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Abstract Here concerned and further investigated is a certain operator method for the com-

putation of convolutions of polynomials. We provide a general formulation of the method

with a refinement for certain old results, and also give some new applications to convolved

sums involving several noted special polynomials. The advantage of the method using oper-

ators is illustrated with concrete examples. Finally, also presented is a brief investigation on

convolution polynomials having two types of summations.
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1. Introduction

It is known that the problem for the computation of sums of convolved powers of the type

S(m; i, j) =
∑

0≤k≤m

ki(m− k)j (1.1)

was first investigated by Glaisher [3] and [4] in 1911–1912, and he found a summation formula

using Bernoulli numbers. Some further investigations and extensions were given, during the years

1977–1978, by Neumann-Schonbach [12], Carlitz [2] and Gould [5] respectively, in which Eulerian

numbers as well as Stirling numbers of the second kind had been utilized. Various numerical

examples were also presented in Gould [5].

Actually, the most genernal formulation of the computational problem for convolved polyno-

mial sums was given in the author’s earlier paper [6] (in 1944), and a kind of general summation

formula was found via several lemmas. However, [6] contains some notational errors, and all

related formulas were given in quite complicated forms. This may be the reason why the general

result of [6] could not be used in practice.

Having done some practical computations, we eventually get realized that a kind of symbolic

operator approach adopted in another earlier paper [7] (in 1948) should be the most effective

way for dealing with general convolved polynomial sums. The object of this paper is to develop

the operator method conceived previously. We will present certain general operator summation

formulas that could be specialized and applied in various ways (see §4–§5).

2. Summation formulas involving operators
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Throughout the paper f(x) and fi(x) (i = 1, . . . , n) are assumed to be arbitrary polynomials

over the real or complex number field, with degrees denoted by ∂f and ∂fi, respectively. We are

concerned with the problem for the computation of convolved polynomial sums of the type

S(m, [f1] · · · [fn]) :=
∑

(m;0;x)

f1(x1) · · · fn(xn) (2.1)

where m is any given positive integer, and the sum on the RHS of (1) is taken over all the

n-compositions of m with non-negative integer components, namely, over the set (m; 0;x) of all

the integer solutions of x1 + · · ·+ xn = m with each xi ≥ 0 (i = 1, . . . , n).

Obviously, S(m; i, j) of (1.1) just corresponds to the special case of (2.1) with n = 2,

f1(x) = xi and f2(x) = xj .

We shall make use of the ordinary difference operator ∆ and the shift operator E which

are defined by the relations ∆f(x) = f(x + 1) − f(x), Ef(x) = f(x + 1). Powers of these

operators are defined in the usual way with ∆0 = E0 = 1 denoting the identity operator, so that

∆0f(x) = E0f(x) = 1f(x) = f(x), and E = 1 +∆.

Definition 2.1 For any given polynomial f(x) with degree ∂f ≥ 0, there are two operator

polynomials constructed from f(x) as follows

Λ(∆, f) :=

∂f∑
ν=0

∆νf(0)∆ν , (2.2)

Λ∗(E, f) :=

∂f∑
ν=0

∆νf(−ν − 1)Eν . (2.3)

These are called Λ-operators associated with f . In particular, Λ(∆, f) ≡ Λ∗(E, f) ≡ f(0) · 1 for

the case ∂f = 0 (viz f(x) ≡ f(0)).

Note that computations of backward differences ∆νf(−ν−1) are as easy as that of ∆νf(0).

Thus Λ∗ and Λ are equally useful for practical computations. In fact, Λ and Λ∗ are the same

operator, and the operator identity Λ(∆, f) ≡ Λ∗(E, f) could be verified easily by starting with

E = 1 +∆ (see [8]).

