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Abstract In this paper we introduce a concept, called ¥-associated primes, that is a gen-
eralization of both associated primes and nilpotent associated primes. We first observe the
basic properties of Y-associated primes and construct typical examples. We next describe
all X-associated primes of the Ore extension R|[z;«,d], the skew Laurent polynomial ring
R[z,z™"; a] and the skew power series ring R[[z;a]], in terms of the $-associated primes of
R in a very straightforward way. Consequently several known results relating to associated
primes and nilpotent associated primes are extended to a more general setting.
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1. Introduction

Throughout this paper all rings R are associative with identity, and all modules are right
unital. The set of all nilpotent elements of R is denoted by nil(R). A ring R is called an NI
ring [10] if nil(R) forms an ideal, and a ring R is reduced if it has no nonzero nilpotent elements.
Let U and V be two nonempty subsets of R. We define U : V ={z € R|Vaz CU}. If Vis
singleton, say V = {m}, we use U : m in place of U : {m}. It is easy to see that if U, V are two
right ideals of R, then U : V is an ideal of R and such an ideal is usually called the quotient of
UbyV.

Given a right R-module Ng, the right annihilator of Ng in R is denoted by rr(Ng) = {a €
R | Na = 0}. We say that Ng is prime if Np # 0, and rgr(Ng) = rr(N}y) for every nonzero
submodule N, C Ng (see [1]). Let Mg be a right R-module. Then an ideal p of R is called
associated prime of Mg if there exists a prime submodule Ng C Mg such that p = rgr(Ng).
The set of associated primes of My is denoted by Ass(Mpg) (see [1]). Associated primes are
well-known in commutative algebra for their important role in the primary decomposition, and

have attracted a lot of attention in recent years. In [4], Brewer and Heinzer used localization

Received August 31, 2014; Accepted November 22, 2014

Supported by the National Natural Science Foundation of China (Grant No. 11071062) and the Scientific Research
Fundation of Hunan Provincial Education Department (Grant No.12B101).

* Corresponding author

E-mail address: ouyanglqtxy@163.com (Lunqun OUYANG); Jwliu64@aliyun.com (Jinwang LIU); xymls999@126.
com (Yueming XIANG)



506 Lunqun OUYANG, Jinwang LIU and Yueming XIANG

theory to prove that the associated primes of the polynomial ring R[x] (viewed as a module over
itself) over a commutative ring R are all extended; that is, every p € Ass(R[x]) may be expressed
as o = polx], where po = p N R € Ass(R). Using results of Shock in [13] on good polynomials,
Faith has provided a new proof in [5] of the same result which does not rely on localization or
other tools from commutative algebra. In [1], Scott Annin showed that Brewer and Heinzer’s
result still holds in the more general setting of a polynomial module M [x] over a skew polynomial
ring R[z; , with possibly noncommutative base R. So the properties of associated primes over
a commutative ring can be profitably generalized to noncommutative setting as well. For more

details and properties of associated primes, we refer to [1-5].

For a set X of a ring R, NAnng(X) = {a € R | Xa C nil(R)} will stand for the weak
annihilator of X in R (see [11]). Due to Ouyang and Birkenmeier [11], a right ideal I of R is a
right quasi-prime ideal if I Z nil(R) and NAnng(I) = NAnng(I’) for every right ideal I’ C I
and I’ Z nil(R). Let R be an NI ring. An ideal p of R is called a nilpotent associated prime
of R if there exists a right quasi-prime ideal I such that o = NAnng(I). The set of nilpotent
associated primes of R is denoted by N Ass(R) (see [11]). Note that Ass(R) and NAss(R) are two
different sets in general. But if R is a reduced ring, then Ass(R) = NAss(R). In [11], Ouyang
and Birkenmeier also showed that the nilpotent associated primes of the Ore extension R[z; «, d]
can be determined in terms of the nilpotent associated primes of the ring R.

Motivated by the results in [1-5] and [11], in this article, we continue the study of 3-
associated primes of R. We first introduce the notion of Y-associated primes, which is a gen-
eralization of both associated primes and nilpotent associated primes, and investigate its basic
properties. We next describe the ¥-associated primes of the Ore extension R[z;a, ], the skew
Laurent polynomial ring R[z,2~1;a] and the skew power series ring R[[z;a]], in terms of the
Y-associated primes of R in a very straightforward way. As a consequence we extend and unify

several known results related to associated primes and nilpotent associated primes.

2. Y-associated primes

In this section we introduce the notion of Y-associated primes and investigate its basic

properties. We begin with the following definition.

Definition 2.1 Let U be an ideal of R. For a right ideal I of R, we say that I is ¥y-prime if
IZU andU :1=U:1I for every right ideal I' CT and I' Z U.

Let U be an ideal of R. In the following remark, we offer a few basic properties of the

Yy-prime ideals.

Remark 2.2 Let U be an ideal of R.
(1) If U = 0 where 0 denotes the zero ideal of R, then for any right ideal I of R, U : I =

rr(I), and so I is a Y- prime ideal if and only if I is a prime submodule of Rr. Let R be an
NI ring and let U = nil(R). Then U : I = NAnng([), and so [ is a ¥;(g)-prime ideal if and
only if [ is a right quasi-prime ideal. Hence both prime submodules of Rr and right quasi-prime
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ideals of R are special >-prime ideals.

