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Abstract In this paper, we deal with a Dirac operator with periodic and finite-bands po-

tentials. Taking advantage of the commutativity of the monodromy operator and the Dirac

operator, we define the Bloch functions and multiplicator curve. Further, we obtain the for-

mulae of Dubrovin-Novikov’s type, which illustrate the inherent relations between the Bloch

functions and potentials. Finally, we get the trace formulae of eigenfunctions corresponding

to the left end-points, right end-points and all end-points of the spectral bands by calculation

of residues on the complex sphere, respectively.
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1. Introduction

Trace formulae play a prominent role in spectral theory of differential operator, spectral ge-

ometry, integrable systems and in quantum chaos [1–4]. Dirac operator and Shrödinger operator

are two important operators in quantum theory. Several trace formulae of Dirac operator have

already been known [4–7]. However, almost all of them are trace formulae for eigenvalues, and

the trace characterization of eigenfunctions has few report. It is well-known that Hill’s opera-

tor H = −∂2 + u(x), ∂ = ∂/∂x, possesses band spectra
∪∞

j=0[E2j , E2j+1] (see [8,9]), where all

end-points are eigenvalues of H under 2T periodic boundary conditions. In case that all spectral

bands change into one spectrum [E2N ,+∞) as j ≥ N , while the remaining N spectral bands still

separate each other, u(x) is called periodic N -bands potential. The eigenfunctions Ψ2j(x), cor-

responding to the left end-points of the spectral bands, satisfy the famous Mckean-Trubowitz’s

identity [10,11]
N∑
j=0

Ψ2
2j(x) = 1; (1.1)

while the eigenfunctions Ψ2j+1(x), corresponding to the right end-points of the spectral bands,
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satisfy Cao’s identity [12]

u(x) = −2
N∑
j=1

Ψ2
2j−1(x) + σ, (1.2)

where

σ = E0 +
N∑
j=1

(E2j − E2j−1).

These two identities play dramatic roles in theory of integrable systems: Eq. (1.1) corresponds to

the famous Neumann system [13], while Eq. (1.2) yields the Bargmann constraint of the restricted

KdV system [12].

It hints that the periodic finite-bands Dirac operator must possess properties that parallel

with Hill’s operator due to the similarity between the known facts of them. In this paper, we

treat the periodic Dirac operator L:

L =

(
0 1

−1 0

)
∂x +

(
−p 0

0 −r

)
, (1.3)

where p(x) and r(x) are real smooth functions with period T . In Section 2, we define the mon-

odromy operator M , which is commutative with Dirac operator L. Their common eigenfunctions

are Bloch functions. In Section 3, we prove the formulae of Duborovin-Novikov’s type which il-

lustrate the inherent relation between the Bloch functions and the periodic N -bands potentials.

In the last section, we derive several trace formulae of eigenfunctions by calculation of residues

on the complex sphere.

2. The monodromy operator and Bloch functions

Define the translation (monodromy) operator M : f(x) 7→ f(x+ T ), where

f(x) = (f1(x), f2(x))
T , fj(x) ∈ C∞(R), j = 1, 2.

It is easy to see that M and L are commutative. Therefore, the kernel of L−λ is invariant under

the action of M for any complex number λ. Denote ker(L− λ) as Dλ and take arbitrarily a real

number x0 as the reference point. Let θ0(x, λ) = (θ01, θ02)
T and φ0(x, λ) = (φ01, φ02)

T be the

solutions of the following two initial value problems, respectively:

Lθ = λθ, θ1(x0) = 1, θ2(x0) = 0;

Lφ = λφ, φ1(x0) = 0, φ2(x0) = 1,

where θ0 and φ0 constitute a base of Dλ. The matrix of M for this base is

M =

(
θ01(x0 + T, λ) φ01(x0 + T, λ)

θ02(x0 + T, λ) φ02(x0 + T, λ)

)
,

whose eigenpolynomial is independent of the choice of fundamental solutions. Hence, it is also

independent of the choice of the reference point x0. Noting that

detM =

∣∣∣∣∣ θ01(x0 + T, λ) φ01(x0 + T, λ)

θ02(x0 + T, λ) φ02(x0 + T, λ)