A main proposition to be studied and given applications in this paper is the following

Theorem 2.2 Let f1(x), . . . , fn(x) be any given polynomials. Then there hold a pair of sum-

mation formulas as follows

S(m, [f1] · · · [fn]) =
( n∏

i=1

Λ(∆, fi)
)(x

m

)
x=m+n−1

, (2.4)

S(m, [f1] · · · [fn]) =
( n∏

i=1

Λ∗(E, fi)
)(x

m

)
x=m+n−1

. (2.5)

Proof It suffices to verify (2.4), since (2.5) ⇔ (2.4). Let us recall that there is a well-known

identity in Combinatorics, namely∑
(m;0;x)

(
x1

ν1

)
· · ·

(
xn

νn

)
=

(
m+ n− 1

m− (ν1 + · · ·+ νn)

)
(2.6)
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where νi ≥ 0 (1 ≤ i ≤ n), and m ≥ (ν1 + · · ·+ νn). Also there are simple relations

∆ν

(
x

m

)
=

(
x

m− ν

)
, 0 ≤ ν ≤ m; ∆ν

(
x

m

)
= 0, ν > m.

Thus the RHS of (2.6) may be expressed in the form(
m+ n− 1

m− (ν1 + · · ·+ νn)

)
= ∆ν1 · · ·∆νn

(
x

m

)
x=m+n−1

. (2.6)∗

Consequently, employing Newton’s formula for f(x) and making use of (2.6)–(2.6)∗, one may

compute the LHS of (2.4) as follows

S(m, [f1] · · · [fn]) =
∑

(m;0;x)

n∏
i=1

( ∂fi∑
νi=0

∆νifi(0)

(
xi

νi

))

=

∂f1∑
ν1=0

· · ·
∂fn∑
νn=0

∆ν1f1(0) · · ·∆νnfn(0)
∑

(m;0;x)

n∏
i=1

(
xi

νi

)

=

∂f1∑
ν1=0

· · ·
∂fn∑
νn=0

(∆ν1f1(0)∆
ν1) · · · (∆νnfn(0)∆

νn)

(
x

m

)
x=m+n−1

=
n∏

i=1

( ∂fi∑
νi=0

∆νifi(0)∆
νi

)(x

m

)
x=m+n−1

=
( n∏

i=1

Λ(∆, fi)
)(x

m

)
x=m+n−1

.

Hence (2.4) is proved. �

Corollary 2.3 For the case f1(x) = · · · = fn(x) = f(x) there are summation formulas for

S(m, [f ]n): ∑
(m;0;x)

f(x1) · · · f(xn) = (Λ(∆, f))n
(
x

m

)
x=m+n−1

, (2.7)

∑
(m;0;x)

f(x1) · · · f(xn) = (Λ∗(E, f))n
(
x

m

)
x=m+n−1

. (2.8)

Corollary 2.4 For the monomials fi(x) = xpi with pi ≥ 0 (i = 1, . . . , n), there is a summation

formula of the form∑
(m;0;x)

xp1

1 · · ·xpn
n =

( n∏
i=1

( pi∑
ν=0

ν!

{
pi
ν

}
∆ν

))(x

m

)
x=m+n−1

(2.9)

where

{
pi
ν

}
are Stirling numbers of the second kind with

{
0
0

}
= 1. In particular, for the case

pi ≥ 1 (i = 1, . . . , n), (2.9) can be replaced by the form∑
(m;1;x)

xp1

1 · · ·xpn
n =

( n∏
i=1

( pi∑
ν=1

ν!

{
pi
ν

}
∆ν

))(x

m

)
x=m+n−1

(2.10)

where (m; 1;x) denotes the set of n-compositions ofm with each component xi ≥ 1 (i = 1, . . . , n).
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Observe that (2.9) with n = 2 is an old result given by Gould [5], in which several numerical

instances have been displaced. Also, note that (2.7) and (2.8) are even much older results that

had been derived and employed in [7] and [8], respectively.

Obviously, the set (m; 0;x) under the summation of (2.1) may be replaced by (m; 1;x) in

case f1(0) = · · · = fn(0) = 0. In what follows we will present a few examples, requiring a bit of

algebraic computations.