(2) Any nonzero ideal of a domain R is a prime submodule of Rp, a right quasi-prime ideal

of R as well as a Xg-prime ideal of R.

(3) Recall that an ideal P of a ring R is said to be a prime ideal if P # R and for right
ideals U, V in R, UV C P implies that U C P or V C P. Hence if U is a prime ideal, then for
all right ideals I and I’ with I € U, I’ CT and I’ ZU,wehave U : [ =U :I' =U. Soif U is a
prime ideal, then any ideal I € U is Xy-prime.

(4) Let U be an ideal of R and let I and J be right ideals of R with I Z U and J £ U. If
U:1+#U:J,then I J is not Ey-prime. Hence the direct sums of Yy -prime ideals need not
be Yy-prime. So the direct products of Xy-prime ideals also need not be Xy-prime.

(5) Let U be an ideal of R and I a right ideal of R with I Z U. If all the right ideals J ; I
are contained in U, then [ is Xy-prime.

Let U be an ideal of R and I a right ideal of R. Suppose that

a aiz - Qin

0 a e aon
R, = ) ) . |a,aij€R s

)
s

b bz -+ bin
0 b - boy
I = S : | bbij €1y,
0 O b
and
T T12 - Tin
O x B Ton
Tn(U): . . . . |£UEU,(EZ']'€R
0 0 x

Then under usual matrix operations, I, is a right ideal of R,,, and T;,(U) is an ideal of R,,.

Proposition 2.3 Let U be an ideal of R and I a right ideal of R. Then I,, is a ¥, (7)-prime
ideal of R, if and only if I is a X-prime ideal of R.

Proof =-. Suppose that I, is ¥, ()-prime and I’ is a right ideal of R with I’ C I and
I' ¢ U. We will show that U : I = U : I'. Since U : I C U : I’ is clear, it suffices to show
that U : I’ C U : I. Since I' C I and I’ € U, we have I/, C I, and I, ¢ T,,(U). Thus
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To(U) : I, = T, (U) : I}, since I, is ¥, ()-prime. If a € U : I', then

T T12

0 =z
for each )

0 O

xr T12

Tin

Tan

Thus for each = € I, we have

T1in
Top 0 a
) e T,(U)
T 0 0 a
a 0
O a “ e
€ I, and so ——_— : eT,U): I, =T,0) : L,.
0 0 a
0 a 0 0
0 =x 0 0 a 0
€ T, (U), and so xza € U
00 --- =x 00 --- a

for each z € I. Hence a € U : I and so U : [ = U : I'. Therefore I is Y y-prime.

<. Assume that I is ¥y-prime and V is a right ideal of R,, with V C I,, and V € T,,(U).
We see that T,,(U) : V =T,(U) : I,,. Clearly, T,,(U) : I, C T,,(U) : V. So we only need to show

the reverse containment. Consider the set defined as follows:

W:

12 Tin
0 r - 7o

rel|| . . . eV
0 O T

Then W is a right ideal of R with W C I. Since V' € T,,(U), we have W ¢ U. If

12

for each

Tin

T2an

Tin a a2 - Qln

Ton 0 a -+ aop
. € T, (U)

T 0 O a

€V, then ra € U for each r € W and so a € U : W. Since I is
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r Ti2 -0 Tin
O x e ZTon
Yy-prime, we have a € U : W = U : I. Hence for each o ) ] € I,,, we have
0 0 z
Tr Tiz - Tin a aiz2 -+ Qip
0 x e Ton 0 a e Aoy
e T, (U),
o 0 - z 0 0 - a

and so T,(U) : V C T,,(U) : I,. Hence T,,(U) : V = T,,(U) : I,. Therefore, I,, is X7, )-prime.
Based on Proposition 2.3, one may suspect that I,, may be ¥ -prime whenever I is ¥g-

prime. But the following example erases the possibility.

Example 2.4 Let R be a domain, U = 0 and I a nonzero right ideal of R. Then U; =

0 0
{( 0 0 )} and Iy = {( g e ) | a,a12 € I}. Obviously, I is Yy—o-prime since R is a
a

T
domain. Now we show that Is is not Xy,-prime. Since I # 0, we can find 2 eI,

0 =z

0 0
with = # 0. If o @ 4 = , then za = 0 and za2 + x12a = 0.
0 =z 0 a 0 0

From za = 0 and x # 0, we obtain ¢ = 0. From zajs + z12¢ = 0 and a = 0, we obtain

0 0 0 b
aig = 0. Thus Uy : I, = 0 O)}.ConsiderthesetV:{<O O>|bel}.Then

V is a right ideal of Ry with V' C Iy and V' & Us,. Let ¢ be a nonzero element of R. Since

0 b 0 0 0 0 b
“) = for each €V, we have Us : Iy # Uy : V. Therefore
0 0 0 0 0 0 0 0

I5 is not Xy,-prime.
From Example 2.4, we know that I,, need not be a prime submodule of (R,,)g, whenever I

is a prime submodule of Rp. As to right quasi-prime ideals, we have the following.

Corollary 2.5 Let R be a domain. Then for any nonzero right ideal I of R, I, is a right

quasi-prime ideal of R,,.

