Journal of Mathematical Research with Applications Sept., 2015, Vol. 35, No. 5, pp. 505–520 DOI:10.3770/j.issn:2095-2651.2015.05.004 Http://jmre.dlut.edu.cn

Σ -Associated Primes over Extension Rings

Lunqun OUYANG^{1,*}, Jinwang LIU¹, Yueming XIANG²

1. Department of Mathematics, Hunan University of Science and Technology, Hunan 411201, P. R. China;

2. Department of Mathematics and Applied Mathematics, Huaihua University, Hunan 418000, P. R. China

Abstract In this paper we introduce a concept, called Σ -associated primes, that is a generalization of both associated primes and nilpotent associated primes. We first observe the basic properties of Σ -associated primes and construct typical examples. We next describe all Σ -associated primes of the Ore extension $R[x; \alpha, \delta]$, the skew Laurent polynomial ring $R[x, x^{-1}; \alpha]$ and the skew power series ring $R[[x; \alpha]]$, in terms of the Σ -associated primes of R in a very straightforward way. Consequently several known results relating to associated primes and nilpotent associated primes are extended to a more general setting.

Keywords associated prime; Ore extension; Σ -associated prime

MR(2010) Subject Classification 16D25

1. Introduction

Throughout this paper all rings R are associative with identity, and all modules are right unital. The set of all nilpotent elements of R is denoted by $\operatorname{nil}(R)$. A ring R is called an NIring [10] if $\operatorname{nil}(R)$ forms an ideal, and a ring R is reduced if it has no nonzero nilpotent elements. Let U and V be two nonempty subsets of R. We define $U : V = \{x \in R \mid Vx \subseteq U\}$. If V is singleton, say $V = \{m\}$, we use U : m in place of $U : \{m\}$. It is easy to see that if U, V are two right ideals of R, then U : V is an ideal of R and such an ideal is usually called the quotient of U by V.

Given a right *R*-module N_R , the right annihilator of N_R in *R* is denoted by $r_R(N_R) = \{a \in R \mid Na = 0\}$. We say that N_R is prime if $N_R \neq 0$, and $r_R(N_R) = r_R(N'_R)$ for every nonzero submodule $N'_R \subseteq N_R$ (see [1]). Let M_R be a right *R*-module. Then an ideal \wp of *R* is called associated prime of M_R if there exists a prime submodule $N_R \subseteq M_R$ such that $\wp = r_R(N_R)$. The set of associated primes of M_R is denoted by $Ass(M_R)$ (see [1]). Associated primes are well-known in commutative algebra for their important role in the primary decomposition, and have attracted a lot of attention in recent years. In [4], Brewer and Heinzer used localization

Received August 31, 2014; Accepted November 22, 2014

Supported by the National Natural Science Foundation of China (Grant No. 11071062) and the Scientific Research Fundation of Hunan Provincial Education Department (Grant No. 12B101).

^{*} Corresponding author

E-mail address: ouyanglqtxy@163.com (Lunqun OUYANG); Jwliu64@aliyun.com (Jinwang LIU); xymls999@126. com (Yueming XIANG)

theory to prove that the associated primes of the polynomial ring R[x] (viewed as a module over itself) over a commutative ring R are all extended; that is, every $\wp \in \operatorname{Ass}(R[x])$ may be expressed as $\wp = \wp_0[x]$, where $\wp_0 = \wp \cap R \in \operatorname{Ass}(R)$. Using results of Shock in [13] on good polynomials, Faith has provided a new proof in [5] of the same result which does not rely on localization or other tools from commutative algebra. In [1], Scott Annin showed that Brewer and Heinzer's result still holds in the more general setting of a polynomial module M[x] over a skew polynomial ring $R[x; \alpha]$, with possibly noncommutative base R. So the properties of associated primes over a commutative ring can be profitably generalized to noncommutative setting as well. For more details and properties of associated primes, we refer to [1–5].

For a set X of a ring R, $NAnn_R(X) = \{a \in R \mid Xa \subseteq nil(R)\}$ will stand for the weak annihilator of X in R (see [11]). Due to Ouyang and Birkenmeier [11], a right ideal I of R is a right quasi-prime ideal if $I \not\subseteq nil(R)$ and $NAnn_R(I) = NAnn_R(I')$ for every right ideal $I' \subseteq I$ and $I' \not\subseteq nil(R)$. Let R be an NI ring. An ideal \wp of R is called a nilpotent associated prime of R if there exists a right quasi-prime ideal I such that $\wp = NAnn_R(I)$. The set of nilpotent associated primes of R is denoted by NAss(R) (see [11]). Note that Ass(R) and NAss(R) are two different sets in general. But if R is a reduced ring, then Ass(R) = NAss(R). In [11], Ouyang and Birkenmeier also showed that the nilpotent associated primes of the Ore extension $R[x; \alpha, \delta]$ can be determined in terms of the nilpotent associated primes of the ring R.

Motivated by the results in [1–5] and [11], in this article, we continue the study of Σ associated primes of R. We first introduce the notion of Σ -associated primes, which is a generalization of both associated primes and nilpotent associated primes, and investigate its basic properties. We next describe the Σ -associated primes of the Ore extension $R[x; \alpha, \delta]$, the skew Laurent polynomial ring $R[x, x^{-1}; \alpha]$ and the skew power series ring $R[[x; \alpha]]$, in terms of the Σ -associated primes of R in a very straightforward way. As a consequence we extend and unify several known results related to associated primes and nilpotent associated primes.

2. Σ -associated primes

In this section we introduce the notion of Σ -associated primes and investigate its basic properties. We begin with the following definition.

Definition 2.1 Let U be an ideal of R. For a right ideal I of R, we say that I is Σ_U -prime if $I \not\subseteq U$ and U : I = U : I' for every right ideal $I' \subseteq I$ and $I' \not\subseteq U$.

Let U be an ideal of R. In the following remark, we offer a few basic properties of the Σ_U -prime ideals.

Remark 2.2 Let U be an ideal of R.

(1) If U = 0 where 0 denotes the zero ideal of R, then for any right ideal I of R, $U : I = r_R(I)$, and so I is a Σ_0 - prime ideal if and only if I is a prime submodule of R_R . Let R be an NI ring and let $U = \operatorname{nil}(R)$. Then $U : I = N\operatorname{Ann}_R(I)$, and so I is a $\Sigma_{\operatorname{nil}(R)}$ -prime ideal if and only if I is a right quasi-prime ideal. Hence both prime submodules of R_R and right quasi-prime

ideals of R are special Σ -prime ideals.