Example 2.5 Suppose we want to find a formula for the summation of the form

S(m, [x2][x3][x4]) ≡
∑

(m;1;x)

x2
1 · x3

2 · x4
3. (2.11)

It requires that the summation formula should be consisting of a least number of terms.

In accordance with (2.4) we have to do computations

Λ(∆, x2) = ∆+ 2∆2,

Λ(∆, x3) = ∆+ 6∆2 + 6∆3,

Λ(∆, x4) = ∆+ 14∆2 + 36∆3 + 24∆4.

Clearly we may rewrite Λ(∆, x3) = ∆(1 + 6∆E). Moreover, using a simple factorization tech-

nique, we find

Λ(∆, x4) = ∆(1 + 2∆)(1 + 12∆E). (2.12)

Consequently, we obtain

Λ(∆, x2)Λ(∆, x3)Λ(∆, x4) = ∆3(1 + 2∆)2(1 + 6∆E)(1 + 12∆E)

= ∆3(1 + 4∆E)(1 + 6∆E)(1 + 12∆E)

= ∆3(1 + 22∆E + 144(∆E)2 + 288(∆E)3).

Hence an application of (2.4) (with n = 3) to the sum (2.11) gives a formula as follows∑
(m;1;x)

x2
1 · x3

2 · x4
3 =

(
m+ 2

5

)
+ 22

(
m+ 3

7

)
+ 144

(
m+ 4

9

)
+ 288

(
m+ 5

11

)
. (2.13)

Similarly, noting that Λ(∆, x) = ∆ and using (2.4) with n = 4, we may obtain∑
(m;1;x)

x1
1 · x2

2 · x3
3 · x4

4 =

(
m+ 3

7

)
+ 22

(
m+ 4

9

)
+ 144

(
m+ 5

11

)
+ 288

(
m+ 6

13

)
. (2.14)

Surely, (2.13)–(2.14) are the shortest formulas for the sums in question. Obviously (2.13)–(2.14)

involve the following asymptotic estimates∑
(m;1;x)

x2
1 · x3

2 · x4
3 = 288

(
m+ 5

11

)
(1 +O(

1

m2
)), m → ∞,

∑
(m;1;x)

x1
1 · x2

2 · x3
3 · x4

4 = 288

(
m+ 6

13

)
(1 +O(

1

m2
)), m → ∞.

From the above example we have

(Λ(∆, x2))n = ∆n(1 + 2∆)n,
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(Λ(∆, x3))n = ∆n(1 + 6∆E)n,

(Λ(∆, x4))n = ∆n(1 + 2∆)n(1 + 12∆E)n.

Accordingly, as particular consequences of (2.7) of Corollary 2.3, we may state the following

Example 2.6 There are 3 formulas as follows∑
(m;1;x)

(x1 · x2 · · ·xn)
2 =

n∑
ν=0

2ν
(
n

ν

)(
m+ n− 1

2n+ ν − 1

)
, (2.15)

∑
(m;1;x)

(x1 · x2 · · ·xn)
3 =

n∑
ν=0

6ν
(
n

ν

)(
m+ n+ ν − 1

2n+ 2ν − 1

)
, (2.16)

∑
(m;1;x)

(x1 · x2 · · ·xn)
4 =

n∑
ν=0

n∑
µ=0

2ν · 12µ
(
n

ν

)(
n

µ

)(
m+ n+ µ− 1

m− n− ν − µ

)
. (2.17)

Certainly these formulas are especially useful when m is much bigger than n. Note that (2.15)–

(2.16) have appeared previously [7,8] and that (2.17) could be replaced by a formula of similar

nature via the operator Λ(∆, x4) = ∆n(∆+E)n(1+12∆E)n. However it appears to be impossible

to get a simpler formula consisting of (n+ 1) terms for the sum of (2.17).

3. Some remarks on related summation formulae

What is worth commenting is that summation formulas using operators (such as (2.4), (2.7),

(2.10) etc.) should be the most available formulas for the practical computation of polynomial

convolutions.