Proof Let U = 0. Then

0 zi2 -+ T1p
0 0 - a9,
0o 0 --- 0

Since R is a domain and U = 0, any nonzero right ideal I of R is ¥y —o-prime. Thus we complete

the proof by Proposition 2.3 and Remark 2.2.
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a 0 0
Let R be a ring and W(R) = az1 a a3 | |a,a;; € Rp. Then W(R) is a 3 x 3
0 0 a

subring of M3(R) under usual matrix addition and multiplication. Let U be an ideal and I a
right ideal of R. Define D(U) and W (I) as follows:

a 0 0
D(U) = az; a ax3 | |a€Uua; €R,
0 0 a
and
a 0 0
W(I) = a1 a a3 | |a,a; €l
0 0 a

Then D(U) is an ideal of W(R) and W (I) is a right ideal of W(R). O

Proposition 2.6 Let U be an ideal and I a right ideal of R. Then W (I) is ¥ p(y)-prime if and
only if I is ¥y-prime.

Proof By the same method as in the proof of Proposition 2.3, we complete the proof. [

Corollary 2.7 Let R be a domain. Then for any nonzero right ideal I of R, W(I) is a right
quasi-prime ideal of W (R).

0 0 0
Proof Let U = 0. Note that nil(W(R)) = a1 0 asz | |a;; € Ry = D(U). Then we
0 0 0

complete the proof by Proposition 2.6 and Remark 2.2. (I

Definition 2.8 Let U be an ideal of R. An ideal u of R is called Y.y-associated prime if there
exists a Ly-prime ideal I of R such that p = U : I. The set of Yy-associated primes of R is
denoted by ¥y-Ass(R).

Clearly, if p is Yy-associated prime, then p is a prime ideal of R. Let U = 0. Then p is
Yg-associated prime if and only if @ is an associated prime ideal of Rr. Suppose that R is an NI
ring and U = nil(R). Then g is ¥y—pi(g)-associated prime if and only if g is nilpotent associated
prime. Hence both associated primes and nilpotent associated primes are special Y-associated

primes.
Example 2.9 Let R be a domain and let

a aiz2 -+ Qip

Rn: . . . |a,aij€R
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and
0 ap - a,
0 0 - a,
U = . . . i |aij€R
0O 0 --- 0

Then for any ideal V of R, with V' Z U, we have U : V = U. Hence Xy-Ass(R,) = {U}.

k0
Example 2.10 Let k be any field, and consider the ring R = v & of 2 x 2 lower triangular

matrices over k. We can write down all of the proper nonzero right ideals of R :

et e R et

Note that m, m3 and « are ideals of R, and mg is a right ideal of R.

(1) Let U = 0. Then by [3], we have ¥¢-Ass(R) = Ass(Rr) = {m1}.

(2) Let U = o =nil(R). Then by [11], we have ¥, (r)-Ass(R) = NAss(R) = {m1, ma}.
(3) Let U = my. Then all the right ideals of R not contained in U = m; are mg and mg

with ma 2 m3. Now we show that mg is ¥,,,-prime. Clearly, m1 C my : mg since mam; = 0.

. a O 1 0 a 0 a 0
Given € mq : Mo, we have = € mi. Thena =0
b ¢ 0 0 b ¢ 0 0

a 0 L.
and so b € my. Hence my : mo = my. Similarly, we have mi : ms = m7. Therefore mso
c

is 3, -prime, and X, -Ass(R) = {m1}.
(4) Let U = mgo. Then all the right ideals of R not contained in ms are m;. By a routine

computations, we have my is ¥,,,-prime, and ¥,,,-Ass(R) = {ma}.

3. X-associated primes over extension rings

In this section we always denote the Ore extension by R[z;a,d], where o : R — R is an
endomorphism and § : R — R is an a-derivation. Recall that an a-derivation § is an additive
operator on R with the property that d(ab) = a(a)d(b) + §(a)b for all a, b € R. The elements of
R[z; o, 0] are polynomials in = with coefficients written on the left. Multiplication in Rx; «, d]
is given by the multiplication in R and the condition za = a(a)x + é(a) for all a € R.

For any 0 < i < j, fzj € End(R, +) will denote the map which is the sum of all possible
words in « and § built with ¢ letters a and j — i letters 4.

Using recursive formulas for the ff ’s and induction, as done in [8], one can show with a

routine computation that
J
tla = fo (a)z'.
i=0

This formula uniquely determines a general product of polynomials in R[z; «, 6] and will be used

freely in what follows.
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Let I be a subset of R. I[x;a,d] means the set {ug + u1z + -+ + u,2™ € R[z;, 0] | u; €
I,0 < i < n}, that is, for any skew polynomial f(x) = wy + wiz + -+ + upz™ € Rlz;,d],
f(z) € Ilz;, 0] if and only if u; € I for all 0 <4 <n.

Let a be an endomorphism and ¢ an a-derivation of R. Following Hashemi and Moussavi
[6], a ring R is said to be a-compatible if for each a,b € R,ab = 0 < aa(b) = 0. Moreover, R
is called d-compatible if for each a,b € R,ab = 0 = ad(b) = 0. If R is both a-compatible and
d-compatible, then R is said to be («, d)-compatible.

Let I be an ideal of R. Due to Hashemi [7], I is said to be a-compatible if for each a,b €
R,ab € I < aa(b) € 1. Moreover, I is called §-compatible if for each a,b € R,ab € I = ad(b) € I.
If I is both a-compatible and d-compatible, then I is said to be (a,d)-compatible. Clearly, a
ring R is an («, §)-compatible ring if and only if 0 is an («, §)-compatible ideal.

