Pn = P̄n + 1/2.

Remark 2.7 In [11], Niven, Zuckerman, and Montgomery studied some properties of {Gn}n≥0

and {Hn}n≥0 defined respectively by the linear recurrence relations of order 2:

Gn = pGn−1 + qGn−2 and Hn = pHn−1 + qHn−2

with initial conditions G0 = 0 and G1 = 1 and H0 = 2 and H1 = p, respectively. Clearly,

Gn = F̃n, the Lucas sequence of A2 with respect to E2 = {p1 = p, p2 = q}. Using Proposition

2.2, we may rebuild the relationship between the sequences {Gn} and {Hn}:

Hn = pGn + 2qGn−1, Gn =
q

p2 + 4q
Hn−1 +

1

p2 + 4q
Hn+1.

3. A type of identities of Lucas sequence in A2

Let A2 be the set of all linear recurring sequences defined by the homogeneous linear recur-

rence relation (1) with coefficient set E2 = {p1 = p, p2 = q}, and let F̃ be the Lucas sequence of

A2. Inspired by [9], we give a nonlinear combinatorial expression involving F̃ and a numerous

identities based on the expression. Using the interrelationship between the Lucas sequence and a

linear recurring sequence in A2, one may obtain many identities involving sequences in A2. More

precisely, let us consider the following extension of the results in [9] for the Fibonacci numbers

to the general number sequences in A2. Suppose {an}n∈N is a nonzero sequence defined by the

recurrence relation

an = p1an−1 + p2an−2, n ≥ 2, p1, p2 ̸= 0, (15)

with the initial conditions a0 = 0 and any nonzero a1. Here, a1 must be nonzero, otherwise

an ≡ 0. Hence, we may normalize a1 to be a1 = 1 by defining a new sequence gn = an/a1

satisfying the same recurrence relation (15). Thus, under the assumption, our sequence {an}
is the Lucas sequence {F̃n} of A2 with respect to E2 = {p1, p2}. We now give a nonlinear

combinatorial expression involving F̃n. Our result will extend to the case of a0 ̸= 0 and a1 = p1a0

later. In addition, sequence {F̃n}n∈N can be extended to the the case of {F̃r}r∈Z by using the

same recurrence relation for r ≥ 1 and F̃r+1 = p1F̃r + p2F̃r−1 while r ≤ −3.

Lemma 3.1 For any m ∈ N and r ∈ Z there holds

F̃m+r = F̃mF̃r+1 + p2F̃m−1F̃r. (16)

Proof For an arbitrary r ∈ Z, we have F̃r+1 = F̃1F̃r+1 + p2F̃0F̃r, because F̃0 = 0 and F̃1 = 1.

Assume (16) is true for n ∈ N, n ≥ 1, and an arbitrary r ∈ Z, namely,

F̃r+n = F̃nF̃r+1 + p2F̃n−1F̃r, r ∈ Z.

Then, F̃r+n+1 = F̃nF̃r+2 + p2F̃n−1F̃r+1. On the other hand,

F̃n+1F̃r+1 + p2F̃nF̃r = (p1F̃n + p2F̃n−1)F̃r+1 + p2F̃nF̃r = F̃nF̃r+2 + p2F̃n−1F̃r+1,
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which implies F̃r+n+1 = F̃n+1F̃r+1 + p2F̃nF̃r and completes the proof with the mathematical

induction. �
A direct proof of (16) can also be given. Actually, every F̃mF̃r+1+p2F̃m−1F̃r can be reduced

to F̃1F̃r+m + p2F̃0F̃r = F̃r+m by using the recurrence relation (15).

Theorem 3.2 For any given m,n ∈ N0 and r ∈ Z there holds

F̃r+mn =
n∑

j=0

(
n

j

)
(F̃m)j(p2F̃m−1)

n−jF̃r+j . (17)

Proof Let F (t) = F̃r+mt. Then from Lemma 3.1

∆F (t) = F (t+ 1)− F (t) = F̃r+mt+m − F̃r+mt = F̃mF̃r+mt+1 + (p2F̃m−1 − 1)F̃r+mt.