Remark 3.1 Usually, a good summation formula is such a formula that consists of a least

number of easily computed terms. From this view-point, one may find that (2.13) and (2.14)

could be regarded as good formulas, each consisting of only 4 terms. As a matter of fact, if the

summation formula (2.10) is replaced by the equivalent formula∑
(m;1;x)

xp1

1 · · ·xpn
n =

∑
1≤νi≤pi
1≤i≤n

ν1! · · · νn!
{
p1
ν1

}
· · ·

{
pn
νn

}(
m+ n− 1

m− ν1 − · · · − νn

)

without using ∆-operators, and if it is applied to the sums of (2.13)–(2.14), one will get particular

formulas, each consisting of 2 × 3 × 4 = 24 terms (since p1 = 1, p2 = 2, p3 = 3, p4 = 4). Thus,

(2.13) and (2.14) just provide examples showing that operator summation formulas such as (2.4)

etc., may sometimes lead to much more brief formulas. Here the real reason is that the products

of Λ(∆, f1) · · ·Λ(∆, fn) or the like may sometimes be reduced to rather simple forms via algebraic

manipulations.

Remark 3.2 It is known that there is a general formula for expressing a multifold convolution

of arbitrary real-valued functions defined on the set of non-negative integers. For details, see a

recent paper [9] by Hsu and Ma. As may be observed, the general formula for convolutions is

expressed explicitly as a summation over a set of integer partitions, and the expression cannot
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be simplified any way for the particular case of polynomial convolutions [9, Theorem 5.2]. Thus,

by comparing with the results of Theorem 2.2 and Corollary 2.3, one may see that (2.4)–(2.5)

and (2.7)–(2.8) should be the most advantageous formulas for the computation of polynomial

convolutions.

Remark 3.3 In order to disclose a natural relation between the basic formula (2.4) of Theorem

2.2 and a pair of formulas given by Lemmas 3 and 4 of the earliest paper [6], we have at first

to mention that a mistaken denotation occurring in [6] should be corrected, namely, the set of

n-compositions (m; 1;x) under the summations for expressing S(m, [f ]n) and S(m, [f1] · · · [fn])
in §2 of [6] should be replaced by (m; 0;x). Otherwise, the results of [6] can only be valid for

polynomials f(x), f1(x), . . . , fn(x) without constant terms.

Having correctly defined S(m, [f1] · · · [fn]) as that of (2.1), one may verify that the following

formulas as given by Lemmas 3 and 4 of [6] (viz. (4)′ and (6) of [6])

S(m, [f ]n) = n!
∑

(n;0;p)

(
m+ n− 1

1 · p1 + · · ·+ k · pk + n− 1

)
βp0

0 βp1

1 · · ·βpk

k

p0!p1! · · · pk!
(3.1)

S(m, [f1] · · · [fn]) =
1

n!

∑
(ν1···νk)∈(1···n)

(−1)n−kS(m, [fν1 + · · ·+ fνk
]n) (3.2)

are logically equivalent to (2.7) and (2.4), respectively, wherein f(x) has the degree ∂f = k, βi

may be rewritten as ∆if(0) (i = 0, 1, . . . , k), and the summation on the RHS of (3.1) is taken

over all the (k + 1)-compositions of n, viz. p0 + · · · + pk = n with each pi ≥ 0; and the RHS

summation of (3.2) is over all the different combinations (sub-sets) {ν1, . . . , νk} out of the set

{1, . . . , n} (k = 1, . . . , n).

Indeed, the RHS of (3.1) may be rewritten as∑
(n;0;p)

n!

p0!p1! · · · pk!

(
m+ n− 1

m− (p1 + 2p2 + · · ·+ kpk)

)
(f(0))p0(∆f(0))p1 · · · (∆kf(0))pk

=
∑

(n;0;p)

n!

p0! · · · pk!
(f(0)∆0)p0 · · · (∆kf(k)∆k)pk

(
x

m

)
x=m+n−1

=
( k∑

ν=0

∆νf(0)∆ν
)n

(
x

m

)
x=m+n−1

= RHS of (2.7).