∣∣∣∣∣ =
∣∣∣∣∣ θ01(x0, λ) φ01(x0, λ)

θ02(x0, λ) φ02(x0, λ)

∣∣∣∣∣ = 1,
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trM = θ01(x0 + T, λ) + φ02(x0 + T, λ) =: ∆(λ),

we have

det(µI −M) = µ2 −∆(λ)µ+ 1 = 0. (2.1)

The roots µ+, µ− of Eq. (2.1) are the eigenvalues ofM , called Floquet multiplicator. For ∆2(λ) ̸=
4, µ1 ̸= µ2, the corresponding eigenfunctions Ψ+(x, λ), Ψ+(x, λ) are called Bloch functions, which

are the common eigenfunctions of L and M :

LΨ± = λΨ±, MΨ± = Ψ±(x+ T ) = µ±Ψ±(x).

The equation (2.1) determines a complex curve in (µ, λ) ∈ C2. Its extension, an analytic variety

in P 2C, is called multiplicator curve, denoted as C , a double leaves Riemann surface.

Suppose that Ψ01(x0) = 1. For ∆2(λ) ̸= 4, the Bloch-Floquet solution is uniquely deter-

mined. Denote Ψ0± = (Ψ01±, Ψ02±)
T for short. It reads

Ψ0± = θ0(x, λ) +m±(x0, λ)φ0(x, λ),

where m± satisfies the following equations:(
µ± − θ01(x0 + T, λ) −φ01(x0 + T, λ)

−θ02(x0 + T, λ) µ± − φ02(x0 + T, λ)

)(
1

m±

)
= 0,

m±(x0, λ) =
µ± − θ01(x0 + T, λ)

φ01(x0 + T, λ)
= Ψ02±(x0, λ). (2.2)

Consider an eigenvalue problem:

LY = λY, y1(x0) = y1(x0 + T ) = 0, Y = (y1, y2)
T . (2.3)

The zeros λ = αj(x0) of φ01(x0+T, λ), dependent on the choice of x0, are eigenvalues of Eq. (2.3),

which constitute an auxiliary spectral problem (I).

Let Φ02(x0) = 1. We have similar results as above. For ∆2 ̸= 4, the Bloch-Floquet solution

is also completely determined. Denote Φ0± = (Φ01±,Φ02±)
T for short. It reads

Φ0±(x, λ) = n±θ0(x, λ) + φ0(x, λ),

n±(x0, λ) =
µ± − φ02(x0 + T, λ)

θ02(x0 + T, λ)
= Φ01±(x0, λ). (2.4)

The zeros λ = βj(x0) of θ02(x0 + T, λ), dependent on the choice of x0, are eigenvalues of the

following eigenvalue problem:

LY = λY, y2(x0) = y2(x0 + T ) = 0, Y = (y1, y2)
T . (2.5)

They constitute the auxiliary spectral problem (II).

Define meromorphic functions on the multiplicator curve C (remove the infinite point):

m(x0, p) =
µ− θ01(x0 + T, λ)

φ01(x0 + T, λ)
,

n(x0, p) =
µ− φ02(x0 + T, λ)

θ02(x0 + T, λ)
,
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Ψ0(x, p) = θ0(x, λ) +m(x0, p)φ0(x, λ),

Φ0(x, p) = n(x0, p)θ0(x, λ) + φ0(x, λ),

where p = (µ, λ), Ψ0 and Φ0 are Bloch functions. Both Ψ0+ and Ψ0− are values of Ψ0 at

points p+(µ+, λ) and p−(µ−, λ) respectively. Similarly, Φ0+ and Φ0− are values of Φ0 at points

p+(µ+, λ) and p−(µ−, λ), respectively.

It can be proved that ∆2(λ)−4 has only real zeros [14,15], which are independent of x0 and

can be numbered in increasing order as

· · ·λ−2 ≤ λ−1 < µ−2 ≤ µ−1 < λ0 ≤ λ1 <

µ0 ≤ µ1 < λ2 ≤ λ3 < µ2 ≤ µ3 < · · ·

where λ0, λ±1, λ±2, . . . are eigenvalues under the periodic condition Y (x + T ) = Y (x), while

µ0, µ±1, µ±1, . . . are eigenvalues under the semi-periodic condition Y (x + T ) = −Y (x). Both

(µ2j , µ2j+1) and (λ2j , λ2j+1) are unstable intervals, in which |∆| > 2; while (µj , λj+1) and

(λj , µj−1) are stable intervals, in which |∆| > 2. Both αj(x0) and βj(x0) fall into the unsta-

ble intervals [15].