Thus, there holds symbolically

(∆− (p2F̃m−1 − 1)I)F̃r+mt = F̃mF̃r+mt+1.

Using the operator ∆− (p2F̃m−1 − 1)I defined above j times, we find

(∆− (p2F̃m−1 − 1)I)jF̃r+mt = (F̃m)jF̃r+mt+j , j ∈ N.

Furthermore, noting the symbolic relation E = I + ∆ and the last symbolical expression, one

may find

F (n) = F̃r+mn = EnF̃r+mt

∣∣∣
t=0

= (I +∆)nF̃r+mt

∣∣∣
t=0

= (p2F̃m−1I + (∆− (p2F̃m−1 − 1)I)nF̃r+mt

∣∣∣
t=0

=

n∑
j=0

(
n

j

)
(p2F̃m−1)

n−j(∆− (p2F̃m−1 − 1)I)jF̃r+mt

∣∣∣
t=0

=
n∑

j=0

(
n

j

)
(p2F̃m−1)

n−j(F̃m)jF̃r+j

completing the proof of the theorem. �

Remark 3.3 The nonlinear expression for the case of {an} with a0 = 0 and a1 ̸= 0 can be

specialized to the case a0 ̸= 0 and a1 = p1a0. We may normalize a0 = 1 and define a−1 = 0 from

the recurrence relation a1 = p1a0+ p2a−1. Hence, the sequence {F̂n = an−1} satisfies recurrence

relation (15) for n ≥ 1 with the initials F̂0 = 0 and F̂1 = 1. Hence, from (17) we have the

nonlinear expression for F̂n as

F̂r+mn =

n∑
j=0

(
n

j

)
F̂ k
m−1(qF̂m−2)

n−jF̂r+k

for m ≥ 1 and r ≥ 0.

Similar to the last section and Remark 3.3, we may use the extension technique to define F̃n

for negative integer index n. For example, substituting n = 1 into (15) yields F̃1 = p1F̃0+p2F̃−1,

which defines F̃−1 = 1/q. With r = −mn − 1, r = −mn, and r = −mn + 1 in (17), a class of



480 Tianxiao HE

identities for F̃n with negative indices can be obtained as follows.

Corollary 3.4 For m ≥ 1 and n ≥ 0 there hold the identities

n∑
j=0

pn−j+1
2

(
n

j

)
(F̃m)j(F̃m−1)

n−jF̃j−mn−1 = 1,

n∑
j=0

pn−j
2

(
n

j

)
(F̃m)j(F̃m−1)

n−jF̃j−mn = 0,

n∑
j=0

pn−j
2

(
n

j

)
(F̃m)j(F̃m−1)

n−jF̃j−mn+1 = 1. (18)

Similarly, substituting m = 2, 3, and 4 into (17) and noting F̃2 = p, F̃3 = p2 + q, and

F̃4 = p(p2 + 2q), we have

Corollary 3.5 For n ≥ 0, there hold identities

n∑
j=0

pj1p
n−j
2

(
n

j

)
F̃r+j = F̃r+2n,

n∑
j=0

(p21 + p2)
j(p1p2)

n−j

(
n

j

)
F̃r+j = F̃r+3n,

n∑
j=0

pj1p
n−j
2 (p21 + 2p2)

j(p21 + p2)
n−j

(
n

j

)
F̃r+j = F̃r+4n. (19)

With an application of Proposition 2.2, one may transfer the nonlinear expression (17) and

its consequent identities shown in Corollaries 3.4 and 3.5 to any linear recurring sequence defined

by (1). For instance, from Corollary 3.5, we immediately have

Corollary 3.6 Let us consider A2, the set of all linear recurring sequences defined by the

homogeneous linear recurrence relation (1) with coefficient set E2 = {p, q}. Then, for any

{an} ∈ A2, there hold

n∑
j=0

pj1p
n−j
2

(
n

j

)
(car+j−1 + dar+j−2) = car+2n−1 + dar+2n−2,

n∑
j=0

(p21 + p2)
j(p1p2)

n−j

(
n

j

)
(car+j−1 + dar+j−2) = car+3n−1 + dar+3n−2,

n∑
j=0

pj1p
n−j
2 (p21 + 2p2)

j(p21 + p2)
n−j

(
n

j

)
(car+j−1 + dar+j−2)