Also, for every given set {ν1, . . . , νk} ⊂ {1, . . . , n}, it is obvious that the summand within the

summation of (3.2) may be expressed in the following forms

(−1)n−kS(m, [fν1 + · · ·+ fνk
]n)

= (−1)n−k(Λ(∆, fν1 + · · ·+ fνk
))n

(
x

m

)
x=m+n−1

= (−1)n−k[Λ(∆, fν1) + · · ·+ Λ(∆, fνk
)]n

(
x

m

)
x=m+n−1

= (−1)n−k
∑

q1+···+qt=n

n!

q1! · · · qt!
(Λ(∆, fρ1))

q1 · · · (Λ(∆, fρt))
qt

(
x

m

)
x=m+n−1

,
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where the last summation is taken over all the subsets {ρ1, . . . , ρt} of {ν1, . . . , νk} (t = 1, . . . , k),

and all the compositions (n; 1; q). Certainly the general term (summand) of the last summation

is contained in all such terms of the RHS summation of (3.2) that {ρ1, . . . , ρt} ⊂ {ν1, . . . , νk} ⊂
{1, . . . , n}. The number of occurrences is obviously

(
n−t
k−t

)
. Thus the total number of occurrences

in the RHS summation of (3.2) is given by

n∑
k=t

(−1)n−k

(
n− t

k − t

)
= (1− 1)n−t =

{
0. t < n,

1, t = n.

This means that the general term vanishes except that t = n, so that k = n, {ρ1, . . . , ρt} ≡
{ν1, . . . , νk} ≡ {1, . . . , n}, and q1 = · · · = qn = 1. Consequently we get

RHS of (3.2) = Λ(∆, f1) · · ·Λ(∆, fn)

(
x

m

)
x=m+n−1

.

Hence, as a conclusion we may say that Lemmas 3 and 4 of [6] are implicitly involving (2.4), and

the deduction of (2.4) from (3.2) plus (3.1) may be regarded as a different proof for (2.4).

Remark 3.4 Observe that for n ≥ 3 the summation on the LHS of (2.9) may be rewritten as

S(m, [xp1 ] · · · [xpn ]) =
∑

xp1

1 · · ·xpn−1

n−1 (m− x1 − · · · − xn−1)
pn

where the RHS summation extends over all the non-negative integers x1, . . . , xn−1 such that

x1 + · · · + xn−1 ≤ m. Apparently, such a sum may be viewed as a discrete analogue of the

Dirichlet multiple integral∫
· · ·

∫
S

tα1
1 · · · tαn−1

n−1 (1− t1 − · · · − tn−1)
αndt1 · · ·dtn−1 =

Γ(α1 + 1) · · ·Γ(αn + 1)

Γ(α1 + · · ·+ αn + n)

where the domain of integration is defined by the (n− 1)-dimensional set

S : t1 ≥ 0, . . . , tn−1 ≥ 0, t1 + · · ·+ tn−1 ≤ 1,

and αi (i = 1, . . . , n − 1) are real numbers such that αi + 1 > 0. Certainly, the formula (2.9)

is much more complicated than the integration formula displayed above. However, it should be

possible to verify that (2.9) implies the following limit

lim
m→∞

S(m, [xp1 ] · · · [xpn ])
/
mp1+···+pn+n−1 =

p1! · · · pn!
(p1 + · · ·+ pn + n− 1)!

which is consistent with the integral formula when taking αi = pi.