(2) Any nonzero ideal of a domain R is a prime submodule of R_R , a right quasi-prime ideal of R as well as a Σ_0 -prime ideal of R.

(3) Recall that an ideal P of a ring R is said to be a prime ideal if $P \neq R$ and for right ideals U, V in $R, UV \subseteq P$ implies that $U \subseteq P$ or $V \subseteq P$. Hence if U is a prime ideal, then for all right ideals I and I' with $I \not\subseteq U, I' \subseteq I$ and $I' \not\subseteq U$, we have U : I = U : I' = U. So if U is a prime ideal, then any ideal $I \not\subseteq U$ is Σ_U -prime.

(4) Let U be an ideal of R and let I and J be right ideals of R with $I \not\subseteq U$ and $J \not\subseteq U$. If $U: I \neq U: J$, then $I \bigoplus J$ is not Σ_U -prime. Hence the direct sums of Σ_U -prime ideals need not be Σ_U -prime. So the direct products of Σ_U -prime ideals also need not be Σ_U -prime.

(5) Let U be an ideal of R and I a right ideal of R with $I \not\subseteq U$. If all the right ideals $J \not\subseteq I$ are contained in U, then I is Σ_U -prime.

Let U be an ideal of R and I a right ideal of R. Suppose that

$$R_{n} = \left\{ \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \mid a, a_{ij} \in R \right\},$$
$$I_{n} = \left\{ \begin{pmatrix} b & b_{12} & \cdots & b_{1n} \\ 0 & b & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b \end{pmatrix} \mid b, b_{ij} \in I \right\},$$

and

$$T_n(U) = \left\{ \begin{pmatrix} x & x_{12} & \cdots & x_{1n} \\ 0 & x & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x \end{pmatrix} \mid x \in U, x_{ij} \in R \right\}.$$

Then under usual matrix operations, I_n is a right ideal of R_n , and $T_n(U)$ is an ideal of R_n .

Proposition 2.3 Let U be an ideal of R and I a right ideal of R. Then I_n is a $\Sigma_{T_n(U)}$ -prime ideal of R_n if and only if I is a Σ_U -prime ideal of R.

Proof \Rightarrow . Suppose that I_n is $\Sigma_{T_n(U)}$ -prime and I' is a right ideal of R with $I' \subseteq I$ and $I' \not\subseteq U$. We will show that U : I = U : I'. Since $U : I \subseteq U : I'$ is clear, it suffices to show that $U : I' \subseteq U : I$. Since $I' \subseteq I$ and $I' \not\subseteq U$, we have $I'_n \subseteq I_n$ and $I'_n \not\subseteq T_n(U)$. Thus

 $T_n(U): I_n = T_n(U): I'_n$ since I_n is $\Sigma_{T_n(U)}$ -prime. If $a \in U: I'$, then

$$\begin{pmatrix} x & x_{12} & \cdots & x_{1n} \\ 0 & x & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x \end{pmatrix} \begin{pmatrix} a & 0 & \cdots & 0 \\ 0 & a & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \in T_n(U)$$

$$\text{for each} \begin{pmatrix} x & x_{12} & \cdots & x_{1n} \\ 0 & x & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x \end{pmatrix} \in I'_n, \text{ and so} \begin{pmatrix} a & 0 & \cdots & 0 \\ 0 & a & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \in T_n(U) : I'_n = T_n(U) : I_n.$$

$$\text{Thus for each } x \in I, \text{ we have} \begin{pmatrix} x & 0 & \cdots & 0 \\ 0 & x & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x \end{pmatrix} \begin{pmatrix} a & 0 & \cdots & 0 \\ 0 & a & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \in T_n(U), \text{ and so } xa \in U$$

$$\text{for each } x \in I. \text{ Hence } a \in U : I \text{ and so } U : I = U : I'. \text{ Therefore } I \text{ is } \Sigma_U \text{-prime.}$$

 \Leftarrow . Assume that I is Σ_U -prime and V is a right ideal of R_n with $V \subseteq I_n$ and $V \not\subseteq T_n(U)$. We see that $T_n(U) : V = T_n(U) : I_n$. Clearly, $T_n(U) : I_n \subseteq T_n(U) : V$. So we only need to show the reverse containment. Consider the set defined as follows:

$$W = \left\{ r \in I \mid \begin{pmatrix} r & r_{12} & \cdots & r_{1n} \\ 0 & r & \cdots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r \end{pmatrix} \in V \right\}.$$

Then W is a right ideal of R with $W \subseteq I$. Since $V \not\subseteq T_n(U)$, we have $W \not\subseteq U$. If

$$\begin{pmatrix} r & r_{12} & \cdots & r_{1n} \\ 0 & r & \cdots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r \end{pmatrix} \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \in T_n(U)$$

for each $\begin{pmatrix} r & r_{12} & \cdots & r_{1n} \\ 0 & r & \cdots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r \end{pmatrix} \in V$, then $ra \in U$ for each $r \in W$ and so $a \in U : W$. Since I is

508

 Σ -associated primes over extension rings

 $\Sigma_{U}\text{-prime, we have } a \in U : W = U : I. \text{ Hence for each} \begin{pmatrix} x & x_{12} & \cdots & x_{1n} \\ 0 & x & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x \end{pmatrix} \in I_n, \text{ we have}$ $\begin{pmatrix} x & x_{12} & \cdots & x_{1n} \\ 0 & x & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x \end{pmatrix} \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \in T_n(U),$

and so $T_n(U): V \subseteq T_n(U): I_n$. Hence $T_n(U): V = T_n(U): I_n$. Therefore, I_n is $\Sigma_{T_n(U)}$ -prime.

Based on Proposition 2.3, one may suspect that I_n may be Σ_{U_n} -prime whenever I is Σ_U -prime. But the following example erases the possibility.

Example 2.4 Let R be a domain, U = 0 and I a nonzero right ideal of R. Then $U_2 = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$ and $I_2 = \left\{ \begin{pmatrix} a & a_{12} \\ 0 & a \end{pmatrix} \mid a, a_{12} \in I \right\}$. Obviously, I is $\Sigma_{U=0}$ -prime since R is a domain. Now we show that I_2 is not Σ_{U_2} -prime. Since $I \neq 0$, we can find $\begin{pmatrix} x & x_{12} \\ 0 & x \end{pmatrix} \in I_2$ with $x \neq 0$. If $\begin{pmatrix} x & x_{12} \\ 0 & x \end{pmatrix} \begin{pmatrix} a & a_{12} \\ 0 & a \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, then xa = 0 and $xa_{12} + x_{12}a = 0$. From xa = 0 and $x \neq 0$, we obtain a = 0. From $xa_{12} + x_{12}a = 0$ and a = 0, we obtain $a_{12} = 0$. Thus $U_2 : I_2 = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$. Consider the set $V = \left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \mid b \in I \right\}$. Then V is a right ideal of R_2 with $V \subseteq I_2$ and $V \not\subseteq U_2$. Let c be a nonzero element of R. Since $\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & c \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ for each $\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \in V$, we have $U_2 : I_2 \neq U_2 : V$. Therefore I_2 is not Σ_{U_2} -prime.