3. Dubrovin-Novikov formulae

Define a new meromorphic function χ on the multiplicator curve C , the values of χ at

p± = (µ±, λ)
T reads

χ± = −i
Ψ′

01±
Ψ01±

= −i
∂

∂x
lnΨ01±. (3.1)

Then, χ is independent of the choice of x0, since the role of x0 is only to adjust the coefficients

of Ψ0+ and Ψ0−. And, χ± satisfy the Riccati equation

iχ′
± − i

rx
λ+ r

χ± = χ2
± + (λ+ p)(λ+ r) = 0. (3.2)

Proposition 3.1 Let λ be a real number belonging to the stable intervals and χ+ = χR + iχI .

Then the following equalities hold:

Ψ01−(x, λ) = Ψ̄0+(x, λ), (3.3)

χ− = −χR + iχI , (3.4)

d

dx
χR =

rx
λ+ r

χR + 2χRχI , (3.5)

d

dx
χI =

rx
λ+ r

χI + (λ+ p)(λ+ r)− χ2
R + χ2

I . (3.6)

Proof By definition, LΨ01+ = λΨ01+,Ψ01+(x+T ) = µ+Ψ01+(x+T ). Taking complex conjuga-

tion of the former two equalities and noting that µ− = µ̄+, we get Eq. (3.3). Direct calculation

verifies Eq. (3.4). Substituting Eq. (3.4) into Eq. (3.1) yields Eqs. (3.5) and (3.6). �

Corollary 3.2 Let λ be a real number belonging to the stable intervals. We have

χR(x0, λ) = − (λ+ r(x0))
√
4−∆2

2φ01(x0 + T, λ)
, (3.7)
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χI =
[λ+ r(x0)][φ02(x0 + T, λ)− θ01(x0 + T, λ)]

2φ01(x0 + T, λ)
. (3.8)

Proof By Eq. (2.1), we have

µ+ =
1

2
(∆ + i

√
4−∆2) =

1

2
[θ01(x0 + T, λ) + φ02(x0 + T, λ) + i

√
4−∆2].

Remembering Ψ01(x0) = 1 and Eq. (2.2), we see that

iχ+(x0) = Ψ′
01+(x0) = −[λ+ r(x0)]Ψ02+(x0)

= −[λ+ r(x0)]
φ02(x0 + T, λ)− θ01(x0 + T, λ) + i

√
4−∆2

2φ01(x0 + T, λ)
.

Separating the real and imaginary parts, we get Eqs. (3.7) and (3.8) immediately.

In a similar way, we define another meromorphic function κ on the multiplicator curve C ,

the values of κ at p± = (µ±, λ) read

κ± = −i
Φ′

02±
Φ02±

= −i
∂

∂x
lnΦ02±,

which satisfy the Riccati equation

iκ′
± − i

px
λ+ p

κ± − κ2
± + (λ+ p)(λ+ r) = 0.

Claims that parallel to Proposition 3.1 are true. �

Proposition 3.3 Let λ be a real number, which belongs to the stable intervals and κ+ =

κR + iκI . Then the following facts hold:

Φ01−(x, λ) = Φ̄01+(x, λ), (3.9)

κ− = −κR + iκI , (3.10)

d

dx
κR =

px
λ+ p

κR + 2κRκI , (3.11)

d

dx
κI =

px
λ+ p

κI + (λ+ p)(λ+ r)− κ2
R + κ2

I , (3.12)

κR(x0, λ) =
[λ+ p(x0)]

√
4−∆2

2θ02(x0 + T, λ)
, (3.13)

κI(x0, λ) =
−[λ+ p(x0)][θ01(x0 + T, λ)− φ02(x0 + T, λ)]

2θ02(x0 + T, λ)
. (3.14)

Proposition 3.4 Let λ be a real number, which belongs to the stable intervals. Then the

following expressions hold:

Ψ01+Ψ01− =
φ01(x+ T, λ)