4. Some special convolved polynomial sums

Here we will present several new examples showing how to make use of the summation

formulas (2.4) and (2.7) to evaluate some convolution sums that consist of certain classical

polynomials. Evidently, in order to get explicit results for S(m, [f ]n) and S(m, [f1] · · · [fn]) by

using (2.7) and (2.4), it requires firstly to find explicit expressions for ∆νf(0) and ∆νfi(0) (ν =

1, 2, . . . ; i = 1, . . . , n). In particular, related computations could be greatly shortend, in cases

f(x) and fi(x) are known to have explicit expressions in Newton interpolation series.
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Example 4.1 We wish to evaluate the convolution

S(m, [Bk]
n) =

∑
(m;0;x)

Bk(x1) · · ·Bk(xn), k ≥ 1

where Bk(x) is the k-th degree Bernoulli polynomial defined by the expansion

text

et − 1
=

∞∑
k=0

Bk(x)
tk

k!
, |t| < 2π (4.1)

Bk(0) = Bk (k = 0, 1, 2, . . .), are known as Bernoulli numbers.

It is known that Bk(x) can be expanded in terms of Newton’s polynomials with Stirling

numbers as coefficient [10, §78], namely

Bk(x) = Bk + k
k∑

ν=1

(ν − 1)!

{
k − 1
ν − 1

}(
x

ν

)
. (4.2)

This implies that ∆νBk(0) = k · (ν − 1)!

{
k − 1
ν − 1

}
. Consequently, using (2.7), we get

S(m, [Bk]
n) =

(
Bk + k

k∑
ν=1

(ν − 1)!

{
k − 1
ν − 1

}
∆ν

)n
(
x

m

)
x=m+n−1

. (4.3)

Certainly, this is a useful formula when m is much bigger than k and n. Also, an application of

(2.4) with n = 2 yields the formula∑
(m;0;x)

Bp(x1)Bq(x2) =
(
Bp + p

p∑
ν=1

(ν − 1)!

{
p− 1
ν − 1

}
∆ν

)
(
Bq + q

q∑
µ=1

(µ− 1)!

{
q − 1
µ− 1

}
∆µ

)(x

m

)
x=m+1

(4.4)

where p and q are given positive integers.

Example 4.2 It is known that the Bernoulli polynomial of the second kind of degree k may be

written as [10, §89]

Ψk(x) =

∫ 1

0

(
x+ t

k

)
dt. (4.5)

Accordingly, bk = Ψk(0) may be called Bernoulli numbers of the second kind, viz.

bk =

∫ 1

0

(
t

k

)
dt, k = 0, 1, 2, . . . (4.6)

where b0 = 1, b1 = 1/2, b2 = −1/12, etc. A table of bk’s for k ≤ 10 may be found in [10, §89]. Note

that ∆νfk(0) = Ψk−ν(0) = Bk−ν , 0 ≤ ν ≤ k, so that Λ(∆,Ψk) =
∑k

0 bk−ν∆
ν =

∑k
0 bν∆

k−ν .

Consequently, (2.7) and (2.4) imply the following special formulas

S(m, [Ψk]
n) =

( k∑
ν=0

bν∆
k−ν

)n
(
x

m

)
x=m+n−1

(4.7)
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and ∑
(m;0;x)

Ψp(x1)Ψq(x2) =
( p∑

ν=0

bν∆
p−ν

)( q∑
µ=0

bµ∆
q−µ

)(x

m

)
x=m+1

. (4.8)

Example 4.3 As is known, Boole’s polynomial of degree k may be expressed in the form [10,

§113]

ξk(x) =
k∑

ν=0

(−1/2)k−ν

(
x

ν

)
. (4.9)

This implies that ∆νξk(0) = (−1/2)k−ν . Consequently (2.7) and (2.4) with n = 2 yield the

following special formulas

S(m, [ξk]
n) =

( k∑
ν=0

(−1/2)ν∆k−ν
)n

(
x

m

)
x=m+n−1

(4.10)

and ∑
(m;0;x)

ξp(x1)ξq(x2) =
( p∑

ν=0

(−1/2)ν∆p−ν
)( q∑

µ=0

(−1/2)µ∆q−µ
)(x

m

)
x=m+1

. (4.11)

Example 4.4 Let us consider the Mittag-Leffler polynomials defined by the power-type gener-

ating function [1]

(
1 + t

1− t
)x =

(
1 +

∞∑
n=1

2tn
)x

=
∞∑
k=0

(ML)k(x) · tk (4.12)

where (ML)0(x) ≡ 1 and (ML)k(x) is of degree k.