= car+4n−1 + dar+4n−2,

for n ≥ 0, where c and d are given by

c =
a1 − a0p1

p1(F̃1 − a0a1p1 − F̃0p2)
, d = − a1p2

p1(F̃1 − a0a1p1 − F̃0p2)
,

provided that p1 ̸= 0, and F̃1 − a0a1p1 − F̃0p2 ̸= 0.
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The nonlinear expression (17) can be used to obtain a congruence relations involving prod-

ucts of the Lucas sequences as modules.

Corollary 3.7 For r ∈ Z, m ≥ 1, and n ≥ 0, there holds a congruence relation of the form

F̃mn+r ≡ (p2F̃m−1)
nF̃r + (F̃m)nF̃n+r (mod F̃m−1F̃m). (20)

In particular, for r = 0 and gcd(F̃m, F̃n) = 1,

F̃mn ≡ 0 (mod F̃mF̃n). (21)

In general, if F̃m1 , F̃m2 , . . . , F̃ms are relatively prime to each other with each mk ≥ 1 (k =

1, 2, . . . , s), then there holds

F̃m1m2···ms ≡ 0 (mod F̃m1 F̃m2 · · · F̃ms). (22)

Proof (20) comes from (17) straightforward. By setting r = 0, we have

F̃mn ≡ (F̃m)nF̃n (mod F̃m−1F̃m) ≡ 0 (mod F̃m).

Similarly, F̃mn ≡ 0 (mod F̃n). Thus, if gcd(F̃m, F̃n) = 1, i.e., F̃m and F̃n are relatively prime,

then we obtain (21), which implies (22). �

Example 3.8 For E2 = {1, 1}, {1, 2}, and {2, 1}, formula (17) in Theorem 3.2 leads the following

three non-linear identities for Fibonacci, Pell, and Jacobsthal number sequences, respectively:

Fmn+r =
n∑

j=0

(
n

j

)
F j
mFn−j

m−1Fr+j ,

Pmn+r =

n∑
j=0

(
n

j

)
P j
mPn−j

m−1Pr+j ,

Jmn+r =
n∑

j=0

(
n

j

)
Jj
m(2Jm−1)

n−jJr+j ,

where the first one is given in the main theorem of [9].

Example 3.9 As what we have presented, one may extend Fibonacci, Pell, and Jacobsthal num-

bers to negative indices as {Fn}n∈Z = {. . . , 2,−1, 1, 0, 1, 1, 2, 3, 5, . . .}, {Pn}n∈Z = {. . . , 5,−2, 1, 0,

1, 2, 5, 12, 29, . . .}, and {Jn}n∈Z = {. . . , 3/8,−1/4.1/2, 0, 1, 1, 3, 5, 11, . . .} by using the corre-

sponding linear recurrence relation with respect to E2 = {1, 1, }, {2, 1}, and {1, 2}, respectively.
Thus, from the first formula of (18) in Corollary 3.4, there hold

n∑
j=0

(
n

j

)
F j
mFn−j

m−1Fj−mn−1 = 1,

n∑
j=0

(
n

j

)
P j
mPn−j

m−1Pj−mn−1 = 1,

n∑
j=0

2n−j+1

(
n

j

)
Jj
mJn−j

m−1Jj−mn−1 = 1.
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The identities generated by using the other formulas in (18) and the formulas in Corollaries

3.5–3.7 can be written similarly, which are omitted here.