From Example 2.4, we know that I_n need not be a prime submodule of $(R_n)_{R_n}$ whenever I is a prime submodule of R_R . As to right quasi-prime ideals, we have the following.

Corollary 2.5 Let R be a domain. Then for any nonzero right ideal I of R, I_n is a right quasi-prime ideal of R_n .

Proof Let U = 0. Then

$$T_n(U) = \left\{ \begin{pmatrix} 0 & x_{12} & \cdots & x_{1n} \\ 0 & 0 & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \mid x_{ij} \in R \right\} = \operatorname{nil}(R_n).$$

Since R is a domain and U = 0, any nonzero right ideal I of R is $\Sigma_{U=0}$ -prime. Thus we complete the proof by Proposition 2.3 and Remark 2.2.

Let *R* be a ring and
$$W(R) = \left\{ \begin{pmatrix} a & 0 & 0 \\ a_{21} & a & a_{23} \\ 0 & 0 & a \end{pmatrix} \mid a, a_{ij} \in R \right\}$$
. Then $W(R)$ is a 3 × 3

subring of $M_3(R)$ under usual matrix addition and multiplication. Let U be an ideal and I a right ideal of R. Define D(U) and W(I) as follows:

$$D(U) = \left\{ \begin{pmatrix} a & 0 & 0 \\ a_{21} & a & a_{23} \\ 0 & 0 & a \end{pmatrix} \mid a \in U, a_{ij} \in R \right\},\$$

and

$$W(I) = \left\{ \left(\begin{array}{ccc} a & 0 & 0 \\ a_{21} & a & a_{23} \\ 0 & 0 & a \end{array} \right) \mid a, a_{ij} \in I \right\}.$$

Then D(U) is an ideal of W(R) and W(I) is a right ideal of W(R). \Box

Proposition 2.6 Let U be an ideal and I a right ideal of R. Then W(I) is $\Sigma_{D(U)}$ -prime if and only if I is Σ_U -prime.

Proof By the same method as in the proof of Proposition 2.3, we complete the proof. \Box

Corollary 2.7 Let R be a domain. Then for any nonzero right ideal I of R, W(I) is a right quasi-prime ideal of W(R).

Proof Let
$$U = 0$$
. Note that $\operatorname{nil}(W(R)) = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ a_{21} & 0 & a_{23} \\ 0 & 0 & 0 \end{pmatrix} \mid a_{ij} \in R \right\} = D(U)$. Then we complete the proof by Proposition 2.6 and Bemark 2.2 \Box

complete the proof by Proposition 2.6 and Remark 2.2. \Box

Definition 2.8 Let U be an ideal of R. An ideal \wp of R is called Σ_U -associated prime if there exists a Σ_U -prime ideal I of R such that $\wp = U : I$. The set of Σ_U -associated primes of R is denoted by Σ_U -Ass(R).

Clearly, if \wp is Σ_U -associated prime, then \wp is a prime ideal of R. Let U = 0. Then \wp is Σ_0 -associated prime if and only if \wp is an associated prime ideal of R_R . Suppose that R is an NI ring and $U = \operatorname{nil}(R)$. Then \wp is $\Sigma_{U=\operatorname{nil}(R)}$ -associated prime if and only if \wp is nilpotent associated prime. Hence both associated primes and nilpotent associated primes are special Σ -associated primes.

Example 2.9 Let R be a domain and let

$$R_{n} = \left\{ \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \mid a, a_{ij} \in R \right\}$$

510

and

$$U = \left\{ \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \mid a_{ij} \in R \right\}.$$

Then for any ideal V of R_n with $V \not\subseteq U$, we have U: V = U. Hence Σ_U -Ass $(R_n) = \{U\}$.

Example 2.10 Let k be any field, and consider the ring $R = \begin{pmatrix} k & 0 \\ k & k \end{pmatrix}$ of 2×2 lower triangular matrices over k. We can write down all of the proper nonzero right ideals of R:

$$\left\{m_1 = \begin{pmatrix} 0 & 0 \\ k & k \end{pmatrix}, m_2 = \begin{pmatrix} k & 0 \\ k & 0 \end{pmatrix}, m_3 = \begin{pmatrix} k & 0 \\ 0 & 0 \end{pmatrix}, \alpha = \begin{pmatrix} 0 & 0 \\ k & 0 \end{pmatrix}\right\}.$$

Note that m_1 , m_3 and α are ideals of R, and m_3 is a right ideal of R.

- (1) Let U = 0. Then by [3], we have Σ_0 -Ass $(R) = Ass(R_R) = \{m_1\}$.
- (2) Let $U = \alpha = \operatorname{nil}(R)$. Then by [11], we have $\Sigma_{\operatorname{nil}(R)}$ -Ass $(R) = NAss(R) = \{m_1, m_2\}$.

(3) Let $U = m_1$. Then all the right ideals of R not contained in $U = m_1$ are m_2 and m_3 with $m_2 \supseteq m_3$. Now we show that m_2 is Σ_{m_1} -prime. Clearly, $m_1 \subseteq m_1 : m_2$ since $m_2m_1 = 0$. Given $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in m_1 : m_2$, we have $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in m_1$. Then a = 0and so $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in m_1$. Hence $m_1 : m_2 = m_1$. Similarly, we have $m_1 : m_3 = m_1$. Therefore m_2

is Σ_{m_1} -prime, and Σ_{m_1} -Ass $(R) = \{m_1\}$.

(4) Let $U = m_2$. Then all the right ideals of R not contained in m_2 are m_1 . By a routine computations, we have m_1 is Σ_{m_2} -prime, and Σ_{m_2} -Ass $(R) = \{m_2\}$.

3. Σ -associated primes over extension rings

In this section we always denote the Ore extension by $R[x; \alpha, \delta]$, where $\alpha : R \longrightarrow R$ is an endomorphism and $\delta: R \longrightarrow R$ is an α -derivation. Recall that an α -derivation δ is an additive operator on R with the property that $\delta(ab) = \alpha(a)\delta(b) + \delta(a)b$ for all $a, b \in R$. The elements of $R[x;\alpha,\delta]$ are polynomials in x with coefficients written on the left. Multiplication in $R[x;\alpha,\delta]$ is given by the multiplication in R and the condition $xa = \alpha(a)x + \delta(a)$ for all $a \in R$.