Instead of (m; 0;x), we shall use the set (m; 0; ν) consisting of all the non-negative integer

solutions of the equation ν1+ · · ·+νn = m. It is easily seen that for any given set of real numbers

{x1, . . . , xn}, there holds the rather simple convolution sum∑
(m;0;ν)

(ML)ν1(x1) · · · (ML)νn(xn) = (ML)m(x1 + · · ·+ xn). (4.13)

Actually this follows from the expansion of ((1 + t)/(1− t))x1+···+xn in terms of tm, and may be

called convolution “in degrees”.

On the other hand, the summation (with fixed k ≥ 1)

S(m, [(ML)k]
n) =

∑
(m;0;x)

(ML)k(x1) · · · (ML)k(xn) (4.14)

should be properly called the convolution “in arguments”. Let us now evaluate (4.14) and the

following sum

S(m, [(ML)p][(ML)q]) =
∑

(m;0;x)

(ML)p(x1) · [(ML)q](x2) (4.15)

by means of (2.7) and (2.4) with n = 2. First, using the extracting-coefficient operator [tk], we

find

(ML)k(x) = [tk](
1 + t

1− t
)x = [tk](1 +

2t

1− t
)x =

∑
ν≥0

(
x

ν

)
[tk](

2t

1− t
)ν
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=
∑
ν≥0

2ν
(
x

ν

)
[tk−ν ]

∑
j≥0

(
ν + j − 1

j

)
tj =

k∑
ν=1

2ν
(
k − 1

ν − 1

)(
x

ν

)
.

Consequently we have ∆ν(ML)k(0) = 2ν
(
k−1
ν−1

)
and we get

RHS of (4.14) =
( k∑

ν=1

2ν
(
k − 1

ν − 1

)
∆ν

)n
(
x

m

)
x=m+n−1

(4.16)

and

RHS of (4.15) =
( p∑

ν=1

2ν
(
p− 1

ν − 1

)
∆ν

)( q∑
µ=1

2µ
(
q − 1

µ− 1

)
∆µ

)(x

m

)
x=m+1

. (4.17)

5. Convolution polynomials and two types of summations

Generally, a sequence {fk(x)}∞0 of polynomials with f0(x) ≡ 1 and ∂fk(x) = k (k =

0, 1, 2, . . .), is called a convolution polynomial sequence, if there holds the convolution identity

n∑
k=0

fk(x)fn−k(y) = fn(x+ y), n = 0, 1, 2, . . . .

Of course, this identity implies the multifold convolution in degrees∑
(m;0;ν)

fν1(x1) · · · fνn(xn) = fm(x1 + · · ·+ xn). (5.1)

Apparently, the sequence {(ML)k(x)} gives a special example.

It is known that there are various noticeable properties enjoyed by convolution polynomials.

For details the reader is referred to D. E. Knuth’s fundamental paper “convolution polynomials”

appearing in Math. J., 24(1992), 67–78. In what follows we will show that, for any given

convolution polynomial sequence, there exist summation formulas for multifold convolutions in

arguments.

Note that convolution polynomials can always be generated by power-type generating func-

tions. Let ϕ(t) = 1 + a1t+ a2t
2 + · · · be a formal power series over the real or complex number

field. Then the formal series expansion

(ϕ(t))x =
∞∑
k=0

fk(x)t
k def

=
∞∑
k=0

[
x
k

]
ϕ

· tk (5.2)

yields the convolution polynomials fk(x) =

[
x
k

]
ϕ

(k = 0, 1, 2, . . .). Here we adopt the notation[
x
k

]
ϕ

just for expressiveness. Thus for instances we have the special convolution polynomials:

[
x
k

]
1+t

=

(
x

k

)
,

[
x
k

]
(1−t)−1

=

(
x+ k − 1

k

)
,

[
x
k

]
et

=
xk

k!
,

[
x
k

]
(1+t)/(1−t)

= (ML)k(x),

[
x
k

]
exp(et−1)

= Tk(x),
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where Tk(x) are known as Touchard’s polynomials.