The following lemma appears in [7].

Lemma 3.1 ([7, Proposition 2.3]) Let I be an (o, d)-compatible ideal, and a, b € R.

(1) Ifab € I, then aa™(b) € I and a™(a)b € I for every positive integer n. Conversely, if
ac®(b) or o (a)b € I for some positive integer k, then ab € I.

(2) Ifab € I, then a™d0™(b) € I and 6™ (a)a™(b) € I for any nonnegative integers m, n.

Lemma 3.2 Let I be an («, d)-compatible ideal and a, b € R. If ab € I, then afij(b) c I and
fap el forall0<i<j.

Proof It follows directly from Lemma 3.1.
Lemma 3.3 Let U be an («, §)-compatible ideal. If mr € U, then ma'r € Ulx; , d].

Proof We have ma'r = mfi(r) + mfi(r)z +--- +mfi_ (r)"~ + ma’(r)z’. Then by Lemma
3.2, we complete the proof. O

Proposition 3.4 Let U be an («, §)-compatible ideal and I a right ideal of R with p =U : I.
If I is ¥y-prime, then we have the following.

(1) plx;a,d] =Ulz;a,d] : I[z; o, 0].

(2) I[z;,9] is Xyz;a,s)-prime.

Proof (1) Let i(z) = ag+a1z+- - +ana™ € I[z;a,d] and p(z) = bo+brx+- - +by2™ € plx; , d].

Then
m—+n

S (Y (Lawsitn))s"

i@pe) = (D aa’) (3 bja!) =
i=0 7=0 k=0  stt=k i=s

Since a;b; € U for all 0 < i < m and 0 < t < n, we obtain a;fi(b;) € U by Lemma 3.2,
and so > ., (007" aifi(b)) € U for all 0 < k < m +n. Thus i(z)p(x) € Ulz; o, d] and so
Ulz; o, 0] : I[x; o, 0] 2 pla; o, 0].

In order to prove the reverse inclusion, let f(z) = >I" a;2* € Ulz;a, 8] : I[2;a,8]. Then
for each r € I, we have rf(z) = > 1" ra;z’ € Ulz;a,d] and so ra; € U for each r € I and
each 0 < ¢ < m. Thus for each 0 < ¢ <m, a; € U : I = p and so f(x) € p[r;«,d]. Hence
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Ulz; o, 0] : I[x; a, 0] C pla; a, 8]. Therefore Ulz; ., §] : Ix; o, 6] = plx; o, 0] is proved.
(2) Tt suffices to show that for every i(z) € I[z;,d] and i(x) € Ulz; «, d], we have

Ulz; a, 0] : (i(z)R[x; @, 6]) = Ulz; o, 0] = Iz, 6] = pla; o, 6],

where i(x)R[x; o, 0] denotes the right ideal of R[x;a, ] generated by i(x).
In the following we use essentially the same method as in the proof of [2, Theorem 2.1] to

claim the above statement. Clearly,
Ulz; a, 6] : (i(x)Rlz; o, 6]) 2 Ulz; o, 8] : Iz, 6] = plz; v, 6]

Now assume that the reverse inclusion fails. There would exist an element g(x) & p[z; a, §] such
that i(z) R[z; o, 6]g(x) € Ulz; a, d]. Choose g(x) = Zi’:o a;z* (a; # 0) of smallest possible degree
[ satisfying these conditions.

Suppose that a; € ¢ = U : I. Then ¢'(x) = Zi;é a;xt ¢ plr;a,d], and since a;z! €
plr; a, 8] C Ulx; o, 8] : (i(z)R[z; @, 6]), we would have i(x)R[x; o, 0]’ (z) € Ulz;a,6]. But now
the fact that ¢'(x) has degree less than [ contradicts the minimality of . Thus we may assume
that a; € . Let i # 0 be the leading coefficients of i(z) € I[z;,d]. Since I is Xy-prime,
U : (ixR) = U : I = p where i;R is the right ideal of R generated by i;. Hence there exists
r € R with iyra; ¢ U. By the a-compatibility, iza”(ra;) ¢ U. So the leading coefficient of
i(x)rg(x) is not contained in U, contradicting the statement that i(z)R[z; o, §]g(x) C Ulz; v, 9]
Thus we finish the proof of (2). O

Let U be an ideal of R and m(z) = mo +myz + - -+ + mga® + - + mpua™ € Ulz; o, 6]. If
my € U, and m; € U for all ¢ > k, then we say that the X-degree of m(z) is k. To simplify
notations, we write Xdeg(m(z)) for the 3-degree of m(z). If m(x) € Ulx; a, ], then we define
Ydeg(m(z)) = —1.

Definition 3.5 Let m(x) = mo+myz+- - -+mpaF+- - +m,z" & Ulz; a, §] with Xdeg(m(x)) = k.
We say that m(zx) is a X-good polynomial if for any i < k, U : my C U : m,.

In the following example, we offer a few natural constructions of ¥-good polynomials.

Example 3.6 Let U be an ideal of R.

(1) Any element not contained in U is a X-good polynomial of X-degree 0.