For any $0 \le i \le j, f_i^j \in \text{End}(R, +)$ will denote the map which is the sum of all possible words in α and δ built with *i* letters α and j - i letters δ .

Using recursive formulas for the f_i^j 's and induction, as done in [8], one can show with a routine computation that

$$x^j a = \sum_{i=0}^j f_i^j(a) x^i.$$

This formula uniquely determines a general product of polynomials in $R[x; \alpha, \delta]$ and will be used freely in what follows.

Let I be a subset of R. $I[x; \alpha, \delta]$ means the set $\{u_0 + u_1x + \cdots + u_nx^n \in R[x; \alpha, \delta] \mid u_i \in I, 0 \leq i \leq n\}$, that is, for any skew polynomial $f(x) = u_0 + u_1x + \cdots + u_nx^n \in R[x; \alpha, \delta]$, $f(x) \in I[x; \alpha, \delta]$ if and only if $u_i \in I$ for all $0 \leq i \leq n$.

Let α be an endomorphism and δ an α -derivation of R. Following Hashemi and Moussavi [6], a ring R is said to be α -compatible if for each $a, b \in R, ab = 0 \Leftrightarrow a\alpha(b) = 0$. Moreover, Ris called δ -compatible if for each $a, b \in R, ab = 0 \Rightarrow a\delta(b) = 0$. If R is both α -compatible and δ -compatible, then R is said to be (α, δ) -compatible.

Let *I* be an ideal of *R*. Due to Hashemi [7], *I* is said to be α -compatible if for each $a, b \in R, ab \in I \Leftrightarrow a\alpha(b) \in I$. Moreover, *I* is called δ -compatible if for each $a, b \in R, ab \in I \Rightarrow a\delta(b) \in I$. If *I* is both α -compatible and δ -compatible, then *I* is said to be (α, δ) -compatible. Clearly, a ring *R* is an (α, δ) -compatible ring if and only if 0 is an (α, δ) -compatible ideal.

The following lemma appears in [7].

Lemma 3.1 ([7, Proposition 2.3]) Let I be an (α, δ) -compatible ideal, and $a, b \in R$.

(1) If $ab \in I$, then $a\alpha^n(b) \in I$ and $\alpha^n(a)b \in I$ for every positive integer n. Conversely, if $a\alpha^k(b)$ or $\alpha^k(a)b \in I$ for some positive integer k, then $ab \in I$.

(2) If $ab \in I$, then $\alpha^m \delta^n(b) \in I$ and $\delta^m(a) \alpha^n(b) \in I$ for any nonnegative integers m, n.

Lemma 3.2 Let I be an (α, δ) -compatible ideal and $a, b \in R$. If $ab \in I$, then $af_i^j(b) \in I$ and $f_i^j(a)b \in I$ for all $0 \le i \le j$.

Proof It follows directly from Lemma 3.1.

Lemma 3.3 Let U be an (α, δ) -compatible ideal. If $mr \in U$, then $mx^i r \in U[x; \alpha, \delta]$.

Proof We have $mx^i r = mf_0^i(r) + mf_1^i(r)x + \dots + mf_{i-1}^i(r)x^{i-1} + m\alpha^i(r)x^i$. Then by Lemma 3.2, we complete the proof. \Box

Proposition 3.4 Let U be an (α, δ) -compatible ideal and I a right ideal of R with $\wp = U : I$. If I is Σ_U -prime, then we have the following.

- (1) $\wp[x;\alpha,\delta] = U[x;\alpha,\delta] : I[x;\alpha,\delta].$
- (2) $I[x; \alpha, \delta]$ is $\Sigma_{U[x;\alpha,\delta]}$ -prime.

Proof (1) Let $i(x) = a_0 + a_1 x + \dots + a_m x^m \in I[x; \alpha, \delta]$ and $p(x) = b_0 + b_1 x + \dots + b_n x^n \in \wp[x; \alpha, \delta]$. Then

$$i(x)p(x) = \left(\sum_{i=0}^{m} a_i x^i\right) \left(\sum_{j=0}^{n} b_j x^j\right) = \sum_{k=0}^{m+n} \left(\sum_{s+t=k}^{m} \left(\sum_{i=s}^{m} a_i f_s^i(b_t)\right)\right) x^k.$$

Since $a_i b_t \in U$ for all $0 \leq i \leq m$ and $0 \leq t \leq n$, we obtain $a_i f_s^i(b_t) \in U$ by Lemma 3.2, and so $\sum_{s+t=k} (\sum_{i=s}^m a_i f_s^i(b_t)) \in U$ for all $0 \leq k \leq m+n$. Thus $i(x)p(x) \in U[x;\alpha,\delta]$ and so $U[x;\alpha,\delta] : I[x;\alpha,\delta] \supseteq \wp[x;\alpha,\delta].$

In order to prove the reverse inclusion, let $f(x) = \sum_{i=0}^{m} a_i x^i \in U[x; \alpha, \delta] : I[x; \alpha, \delta]$. Then for each $r \in I$, we have $rf(x) = \sum_{i=0}^{m} ra_i x^i \in U[x; \alpha, \delta]$ and so $ra_i \in U$ for each $r \in I$ and each $0 \leq i \leq m$. Thus for each $0 \leq i \leq m$, $a_i \in U : I = \wp$ and so $f(x) \in \wp[x; \alpha, \delta]$. Hence $U[x;\alpha,\delta]: I[x;\alpha,\delta] \subseteq \wp[x;\alpha,\delta].$ Therefore $U[x;\alpha,\delta]: I[x;\alpha,\delta] = \wp[x;\alpha,\delta]$ is proved.

(2) It suffices to show that for every $i(x) \in I[x; \alpha, \delta]$ and $i(x) \notin U[x; \alpha, \delta]$, we have

$$U[x;\alpha,\delta]:(i(x)R[x;\alpha,\delta]) = U[x;\alpha,\delta]:I[x;\alpha,\delta] = \wp[x;\alpha,\delta],$$

where $i(x)R[x; \alpha, \delta]$ denotes the right ideal of $R[x; \alpha, \delta]$ generated by i(x).