Certainly (5.1) may be rewritten in the form∑
(m;0;ν)

[
x1

ν1

]
ϕ

· · ·
[
xn

νn

]
ϕ

=

[
x1 + · · ·+ xn

m

]
ϕ

. (5.1)∗

For given non-negative integers k1, . . . , kn, we want to evaluate the multifold convolution in

arguments:

S
(
m,

[
x
k1

]
ϕ

· · ·
[
x
kn

]
ϕ

)
=

∑
(m;0;x)

[
x1

k1

]
ϕ

· · ·
[
xn

kn

]
ϕ

.

Denote ϕ1(t) = ϕ(t)− 1 =
∑

i≥1 ait
i with a1 ̸= 0. Then we have[

x
k

]
ϕ

= [tk](ϕ(t1))
x = [tk](1 + ϕ1(t))

x

=

k∑
j=0

(
x

j

)
[tk](ϕ1(t))

j def
=

k∑
j=0

s(k, j, ϕ1)

(
x

j

)
. (5.3)

Here the numbers s(k, j, ϕ1) defined by

s(k, j, ϕ1) = [tk](ϕ1(t))
j , 0 ≤ j ≤ k (5.4)

form a simple special Riordan matrix whose elements may be called modified Stirling-type

numbers, since (k!/j!)s(k, j, ϕ1) just give the two kinds of ordinary Stirling numbers by tak-

ing ϕ1(t) = log(1 + t) and ϕ1(t) = et − 1, viz.

k!

j!
s(k, j, log(1 + t)) = S1(k, j),

k!

j!
s(k, j, et − 1) = S2(k, j) =

{
k
j

}
.

We may now state the following

Theorem 5.1 There holds a summation formula for the convolution in arguments of the form

S
(
m,

[
x
k1

]
ϕ

· · ·
[
x
kn

]
ϕ

)
=

( n∏
i=1

( ki∑
j=0

s(ki, j, ϕ1)∆
j
))(x

m

)
x=m+n−1

(5.5)

where s(k, j, ϕ1) are given by (5.4).

Proof From (5.3) we see that (
∆j

[
x
k

]
ϕ

)
x=0

= s(k, j, ϕ1).

Thus (5.5) follows from (2.4) as a consequence. �

Example 5.2 As is known, Touchard’s polynomials are given by the generating function [1]

ex(e
t−1) =

∞∑
k=0

Tk(x)t
k. (5.6)
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Moreover, Tk(x) has an explicit expression

Tk(x) =
1

k!

k∑
j=0

{
k
j

}
xj . (5.7)

Accordingly, we get the values of differences at zero

∆νTk(0) = (∆νTk(x))x=0 =
ν!

k!

k∑
j=ν

{
k
j

}{
j
ν

}
. (5.8)

Let us denote δ(k, ν) := ∆νTk(0). Then, using (5.5) we obtain

S(m, [Tk1 ] · · · [Tkn ]) =
( n∏

i=1

( ki∑
ν=0

δ(ki, ν)∆
ν
))(x

m

)
x=m+n−1

. (5.9)

In particular we have

S(m, [Tk]
n) =

( k∑
ν=0

δ(k, ν)∆ν
)n

(
x

m

)
x=m+n−1

. (5.10)

Certainly, (5.9) and (5.10) could be used to get exact numerical results whenever k1, . . . , kn,

k and m are given concretely.

Remark 5.3 Convolutions of polynomials “in degrees” and “in arguments” may be called two

types of convolutions. Note that convolution in degrees can only be obtained from convolution

polynomials (by definition). Thus one may infer from Theorem 5.1 that only the class of convo-

lution polynomials could lead to the two types of convolutions which are both computable with

really available summation formulas. Also, one may guess that both (2.4) and (5.5) could be

extended to the cases of q-polynomials.
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