(2) Anideal P of R is called a completely prime ideal if ab € P implies that a € P or b € P.
If U is a completely prime ideal and m ¢ U, then any skew polynomial with leading coefficient
m is a X-good polynomial.

(3) Let U be an («,d)-compatible completely prime ideal and m ¢ U. If b € R with
ma"b ¢ Ulx; o, d], then the skew polynomial maz™b is a 3-good polynomial of X-degree n and
leading coefficient ma”™ (b).

(4) Suppose that m(x) is a X-good polynomial. Then m(z)z* is also 3-good for any i > 0.

Lemma 3.7 For any m(z) = mo +miz + -+ + mpa® + -+ + mua" & Ulw; a, 8], if U is (, §)-
compatible, then there exists r € R such that m(x)r is a X-good polynomial.
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Proof Assume the result is false and let m(z) = mo+myz+- - -+mpaf+- - -+m,2z" € Ulz; a, 6] be
a counterexample of minimality ¥-degree & > 1. In particular, m(x) is not a 3-good polynomial.
Hence there exists ¢ < k such that U : my € U : m;. So we can find b € R with myb € U and
m;ib & U. Note that the degree k coefficient of m(z)b is mea®(b)+ 3.1, |, m; fi(b) and mpa®(b) €
U due to the («,d)-compatibility of U. On the other hand, we have Xdeg(m(z)) = k. Thus
m; € U for all i > k, and so m; f(b) € U for all k < i <n. Thus mea®(b)+> 1, .1 mifi(b) €U
and so m(z)b has X-degree at most k — 1. Now we show that m(x)b ¢ U[x; «, d]. Suppose on the
contrary that m(z)b € Ulz;,d]. Then we have

m(z)b =(mo +miz + - +mpa® + - + muz")b

S )+ (imsff<b>)x+-.-+ (Xn:msf,j(b)>a:k+---+
s=0 s=1 s=k
mypa”(b)a” € Ulx; a, d].

So we have
n

S omafi() €U, Y mafia() €U, > mofii(b) €U.
s=i s=i+1 s=k—1
From Y7, ,m,fi_,(b) € U and the conditions that:
(a) m; €U for all i > k,
(b) mgbe U,
(¢) U is an (a, d)-compatible ideal,
we obtain that my_1b € U. Similarly, we obtain my_ob € U,my_3b € U,...,m;b € U. This
contradicts the fact that m;b ¢ U. Thus m(x)b ¢ Ulx; a, §]. By the minimality of k, we know that
there exists ¢ € R with m(z)bc X-good, which contradicts the fact that m(x) is a counterexample
to the statement. [J

Lemma 3.8 Let U be an («, §)-compatible ideal and m(zx) = mo+myz+- - -+mpxF 4 - +m,a"
be a ¥-good polynomial with Y.deg(m(z)) = k. Then for any r € R with m(x)r & Ulx; «, 4], we
have m(x)r is also a ¥-good polynomial with Ydeg(m(x)r) = k.

Proof We have
m(x)r = (mg +miz + -+ mpat + - Fmua™)r
n n n
= stfg(r) + (Z msf7(r))z+ -+ (Z ms fi(r)a® + -+ mpa”(r)a”
s=0 s=1 s=k
= Ao+ A4+ Ak o+ Ay

where A, =370 msf(r), p=0,1,...,n.
Since Xdeg(m(x)) =k, we have m; € U for all j > k, and so A; = Z;L:j msfi(r) €U (j >
k), and 377 . ., msfi(r) € U. Suppose

n

Ay = stfjs(r) =mgaf(r) + Z ms fi(r) € U.
s=k

s=k+1
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Then mya*(r) € U, and so by Lemma 3.1, we have myr € U. Since m(z) is a ¥-good polynomial
with Xdeg(m(x)) = k, we have m;r € U for all 0 < ¢ < k, and so m;r € U for all 0 < ¢ < n. Then
it is easy to see that m(z)r € Ulx;q, ], contradicting the fact that m(x)r & Ulz;a, ). Thus
we obtain Ydeg(m(xz)r) = k. If a € U : Ay, then Aga = mpa®(r)a+ (3o_, 1 msfi(r))a € U,
and so mya®(r)a € U since my € U for all s > k. Then by Lemma 3.1, we obtain myra € U.
Since m(z) is a X-good polynomial with Xdeg(m(z)) = k, we have m;ra € U for all i < k, and
so myra € U for all 0 < ¢ < n. Since U is an («,d)-compatible ideal, it is easy to see that
Aja= (3", msfi(r))a € U. Hence U : Ay, CU : A, for all i < k. Therefore m(z)r is a X-good
polynomial. [J

A ideal I of R is a Y-ideal if a?b € I implies ab € I for all a, b € R.

Proposition 3.9 Let U be an («a,d)-compatible ideal and m(x) = mg + mix + - -+ + mpa* +
-+ mux™ be a X-good polynomial with Xdeg(m(z)) = k and U : (myR) = p, where mpR
denotes the right ideal of R generated by my. Then we have the following.

(1)  We have Ulz;a,d] : (m(z)R[z; o, 0]) = plx;«,d], where m(x)R[z;«, ] denotes the
right ideal of R[x;a, ] generated by m(z).

(2) IfU is a ¥-ideal and m(x)R[z; a,d] is Xy(g;q,6)-prime, then my R is Yy-prime.