In the following we use essentially the same method as in the proof of [2, Theorem 2.1] to claim the above statement. Clearly,

$$U[x;\alpha,\delta]:(i(x)R[x;\alpha,\delta]) \supseteq U[x;\alpha,\delta]:I[x;\alpha,\delta] = \wp[x;\alpha,\delta].$$

Now assume that the reverse inclusion fails. There would exist an element $g(x) \notin \wp[x; \alpha, \delta]$ such that $i(x)R[x; \alpha, \delta]g(x) \in U[x; \alpha, \delta]$. Choose $g(x) = \sum_{i=0}^{l} a_i x^i$ $(a_l \neq 0)$ of smallest possible degree l satisfying these conditions.

Suppose that $a_l \in \wp = U : I$. Then $g'(x) = \sum_{i=0}^{l-1} a_i x^i \notin \wp[x; \alpha, \delta]$, and since $a_l x^l \in \wp[x; \alpha, \delta] \subseteq U[x; \alpha, \delta] : (i(x)R[x; \alpha, \delta])$, we would have $i(x)R[x; \alpha, \delta]g'(x) \in U[x; \alpha, \delta]$. But now the fact that g'(x) has degree less than l contradicts the minimality of l. Thus we may assume that $a_l \notin \wp$. Let $i_k \neq 0$ be the leading coefficients of $i(x) \in I[x; \alpha, \delta]$. Since I is Σ_U -prime, $U : (i_k R) = U : I = \wp$ where $i_k R$ is the right ideal of R generated by i_k . Hence there exists $r \in R$ with $i_k ra_l \notin U$. By the α -compatibility, $i_k \alpha^k (ra_l) \notin U$. So the leading coefficient of i(x)rg(x) is not contained in U, contradicting the statement that $i(x)R[x; \alpha, \delta]g(x) \subseteq U[x; \alpha, \delta]$. Thus we finish the proof of (2). \Box

Let U be an ideal of R and $m(x) = m_0 + m_1 x + \dots + m_k x^k + \dots + m_n x^n \notin U[x; \alpha, \delta]$. If $m_k \notin U$, and $m_i \in U$ for all i > k, then we say that the Σ -degree of m(x) is k. To simplify notations, we write $\Sigma \operatorname{deg}(m(x))$ for the Σ -degree of m(x). If $m(x) \in U[x; \alpha, \delta]$, then we define $\Sigma \operatorname{deg}(m(x)) = -1$.

Definition 3.5 Let $m(x) = m_0 + m_1 x + \dots + m_k x^k + \dots + m_n x^n \notin U[x; \alpha, \delta]$ with $\Sigma \operatorname{deg}(m(x)) = k$. We say that m(x) is a Σ -good polynomial if for any $i < k, U : m_k \subseteq U : m_i$.

In the following example, we offer a few natural constructions of Σ -good polynomials.

Example 3.6 Let U be an ideal of R.

(1) Any element not contained in U is a Σ -good polynomial of Σ -degree 0.

(2) An ideal P of R is called a completely prime ideal if $ab \in P$ implies that $a \in P$ or $b \in P$. If U is a completely prime ideal and $m \notin U$, then any skew polynomial with leading coefficient m is a Σ -good polynomial.

(3) Let U be an (α, δ) -compatible completely prime ideal and $m \notin U$. If $b \in R$ with $mx^n b \notin U[x; \alpha, \delta]$, then the skew polynomial $mx^n b$ is a Σ -good polynomial of Σ -degree n and leading coefficient $m\alpha^n(b)$.

(4) Suppose that m(x) is a Σ -good polynomial. Then $m(x)x^i$ is also Σ -good for any $i \ge 0$.

Lemma 3.7 For any $m(x) = m_0 + m_1 x + \dots + m_k x^k + \dots + m_n x^n \notin U[x; \alpha, \delta]$, if U is (α, δ) compatible, then there exists $r \in R$ such that m(x)r is a Σ -good polynomial.

Proof Assume the result is false and let $m(x) = m_0 + m_1 x + \dots + m_k x^k + \dots + m_n x^n \notin U[x; \alpha, \delta]$ be a counterexample of minimality Σ -degree $k \geq 1$. In particular, m(x) is not a Σ -good polynomial. Hence there exists $i \leq k$ such that $U : m_k \notin U : m_i$. So we can find $b \in R$ with $m_k b \in U$ and $m_i b \notin U$. Note that the degree k coefficient of m(x)b is $m_k \alpha^k(b) + \sum_{i=k+1}^n m_i f_k^i(b)$ and $m_k \alpha^k(b) \in U$ due to the (α, δ) -compatibility of U. On the other hand, we have $\Sigma deg(m(x)) = k$. Thus $m_i \in U$ for all i > k, and so $m_i f_k^i(b) \in U$ for all $k < i \leq n$. Thus $m_k \alpha^k(b) + \sum_{i=k+1}^n m_i f_k^i(b) \in U$ and so m(x)b has Σ -degree at most k-1. Now we show that $m(x)b \notin U[x; \alpha, \delta]$. Suppose on the contrary that $m(x)b \in U[x; \alpha, \delta]$. Then we have

$$m(x)b = (m_0 + m_1 x + \dots + m_k x^k + \dots + m_n x^n)b$$

= $\sum_{s=0}^n m_s f_0^s(b) + \left(\sum_{s=1}^n m_s f_1^s(b)\right) x + \dots + \left(\sum_{s=k}^n m_s f_k^s(b)\right) x^k + \dots + m_n \alpha^n(b) x^n \in U[x; \alpha, \delta].$

So we have

$$\sum_{s=i}^{n} m_s f_i^s(b) \in U, \sum_{s=i+1}^{n} m_s f_{i+1}^s(b) \in U, \dots, \sum_{s=k-1}^{n} m_s f_{k-1}^s(b) \in U.$$

From $\sum_{s=k-1}^{n} m_s f_{k-1}^s(b) \in U$ and the conditions that:

- (a) $m_i \in U$ for all i > k,
- (b) $m_k b \in U$,
- (c) U is an (α, δ) -compatible ideal,

we obtain that $m_{k-1}b \in U$. Similarly, we obtain $m_{k-2}b \in U, m_{k-3}b \in U, \ldots, m_ib \in U$. This contradicts the fact that $m_ib \notin U$. Thus $m(x)b \notin U[x; \alpha, \delta]$. By the minimality of k, we know that there exists $c \in R$ with $m(x)bc \Sigma$ -good, which contradicts the fact that m(x) is a counterexample to the statement. \Box

Lemma 3.8 Let U be an (α, δ) -compatible ideal and $m(x) = m_0 + m_1 x + \dots + m_k x^k + \dots + m_n x^n$ be a Σ -good polynomial with $\Sigma \operatorname{deg}(m(x)) = k$. Then for any $r \in R$ with $m(x)r \notin U[x; \alpha, \delta]$, we have m(x)r is also a Σ -good polynomial with $\Sigma \operatorname{deg}(m(x)r) = k$.