φ01(x0 + T, λ)
, (3.15)

Φ02+Φ02− =
θ02(x+ T, λ)

θ02(x0 + T, λ)
. (3.16)

Proof Due to Eqs. (3.1) and (3.5), it follows that

lnΨ01+ =

∫ x

x0

[
iχR − d

dx
ln
√
χR +

rx
2(λ+ r)

]
dx.
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Therefore,

Ψ01+ =

√
χR(x0)(λ+ r(x))

χR(x)(λ+ r(x0))
exp

∫ x

x0

iχRdx. (3.17)

Similar result holds for Ψ01− :

Ψ01− =

√
χR(x0)(λ+ r(x))

χR(x)(λ+ r(x0))
exp

{
−
∫ x

x0

iχRdx
}
. (3.18)

Noting Corollary 3.2, we get Eq. (3.15). The proof of Eq.(3.16) is analogous to the proof of

Eq. (3.15).

Now we consider the case of (N + 1)-bands potential, N ≥ 1. In this case there are only N

unstable intervals. Assume that the eigenvalues under periodic and anti-periodic conditions are

numbered as follows

· · · < λ−2j−1 = λ−2j < · · · < λ−1 = λ0 < λ1 < λ2 < · · ·

· · · < λ2N < λ2N+1 = λ2N+2 < · · · < λ2j−1 = λ2j < · · · , (3.19)

where λ1, λ3, . . . , λ2N−1 are the left end-points of unstable intervals, and λ2, λ4, . . . , λ2N are the

right end-points. It is easy to show that αj(x0) = βj(x0) = λ2j−1 = λ2j hold for j ≤ 0 and

j ≥ 2N + 1, since αj(x0) and βj(x0) belong to the unstable intervals. Expanding φ01(x+ T, λ)

and φ01(x0 + T, λ) in infinite product, respectively, we have

φ01(x+ T, λ)

φ01(x0 + T, λ)
= k(x)

∏N
j=1(λ− αj(x))∏N
j=1(λ− αj(x0))

.

From the asymptotic formula of φ01(x+T, λ) at |λ| → ∞, it follows that k(x) = 1. Similarly, we

have
θ02(x+ T, λ)

θ02(x0 + T, λ)
=

∏N
j=1(λ− βj(x))∏N
j=1(λ− βj(x0))

. �

Theorem 3.5 (formulae of Dubrovin-Novikov’s type) Suppose the periodic Dirac operator have

N unstable bands. Then

Ψ01+Ψ01− =

∏N
j=1(λ− αj(x))∏N
j=1(λ− αj(x0))

, Φ02+Φ02− =

∏N
j=1(λ− βj(x))∏N
j=1(λ− βj(x0))

. (3.20)

Proof The formulae are true when λ belongs to stable bands. Noting that stable bands are

N + 1 intervals and carrying out analytic continuation, we see that Eq. (3.20) holds for all λ,

immediately. �

4. The trace formulae

Lemma 4.1 Let ω be a meromorphic differential on the complex sphere S = C ∪ {∞} :

ω =

∏N
j=1(λ− aj)∏N
j=1(λ− bj)

dλ. (4.1)

Then the residue of ω is equal to
∑N

j=1(aj − bj) at infinite point.
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Proof Taking local coordinate ζ = λ−1 in the neighborhood of infinite point, we may get what

is supposed by direct calculation. �

Lemma 4.2 The eigenvalues and end-points of spectral bands expressions for the difference

between the two potentials read

r(x)− p(x) =

2N∑
j=1

λj − 2

N∑
j=1

αj(x) = 2

N∑
j=1

βj(x)−
2N∑
j=1

λj . (4.2)

Proof Substituting χI = a1λ + a0 + a−1λ
−1 + · · · and χR = b1λ + b0 + b−1λ

−1 + · · · into

Eqs. (3.5) and (3.6), we get that

χ2
R = λ2 + rp+ (p+ r)λ+O(λ−1). (4.3)

On the other hand, we derive from Eq. (3.7) that

χ2
R = (λ+ r)2

2N∏
j=1

(
1− λj

λ

) 2N∏
j=1

(
1− αj(x)

λ

)−2
. (4.4)