Proof (1) We first show that
Ulz; o, 0] : (m(z)R[z; o, 6]) 2 plz; o, d].

Let r(z) = 1o + mz + -+ + 752° + -« + rzt € R[z;, ] with Xdeg(r(z)) = s, and h(z) =
ho + hiz + -+ + byt + -+ + hga? € p[z;a, 6] with Xdeg(h(z)) = I. In order to show that
m(z)r(x)h(x) € Ulz; a, d], we need only to show that

k s .
(;mlxz) (;zjj) (%hﬂ?v) € Ulz; a, d].

A typical term of (3%, miz') (35— i) () g ho?) is mzir;aih,a. The coefficients of
m;a'rjzlhya? can be written as sums of monomials in m;, f2(r;) and f3(h,). Consider each
monomial m; f5 (r;) f3(hy). Since hy, € p = U : (mgyR), we have myRh, C U. Since m(x) is
a Y-good polynomial with Ydeg(m(xz) = k, we obtain m;Rh, C U for all i < k. Since U is
(a, 6)-compatible, by Lemma 3.2, we obtain m; f2(R)f(h,) C U, and so m; f2(r;)f3(hy) € U.

Thus m;z'r;z?hya? € Ulz; a,d] and so

k s .
(;mixi> (Zorjwj) (;hvxv) € Ulx; o, d].

Hence Ulz; , 6] : (m(z)R[z; o, 8]) 2 plz; «, 6]

For the reverse inclusion, assume that g(x) = bg+biz +-- -+ bzl +- -+ bpa™ € Ulz; a, 4]
(m(z)R[z; a, 0]) with Xdeg(g(z)) = I. Then we have m(z)R[z; «, d]g(x) C Ulx; v, 6]. Note that
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m(z)R[z; a, 8]g(x) C Ulzx; e, §] if and only if

(Z:mZ ) e 5(2() 1:]> CU[z; v, ]

if only if
k l

(Zmixi)R(ijxj) CU[x; 4.

i=0 j=0

The leading coefficients of
k l
( Z mm’) R( Z bjxj)
i=0 j=0

is mpa®(Rb;). Since U is (o, §)-compatible, by Lemma 3.1, we obtain myRb C U, and so
by € p = U : (mpR). Since m(z) is a 3-good polynomial with Xdeg(m(x)) = k, we obtain
m;Rby C U for all 0 < ¢ < k. Thus from (Z?:o mixi)R(Zé:O bjzl) C Ulz;a,d], we obtain
F, mzxZ)R(Zé;B bjz?) C Ulx;a,d]. Using the same method as above, we obtain b;_; € p.
Continuing this procedure yields b; € o,b;_1 € @,...,by € p. Since b, € U for all v > [, it is easy
to see that for all v > I, b, € U : (myR) = p. Hence for all 0 < j < m, b; € p. So g(x) = by +
biz+- -+l +bna™ € plz; a, ], which implies that U[z; o, 8] : (m(x)R[x; v, 6]) C pl; a, d].
Therefore Ulx; o, 8] : (m(x)R[x; o, 0]) = plx; o, 0].

(2) Since my ¢ U, we have mpR ¢ U. Assume that a right ideal Q@ C miR, and Q ¢
U. Then U : Q@ D U : (mpR). Now we show that U : Q C U : (mpR) = p. Set W =
{m(z)r | r € Q}, and let WR[z; o, §] be the right ideal of R[z;«,d] generated by W. Clearly,
WR|z;a,0) € m(x)R[x;a,0]. Since @ € U, there exists a € R such that mpa € Q and
mga & U. If my - mpa € U, then by the condition that U is a -ideal, we have mpa € U.
This contradicts the fact that mia ¢ U. Thus my - mipa € U. Now we show that m(z)mya &
Ulz; o, 0]. Assume on the contrary that m(z)mia € Ulz; «, d]. Since Xdeg(m(z)) = k, we have
m(z)mpa € Ulz;a,d] if and only if (mg + miz + - -+ + mpa®)mpa € Ulr;a,8]. The leading
coefficient of (mg +myz + - - -+ mpa®)mypa is mpa®(mya). Thus we have mya®(mypa) € U, and
so mymypa € U since U is («, d)-compatible. This contradicts the fact that mymia ¢ U. Hence
m(z) - mra € Ulz; o, 6], and so W R[z; «, 0] € Ulz; a, 0. Since m(z) R[x; a, 6] is Xy(z;a,5)-Prime,
we obtain

Ulr;a, 6] - (WRz; o, 6]) = Ulz; o, 6] : (m(x)R[z; o, 0]) = plz; o, d].

Suppose ¢ € U : Q. Then rq € U for each r € Q. For any m(x)rf(x) € WR[z;«,d] where
f(z) =ap+arz+---+az' € R[z;a, 0] and r € Q. The typical term of m(z)r f(x) is m;z'rajai.
Since ra; € Q, we have rajq € U. Then by Lemma 3.3, we have ra;z'q € Ulz;a,d] and so
m;x'rajzlq € Ulz; o, §]. Thus for any

Zm yrifi(z) € WR[z; , 6],

it is easy to see that

(X m@refi@))a € Ulas e,
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Hence
q € Ulz;a, ] : WR[z; a0, 6]) = Ulz; e, 8] : (m(x)R[zx; o, 0]) = pla; v, d],

and so ¢ € p =U : (mgR). Thus U : Q C U; (myR), and this implies that U : Q@ = U : (myR).
Therefore mp R is Yy-prime. O
With the help of Propositions 3.4 and 3.9, we get the central result of this paper.