Proof We have

$$m(x)r = (m_0 + m_1 x + \dots + m_k x^k + \dots + m_n x^n)r$$

= $\sum_{s=0}^n m_s f_0^s(r) + (\sum_{s=1}^n m_s f_1^s(r))x + \dots + (\sum_{s=k}^n m_s f_k^s(r))x^k + \dots + m_n \alpha^n(r)x^n$
= $\Delta_0 + \Delta_1 x + \dots + \Delta_k x^k + \dots + \Delta_n x^n$

where $\Delta_p = \sum_{s=p}^{n} m_s f_p^s(r), \, p = 0, 1, \dots, n.$

Since $\Sigma \operatorname{deg}(m(x)) = k$, we have $m_j \in U$ for all j > k, and so $\Delta_j = \sum_{s=j}^n m_s f_j^s(r) \in U$ (j > k), and $\sum_{s=k+1}^n m_s f_k^s(r) \in U$. Suppose

$$\Delta_k = \sum_{s=k}^n m_s f_k^s(r) = m_k \alpha^k(r) + \sum_{s=k+1}^n m_s f_k^s(r) \in U.$$

Then $m_k \alpha^k(r) \in U$, and so by Lemma 3.1, we have $m_k r \in U$. Since m(x) is a Σ -good polynomial with $\Sigma \operatorname{deg}(m(x)) = k$, we have $m_i r \in U$ for all $0 \leq i \leq k$, and so $m_i r \in U$ for all $0 \leq i \leq n$. Then it is easy to see that $m(x)r \in U[x; \alpha, \delta]$, contradicting the fact that $m(x)r \notin U[x; \alpha, \delta]$. Thus we obtain $\Sigma \operatorname{deg}(m(x)r) = k$. If $a \in U : \Delta_k$, then $\Delta_k a = m_k \alpha^k(r)a + (\sum_{s=k+1}^n m_s f_k^s(r))a \in U$, and so $m_k \alpha^k(r)a \in U$ since $m_s \in U$ for all s > k. Then by Lemma 3.1, we obtain $m_k ra \in U$. Since m(x) is a Σ -good polynomial with $\Sigma \operatorname{deg}(m(x)) = k$, we have $m_i ra \in U$ for all i < k, and so $m_i ra \in U$ for all $0 \leq i \leq n$. Since U is an (α, δ) -compatible ideal, it is easy to see that $\Delta_i a = (\sum_{s=i}^n m_s f_i^s(r))a \in U$. Hence $U : \Delta_k \subseteq U : \Delta_i$ for all i < k. Therefore m(x)r is a Σ -good polynomial. \Box

A ideal I of R is a Σ -ideal if $a^2b \in I$ implies $ab \in I$ for all $a, b \in R$.

Proposition 3.9 Let U be an (α, δ) -compatible ideal and $m(x) = m_0 + m_1 x + \cdots + m_k x^k + \cdots + m_n x^n$ be a Σ -good polynomial with $\Sigma \operatorname{deg}(m(x)) = k$ and $U : (m_k R) = \wp$, where $m_k R$ denotes the right ideal of R generated by m_k . Then we have the following.

(1) We have $U[x; \alpha, \delta] : (m(x)R[x; \alpha, \delta]) = \wp[x; \alpha, \delta]$, where $m(x)R[x; \alpha, \delta]$ denotes the right ideal of $R[x; \alpha, \delta]$ generated by m(x).

(2) If U is a Σ -ideal and $m(x)R[x; \alpha, \delta]$ is $\Sigma_{U[x;\alpha,\delta]}$ -prime, then $m_k R$ is Σ_U -prime.

Proof (1) We first show that

$$U[x;\alpha,\delta]:(m(x)R[x;\alpha,\delta])\supseteq\wp[x;\alpha,\delta].$$

Let $r(x) = r_0 + r_1 x + \dots + r_s x^s + \dots + r_t x^t \in R[x; \alpha, \delta]$ with $\Sigma \operatorname{deg}(r(x)) = s$, and $h(x) = h_0 + h_1 x + \dots + h_l x^l + \dots + h_q x^q \in \wp[x; \alpha, \delta]$ with $\Sigma \operatorname{deg}(h(x)) = l$. In order to show that $m(x)r(x)h(x) \in U[x; \alpha, \delta]$, we need only to show that

$$\Big(\sum_{i=0}^k m_i x^i\Big)\Big(\sum_{j=0}^s r_j x^j\Big)\Big(\sum_{v=0}^l h_v x^v\Big) \in U[x;\alpha,\delta].$$

A typical term of $(\sum_{i=0}^{k} m_i x^i)(\sum_{j=0}^{s} r_j x^j)(\sum_{v=0}^{l} h_v x^v)$ is $m_i x^i r_j x^j h_v x^v$. The coefficients of $m_i x^i r_j x^j h_v x^v$ can be written as sums of monomials in m_i , $f_{\alpha}^{\beta}(r_j)$ and $f_{\gamma}^{\delta}(h_v)$. Consider each monomial $m_i f_{\alpha}^{\beta}(r_j) f_{\gamma}^{\delta}(h_v)$. Since $h_v \in \wp = U : (m_k R)$, we have $m_k R h_v \subseteq U$. Since m(x) is a Σ -good polynomial with $\Sigma \deg(m(x) = k$, we obtain $m_i R h_v \subseteq U$ for all $i \leq k$. Since U is (α, δ) -compatible, by Lemma 3.2, we obtain $m_i f_{\alpha}^{\beta}(R) f_{\gamma}^{\delta}(h_v) \subseteq U$, and so $m_i f_{\alpha}^{\beta}(r_j) f_{\gamma}^{\delta}(h_v) \in U$. Thus $m_i x^i r_j x^j h_v x^v \in U[x; \alpha, \delta]$ and so

$$\Big(\sum_{i=0}^k m_i x^i\Big)\Big(\sum_{j=0}^s r_j x^j\Big)\Big(\sum_{\nu=0}^l h_\nu x^\nu\Big) \in U[x;\alpha,\delta].$$

Hence $U[x; \alpha, \delta] : (m(x)R[x; \alpha, \delta]) \supseteq \wp[x; \alpha, \delta].$