Example 3.10 By using the transformation formulas (10), (13), and (14), we may transform

the nonlinear expressions shown in Examples 3.8 and 3.9 to those of the sequences in their sets

with the same E2 and initial vector (a0, a1) = (2, 1), respectively. For instance, from Example

3.8, there hold

Lmn+r+1 + Lmn+r−1 =
1

5n

n∑
j=0

(
n

j

)
(Lm+1 + Lm−1)

j(Lm + Lm−2)
n−j(Lr+j+1 + Lr+j−1),

qmn+r+1 + qmn+r−1 =
1

14n

n∑
j=0

(
n

j

)
(3qm+1 + qm−1)

j(3qm + qm−2)
n−j(3qr+j+1 + qr+j−1),

jmn+r+1 + jmn+r−1 = (
2

9
)n

n∑
j=0

(
n

j

)
1

2j
(jm+1 + 2jm−1)

j(jm + 2jm−2)
n−j(jr+j+1 + 2jr+j−1).

Similarly, from Example 3.9, we have

1

5n+1

n∑
j=0

(
n

j

)
(Lm+1 + Lm−1)

j(Lm + Lm−2)
n−j(Lj−mn + Lj−mn−2) = 1,

1

14n+1

n∑
j=0

(
n

j

)
(3qm+1 + qm−1)

j(3qm + qm−2)
n−j(3qj−mn + qj−mn−2) = 1,

1

9n+1

n∑
j=0

2n−j+1

(
n

j

)
(jm+1 + 2jm−1)

j(jm + 2jm−2)
n−j(jj−mn + 2jj−mn−2) = 1.

At the end of this section, we will mention a relationship, established in [7] (inspired by

Aharonov, Beardon, and Driver [1]) by Shiue, Weng and the author, between the recurring

numbers defined by (1) and the values of the Gegenbauer-Humbert polynomials including the

Chebyshev polynomials of the second kind, Un(x), and the Fibonacci polynomials, F̄n(x). From

Corollary 2.2 of [7], we have the relationships

F̃n = (
√
−p2)

n−1Un−1(
p1

2
√
−p2

), F̃n = (
√
p2)

n−1F̄n(
p1√
p2

),

F̃n = (−
√
−p2)

n−1Un−1(
−p1

2
√
−p2

), F̃n = (−√
p2)

n−1F̄n(
−p1√
p2

).

In particular, for E2(1, 1), the above relationships present the expressions of Fibonacci numbers in

term of the values of the Chebyshev polynomials of the second kind and the Fibonacci polynomials

as follows:

Fn = in−1Un−1(−
i

2
), Fn = F̄n(1),

Fn = (−i)n−1Un−1(
i

2
), Fn = (−1)n−1F̄n(−1),

where the first formula can be seen in [1]. Similarly, for E2 = (2, 1), we have

Pn = in−1Un−1 (−i) , Pn = F̄n (2) ,
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Pn = (−i)
n−1

Un−1 (i) , Pn = (−1)
n−1

F̄n (−2) .

If E2 = (1, 2), then the relationships between the Jacobsthal numbers and the values of the

Chebyshev polynomials of the second kind and the Fibonacci polynomials are

Jn = (
√
2i)n−1Un−1(−

i

2
√
2
), Jn = 2(n−1)/2F̄n(

1√
2
),

Jn = (−
√
2i)n−1Un−1(

i

2
√
2
), Jn = (−

√
2)n−1F̄n(

−1√
2
).

Example 3.11 Using the above relationships, we may change the non-linear expressions of F̃n

to the non-linear expressions for the values of the Chebyshev polynomials of the second kind and

the Fibonacci polynomials, respectively. For instance, from Example 3.8, there hold

Umn+r−1(−
i

2
) =

n∑
j=0

(
n

j

)
i−2(n−j)Um−1(−

i

2
)jUm−2(−

i

2
)n−jUr+j−1(−

i

2
),

Umn+r−1(−i) =
n∑

j=0

(
n

j

)
i−2(n−j)Um−1(−i)jUm−2(−i)n−jUr+j−1(−i),

Umn+r−1(−
i

2
√
2
) =

n∑
j=0

(
n

j

)
(i)−2(n−j)Um−1(−

i

2
√
2
)jUm−2(−

i

2
√
2
)n−jUr+j−1(−

i

2
√
2
).

Other nonlinear expressions of the values of the Chebyshev polynomials of the second kind and

the Fibonacci polynomials can be constructed similarly from Examples 3.8 and 3.9, which we

omit here.
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