Theorem 3.10 Let U be an («a, §)-compatible ¥-ideal. Then we have
YUlzsa,0)-Ass(R[z; o, 0]) = {p[z; o, 0] | p € By-Ass(R)}.

Proof Let p € Yy-Ass(R). By definition, there exists a right ideal I € U with I being 3y -prime
and p = U : I. Then by Proposition 3.4, we have p[x;a,d] = Ulx; o, 0] : I[z;a,d] and I[z; «, 0]
is Xy(zia,6-prime. Thus p[z; a, 0] € Xy(pia,6-Ass(R[z; a, 0]) and so

YUlzsa,0)-Ass(R[x; o, 0]) D {p[z; o, 0] | p € By-Ass(R)}.
Now we prove C in Theorem 3.10. Let I € Xyya,5-Ass(R[x; , 6]). By definition, there exists
a Ly[za,0)-Prime ideal £ with I = Ulx;a,d] : £. Pick any m(x) = mo +miz +--- + mpxk +
o+ mpa”™ € £ and m(z) € Ulz;a,d]. By Lemma 3.7, we may assume that m(z) is X-good,

and Ydeg(m(z)) = k. Since £ is Yy[y;q,5-prime, we have
I=Ulz;o,0]): £ =Ulz;a,6] : (m(z)R[z; o, d])
and m(x)R[z;a,0] is also Xy(z.q,s-prime. Let o = U : (mgR). Then by Proposition 3.9, we
have I = p[z; a, 0], and my R is Xy-prime. Hence
EU[r;a,&]'ASS(R[x; Q, 5]) - {@[x, Ck,(;] | P e ZU—ASS(R)}'
Therefore
YUlzsa,0-Ass(R[z; o, 0]) = {plz; o, 6] | p € Xy-Ass(R)}. O

Corollary 3.11 Let U be a ¥-ideal of R. Then we have the following;
(1) IfU is a-compatible, then ¥yy.q)-Ass(R[z; a]) = {plr;a] | p € Ey-Ass(R)}.
(2) IfU is §-compatible, then Xy(,.5-Ass(R[z;d]) = {p[r; 0] | p € Ly-Ass(R)}.

Corollary 3.12 Let R be an («a, §)-compatible NI-ring.
Znil(R)[:c;oz,ﬁ]'ASS(R[‘r; a, 5]) = {p[.’]ﬁ, 04,(5] | (S Znil(R)'ASS(R)}'

Proof Let U = nil(R). Then by [10, Lemma 2.4] and [10, Lemma 2.5], it is easy to see that
nil(R) is an («, §)-compatible X-ideal. According to Theorem 3.10, we complete the proof. O

Corollary 3.13 ([11, Theorem 3.1]) Let R be an (a,d)-compatible 2-primal ring. Then
NAss(R[z; a,0]) = {plr;a,0] | p € NAss(R)}.

Proof Let U = nil(R). Using the same method as in the proof of Corollary 3.12, we obtain
nil(R) is an (o, d)-compatible X-ideal. In view of [11, Corollary 2.2], we have nil(R)[z; o, d] =
nil(R[x; a, ¢]). Then according to Theorem 3.10, we complete the proof. O
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Corollary 3.14 Let R be a 2-primal ring. Then NAss(R[z]) = {p[x] | p € NAss(R)}.

Proof It follows from Corollary 3.13.

Note that if R is an («, d)-compatible ring and 0 a X-ideal, then by Theorem 3.10, we obtain
Ass(R[z; o, 8]) = {p[r;, 0] | o € Ass(R)}. But by using some special nice properties of zero
ideal, Annin showed that the condition that 0 is a X-ideal is superfluous [2, Theorem 2.1].

Let a be an automorphism of a ring R. The skew Laurent polynomial ring R[z,r~';a] is
the ring where elements are the form Y. _a;z" where s, n € Z. The addition is defined as usual
and the multiplication by x'b = a'(b)x for any i € Z. Let I be a right ideal of R. I[x,z7%;q]
means the set {d ;" a;2’ € R[z,27';a] | a; € I for all s <i < n}. For skew Laurent polynomial

rings, we can derive results analogous to Theorem 3.10 above. [J

Theorem 3.15 Let a: R — R be an automorphism. If U is an a-compatible ¥-ideal, then
EU[I’I—I;Q]—ASS(R[Z‘,xil; a]) = {p[z,z7 0] | p € Zy-Ass(R)}.