For the reverse inclusion, assume that $g(x) = b_0 + b_1 x + \dots + b_l x^l + \dots + b_m x^m \in U[x; \alpha, \delta] :$ $(m(x)R[x; \alpha, \delta])$ with $\Sigma \deg(g(x)) = l$. Then we have $m(x)R[x; \alpha, \delta]g(x) \subseteq U[x; \alpha, \delta]$. Note that $m(x)R[x;\alpha,\delta]g(x) \subseteq U[x;\alpha,\delta]$ if and only if

$$\Big(\sum_{i=0}^{k} m_i x^i\Big) R[x;\alpha,\delta] \Big(\sum_{j=0}^{l} b_j x^j\Big) \subseteq U[x;\alpha,\delta]$$

if only if

$$\left(\sum_{i=0}^{k} m_i x^i\right) R\left(\sum_{j=0}^{l} b_j x^j\right) \subseteq U[x;\alpha,\delta].$$

The leading coefficients of

$$\Big(\sum_{i=0}^k m_i x^i\Big) R\Big(\sum_{j=0}^l b_j x^j\Big)$$

is $m_k \alpha^k (Rb_l)$. Since U is (α, δ) -compatible, by Lemma 3.1, we obtain $m_k Rb_l \subseteq U$, and so $b_l \in \wp = U : (m_k R)$. Since m(x) is a Σ -good polynomial with $\Sigma \operatorname{deg}(m(x)) = k$, we obtain $m_i Rb_l \subseteq U$ for all $0 \leq i \leq k$. Thus from $(\sum_{i=0}^k m_i x^i) R(\sum_{j=0}^l b_j x^j) \subseteq U[x; \alpha, \delta]$, we obtain $(\sum_{i=0}^k m_i x^i) R(\sum_{j=0}^{l-1} b_j x^j) \subseteq U[x; \alpha, \delta]$. Using the same method as above, we obtain $b_{l-1} \in \wp$. Continuing this procedure yields $b_l \in \wp, b_{l-1} \in \wp, \ldots, b_0 \in \wp$. Since $b_v \in U$ for all v > l, it is easy to see that for all v > l, $b_v \in U : (m_k R) = \wp$. Hence for all $0 \leq j \leq m, b_j \in \wp$. So $g(x) = b_0 + b_1 x + \cdots + b_l x^l + \cdots + b_m x^m \in \wp[x; \alpha, \delta]$, which implies that $U[x; \alpha, \delta] : (m(x)R[x; \alpha, \delta]) \subseteq \wp[x; \alpha, \delta]$.

(2) Since $m_k \notin U$, we have $m_k R \notin U$. Assume that a right ideal $Q \subseteq m_k R$, and $Q \notin U$. Then $U : Q \supseteq U : (m_k R)$. Now we show that $U : Q \subseteq U : (m_k R) = \wp$. Set $W = \{m(x)r \mid r \in Q\}$, and let $WR[x; \alpha, \delta]$ be the right ideal of $R[x; \alpha, \delta]$ generated by W. Clearly, $WR[x; \alpha, \delta] \subseteq m(x)R[x; \alpha, \delta]$. Since $Q \notin U$, there exists $a \in R$ such that $m_k a \in Q$ and $m_k a \notin U$. If $m_k \cdot m_k a \in U$, then by the condition that U is a Σ -ideal, we have $m_k a \in U$. This contradicts the fact that $m_k a \notin U$. Thus $m_k \cdot m_k a \notin U$. Now we show that $m(x)m_k a \notin U[x; \alpha, \delta]$. Assume on the contrary that $m(x)m_k a \in U[x; \alpha, \delta]$. Since $\Sigma \deg(m(x)) = k$, we have $m(x)m_k a \in U[x; \alpha, \delta]$ if and only if $(m_0 + m_1 x + \dots + m_k x^k)m_k a \in U[x; \alpha, \delta]$. The leading coefficient of $(m_0 + m_1 x + \dots + m_k x^k)m_k a$ is $m_k \alpha^k(m_k a)$. Thus we have $m_k \alpha^k(m_k a) \in U$, and so $m_k m_k a \in U$ since U is (α, δ) -compatible. This contradicts the fact that $m_k m_k a \notin U$. Hence $m(x) \cdot m_k a \notin U[x; \alpha, \delta]$, and so $WR[x; \alpha, \delta] \notin U[x; \alpha, \delta]$. Since $m(x)R[x; \alpha, \delta]$ is $\Sigma_{U[x; \alpha, \delta]}$ -prime, we obtain

$$U[x;\alpha,\delta]:(WR[x;\alpha,\delta])=U[x;\alpha,\delta]:(m(x)R[x;\alpha,\delta])=\wp[x;\alpha,\delta].$$

Suppose $q \in U : Q$. Then $rq \in U$ for each $r \in Q$. For any $m(x)rf(x) \in WR[x; \alpha, \delta]$ where $f(x) = a_0 + a_1x + \cdots + a_lx^l \in R[x; \alpha, \delta]$ and $r \in Q$. The typical term of m(x)rf(x) is $m_ix^ira_jx^j$. Since $ra_j \in Q$, we have $ra_jq \in U$. Then by Lemma 3.3, we have $ra_jx^iq \in U[x; \alpha, \delta]$ and so $m_ix^ira_jx^jq \in U[x; \alpha, \delta]$. Thus for any

$$\sum m(x)r_if_i(x) \in WR[x;\alpha,\delta],$$

it is easy to see that

$$\Big(\sum m(x)r_if_i(x)\Big)q\in U[x;\alpha,\delta].$$

516

 Σ -associated primes over extension rings

Hence

$$q \in U[x;\alpha,\delta] : (WR[x;\alpha,\delta]) = U[x;\alpha,\delta] : (m(x)R[x;\alpha,\delta]) = \wp[x;\alpha,\delta],$$

and so $q \in \wp = U : (m_k R)$. Thus $U : Q \subseteq U; (m_k R)$, and this implies that $U : Q = U : (m_k R)$. Therefore $m_k R$ is Σ_U -prime. \Box

With the help of Propositions 3.4 and 3.9, we get the central result of this paper.