Comparing the coefficients of the same power of λ, we get the lemma immediately. �

Theorem 4.3 Let the periodic Dirac operator have N unstable bands and the eigenvalues be

numbered as Eq.(3.19). Then the standardized eigenfunctions Y (x, λj) = (Y1(x, λj), Y2(x, λj))
T

satisfy the following identities:

N∑
j=1

Y 2
1 (x, λ2j−1) =

1

2
[p(x)− r(x)] +

1

2
σ, (4.5)

N∑
j=1

Y 2
1 (x, λ2j) =

1

2
[r(x)− p(x)] +

1

2
σ, (4.6)

N∑
j=1

γ2
2j−1Y

2
2 (x, λ2j−1) =

1

2
[r(x)− p(x)] +

1

2
σ, (4.7)

N∑
j=1

γ2
2jY

2
2 (x, λ2j) =

1

2
[p(x)− r(x)] +

1

2
σ, (4.8)

2N∑
j=1

Y 2
1 (x, λj) = σ,

2N∑
j=1

γ2
jY

2
2 (x, λj) = σ, (4.9)

where σ is the summation of width of spectral gaps:

σ =
2N∑
j=1

(λ2j − λ2j−1),

and γj ’s are some constants.

Proof Consider the meromorphic differential on the complex sphere S:

ω1 =

∏N
j=1(λ− αj(x))∏N
j=1(λ− λ2j−1)

dλ =

∏N
j=1(λ− αj(x0))∏N
j=1(λ− λ2j−1)

Ψ01+(x, λ)Ψ01−(x, λ)dλ.
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At λ2j−1, Ψ01+ = Ψ01−, we denote it as y1(x, λ2j−1). By the residue theorem, we have

N∑
j=1

ρ2j−1y
2
1(x, λ2j−1) + Res∞ω1 = 0, (4.10)

where

ρ2j−1 =

∏N
k=1(λ2j−1 − αk(x0))∏
k ̸=j(λ2j−1 − λ2k−1)

.

The symbol of the numerator is (−1)N−j+1 because αj(x) belongs to (λ2j−1, λ2j), 1 ≤ j ≤ N, and

the symbol of the denominator is (−1)N−j .Hence ρ2j−1 < 0. Let Y1(x, λ2j−1) =
√−ρ2j−1y1(x, λ2j−1).

On the other hand, from Lemmas 4.1 and 4.2, we have

Res∞ω1 = −1

2
[r(x)− p(x)] +

1

2
σ,

where σ =
∑N

j=1(λ2j − λ2j−1). Substituting it into Eq. (4.10), we get Eq. (4.5).

Similarly, considering

ω2 =

∏N
j=1(λ− αj(x))∏N
j=1(λ− λ2j)

dλ,

and denoting

Y1(x, λ2j) =
√
ρ2jy1(x, λ2j), ρ2j =

∏N
k=1(λ2j − αk(x0))∏

k ̸=j(λ2j − λ2k)
dλ,

we can derive Eq. (4.6).

Adding Eqs. (4.5) and (4.6), we obtain the first formula of Eq. (4.9). Consider

ω3 =

∏N
j=1(λ− βj(x))∏N
j=1(λ− λ2j−1)

dλ, ω4 =

∏N
j=1(λ− βj(x))∏N
j=1(λ− λ2j)

dλ,

and denote z2(x, λj) = Φ02+(x, λ) = Φ02−(x, λ). We obtain

−
N∑
j=1

[
√
−δ2j−1z2(x, λ2j−1)]

2 =
1

2
[r(x)− p(x)] +

1

2
σ,

N∑
j=1

[
√
δ2jz2(x, λ2j)]

2 =
1

2
[p(x)− r(x)] +

1

2
σ,

where

δ2j−1 =

∏N
k=1(λ2j−1 − βk(x0))∏
k ̸=j(λ2j−1 − λ2k−1)

, δ2j =

∏N
k=1(λ2j − βk(x0))∏

k ̸=j(λ2j − λ2k)
.

It is easy to show that z2(x, λj) = n(x0, λj)y2(x, λj). Denoting

γj =
√
δj/ρjn(x0, λ),

we have Eqs. (4.7), (4.8) and the second formula of Eq. (4.9). �
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