Proof All statements here are proved in essentially the same way as Theorem 3.10, so we will

discuss the proof briefly. First we observe that if U is a-compatible, then U is a‘-compatible for

all i € Z. Let I be a right ideal of R with I U and p = U : I. By using the same way as in the

proof of Proposition 3.4, we can show that if I is Sy-prime, then I[x, 27 1; a] is YU[z,0-1;0)-Prime

1

and Ulx,z ;0] : Ilz,27 ;0] = plr, 271 o). Thus

EU[wjx_l;a]—Ass(R[x,x_l;a]) D {plz,z " a] | p € Dy-Ass(R)}.
Let m(z) = > m;z" be a skew Laurent polynomial in R[z, 2™ !; a]. We say that Ydeg(m(z)) =
k if there exists some k € Z such that my ¢ U and m; € U if i > k. We say that m(x) =
S muzt with Xdeg(m(z)) = k is a ¥-good skew Laurent polynomial if U : my, C U : m; for
all ¢ < k. Then by using the same way as in the proof of Proposition 3.9, we obtain that
EU[w’z—l;a]—ASS(R[Z',Iil;a]) C{plz,z7 0] | p € Zy-Ass(R)}.
Therefore
EU[x’I—l;a]—ASS(R[z,Iil; a]) = {plz, 2 a] | p € y-Ass(R)}.
Corollary 3.16 We have the following:
(1) Let R be an a-compatible NI-ring where « is an automorphism of R. Then
Znil(R)[w,m_l;a]“ASS(R[x’1'71; Oé]) = {@[xvxil; 0[] | P < Enil(R)_lASS('R)}'
(2) Let R be an a-compatible 2-primal ring where « is an automorphism of R. Then
NAss(R[z, 2" ;a]) = {p[r, 7 a] | p € NAss(R)}.

Proof (1) Let U = nil(R). Using the same method as in the proof of Corollary 3.12, we have
nil(R) is an a-compatible X-ideal. Then according to Theorem 3.15, we complete the proof.

(2) Let U = nil(R). By the proof of (1), we have nil(R) is an a-compatible ¥-ideal.
Analogously to [10, Lemma 2.6], we show that nil(R)[z,z~1;a] = nil(R[z,z7!;a]). According
to Theorem 3.15, we complete the proof. [
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Corollary 3.17 Let R be a 2-primal ring. Then
NAss(R[z, 27 1]) = {plz, 2] | p € NAss(R)}.

Proof It follows directly from Corollary 3.16.

Let a: R — R be an endomorphism and U an ideal of R. In the following we investigate
the relationship between the X-associated primes of the skew power series ring R[[z; ] and that
of the ring R. [J

Definition 3.18 Let k € Z and m(z) = ;- mz’ & Ul[x; o). We say that m(z) is a k-X-good
power series if mp, € U, and U : my, CU :m; ifi < k.

Definition 3.19 Let U be an ideal of R and m(z) = ;= m;z’ ¢ U[[z;a]]. We say that m(x)
is a X-good power series if there exists some k € 7Z such that my ¢ U and U : my, C U : my if

i#k.
Proposition 3.20 Let U be an ideal of R and m(z) = Y ;o m;z’ € Ul[z;al]l. If R is a left

perfect ring, then there exists r € R such that m(zx)r is a X-good power series.

Proof Note that if my € U for some k € Z, then U : m; = R, and so for any coefficient m; of
m(x), we have U : m; C U : my. Hence without loss of generality, we may assume that m; ¢ U
for all 0 < i < oo. Consider the polynomial m!(x) = mg + miz. By Lemma 3.7, there exists
r1 € R such that m!(z)r; is a ¥-good polynomial, and so there exists r; € R such that m(z)r
is a 1-X-good power series. Then inductively, we can find r; € R such that m(z)rire---r; is

i-Y-good. Consider the descending chain of cycle right modules
m(z)R 2 m(z)riR 2 m(x)riraR 2D -

Since R is left perfect, this chain stabilizes, say at m(z)rire - - rpR. Let m/(z) = m(x)riry - - - rg.
Then by analogy with the proof of [1, Theorem 5.2], we can show that m'(z) = m(z)rire -1y

is a Y-good power series. []

Theorem 3.21 Let R be a left perfect ring and U an a-compatible Y-ideal. Then
S o)) (Rllz; of]) = {pllz; o] | p € Zu-Ass(R)}.
Proof By analogy with the proof of [1, Theorem 5.1], we can show that
Sufwsa)) (Rl[z; af]) 2 {pllz; a]] | p € Tuy-Ass(R)}.
Then by analogy with proof of Proposition 3.10, we can see the reverse containment. [

Corollary 3.22 Let R be an a-compatible left perfect ring. Then we have the following:
(1) If R is an NI-ring, then

Znil(R) [z~ Ass(R[[z; of]) = {p[[z; o] | p € Tniir)-Ass(R)}.
(2) If R is a right noetherian NI ring, then
NAss(R[[z; o]]) = {p[[z; o]] | p € NAss(R)}.
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Proof (1) Let U = nil(R). Using the same method as in the proof of Corollary 3.12, we can
show that nil(R) is an a-compatible ¥-ideal. Then we complete the proof by Theorem 3.21.

(2) Let U = nil(R). By the proof of (1), we obtain that nil(R) is an a-compatible ¥-ideal.
Since R is a right noetherian NT ring, by Levitzki’s Theorem [9], nil(R) is nilpotent. Then by
[12, Proposition 2.5], we can show that nil(R)[[z; «]] = nil(R][[x; «]]). Then by Theorem 3.21 we
complete the proof. O

Note that if R is an a-compatible left perfect ring, and 0 is a ¥-ideal, then by Theorem
3.21, we obtain that

Ass(R[[z; ol]) = {pllz; of] | p € Ass(R)}. (%)

But we must mention that the condition that 0 is a X-ideal is superfluous. Annin showed in [1,
Theorem 5.2] that if R is an a-compatible left perfect ring, then the equation (x) above is also

true.
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