Theorem 3.10 Let U be an (α, δ) -compatible Σ -ideal. Then we have

 $\Sigma_{U[x;\alpha,\delta]} \text{-} \operatorname{Ass}(R[x;\alpha,\delta]) = \{ \wp[x;\alpha,\delta] \mid \wp \in \Sigma_U \text{-} \operatorname{Ass}(R) \}.$

Proof Let $\wp \in \Sigma_U$ -Ass(R). By definition, there exists a right ideal $I \not\subseteq U$ with I being Σ_U -prime and $\wp = U : I$. Then by Proposition 3.4, we have $\wp[x; \alpha, \delta] = U[x; \alpha, \delta] : I[x; \alpha, \delta]$ and $I[x; \alpha, \delta]$ is $\Sigma_{U[x;\alpha,\delta]}$ -prime. Thus $\wp[x; \alpha, \delta] \in \Sigma_{U[x;\alpha,\delta]}$ -Ass $(R[x; \alpha, \delta])$ and so

$$\Sigma_{U[x;\alpha,\delta]} \text{-} \operatorname{Ass}(R[x;\alpha,\delta]) \supseteq \{ \wp[x;\alpha,\delta] \mid \wp \in \Sigma_U \text{-} \operatorname{Ass}(R) \}.$$

Now we prove \subseteq in Theorem 3.10. Let $I \in \Sigma_{U[x;\alpha,\delta]}$ -Ass $(R[x;\alpha,\delta])$. By definition, there exists a $\Sigma_{U[x;\alpha,\delta]}$ -prime ideal \pounds with $I = U[x;\alpha,\delta] : \pounds$. Pick any $m(x) = m_0 + m_1 x + \dots + m_k x^k + \dots + m_n x^n \in \pounds$ and $m(x) \notin U[x;\alpha,\delta]$. By Lemma 3.7, we may assume that m(x) is Σ -good, and $\Sigma \deg(m(x)) = k$. Since \pounds is $\Sigma_{U[x;\alpha,\delta]}$ -prime, we have

$$I = U[x; \alpha, \delta] : \pounds = U[x; \alpha, \delta] : (m(x)R[x; \alpha, \delta])$$

and $m(x)R[x;\alpha,\delta]$ is also $\Sigma_{U[x;\alpha,\delta]}$ -prime. Let $\wp = U : (m_k R)$. Then by Proposition 3.9, we have $I = \wp[x;\alpha,\delta]$, and $m_k R$ is Σ_U -prime. Hence

$$\Sigma_{U[x;\alpha,\delta]} \text{-} \text{Ass}(R[x;\alpha,\delta]) \subseteq \{\wp[x;\alpha,\delta] \mid \wp \in \Sigma_U \text{-} \text{Ass}(R)\}.$$

Therefore

$$\Sigma_{U[x;\alpha,\delta]} \text{-} \text{Ass}(R[x;\alpha,\delta]) = \{ \wp[x;\alpha,\delta] \mid \wp \in \Sigma_U \text{-} \text{Ass}(R) \}. \square$$

Corollary 3.11 Let U be a Σ -ideal of R. Then we have the following;

- (1) If U is α -compatible, then $\Sigma_{U[x;\alpha]}$ -Ass $(R[x;\alpha]) = \{\wp[x;\alpha] \mid \wp \in \Sigma_U$ -Ass $(R)\}$.
- (2) If U is δ -compatible, then $\Sigma_{U[x;\delta]}$ -Ass $(R[x;\delta]) = \{\wp[x;\delta] \mid \wp \in \Sigma_U$ -Ass $(R)\}$.

Corollary 3.12 Let R be an (α, δ) -compatible NI-ring.

$$\Sigma_{\operatorname{nil}(R)[x;\alpha,\delta]} \operatorname{Ass}(R[x;\alpha,\delta]) = \{ \wp[x;\alpha,\delta] \mid \wp \in \Sigma_{\operatorname{nil}(R)} \operatorname{Ass}(R) \}.$$

Proof Let $U = \operatorname{nil}(R)$. Then by [10, Lemma 2.4] and [10, Lemma 2.5], it is easy to see that $\operatorname{nil}(R)$ is an (α, δ) -compatible Σ -ideal. According to Theorem 3.10, we complete the proof. \Box

Corollary 3.13 ([11, Theorem 3.1]) Let R be an (α, δ) -compatible 2-primal ring. Then $NAss(R[x; \alpha, \delta]) = \{ \wp[x; \alpha, \delta] \mid \wp \in NAss(R) \}.$

Proof Let $U = \operatorname{nil}(R)$. Using the same method as in the proof of Corollary 3.12, we obtain $\operatorname{nil}(R)$ is an (α, δ) -compatible Σ -ideal. In view of [11, Corollary 2.2], we have $\operatorname{nil}(R)[x; \alpha, \delta] = \operatorname{nil}(R[x; \alpha, \delta])$. Then according to Theorem 3.10, we complete the proof. \Box

Corollary 3.14 Let R be a 2-primal ring. Then $NAss(R[x]) = \{\wp[x] \mid p \in NAss(R)\}$.

Proof It follows from Corollary 3.13.

Note that if R is an (α, δ) -compatible ring and 0 a Σ -ideal, then by Theorem 3.10, we obtain $\operatorname{Ass}(R[x; \alpha, \delta]) = \{ \wp[x; \alpha, \delta] \mid \wp \in \operatorname{Ass}(R) \}$. But by using some special nice properties of zero ideal, Annin showed that the condition that 0 is a Σ -ideal is superfluous [2, Theorem 2.1].

Let α be an automorphism of a ring R. The skew Laurent polynomial ring $R[x, x^{-1}; \alpha]$ is the ring where elements are the form $\sum_{i=s}^{n} a_i x^i$ where $s, n \in \mathbb{Z}$. The addition is defined as usual and the multiplication by $x^i b = \alpha^i(b)x$ for any $i \in \mathbb{Z}$. Let I be a right ideal of R. $I[x, x^{-1}; \alpha]$ means the set $\{\sum_{i=s}^{n} a_i x^i \in R[x, x^{-1}; \alpha] \mid a_i \in I \text{ for all } s \leq i \leq n\}$. For skew Laurent polynomial rings, we can derive results analogous to Theorem 3.10 above. \Box

Theorem 3.15 Let $\alpha : R \longrightarrow R$ be an automorphism. If U is an α -compatible Σ -ideal, then

$$\Sigma_{U[x,x^{-1};\alpha]} \text{-} \operatorname{Ass}(R[x,x^{-1};\alpha]) = \{ \wp[x,x^{-1};\alpha] \mid \wp \in \Sigma_U \text{-} \operatorname{Ass}(R) \}.$$

Proof All statements here are proved in essentially the same way as Theorem 3.10, so we will discuss the proof briefly. First we observe that if U is α -compatible, then U is α^i -compatible for all $i \in \mathbb{Z}$. Let I be a right ideal of R with $I \not\subseteq U$ and $\wp = U : I$. By using the same way as in the proof of Proposition 3.4, we can show that if I is Σ_U -prime, then $I[x, x^{-1}; \alpha]$ is $\Sigma_{U[x, x^{-1}; \alpha]}$ -prime and $U[x, x^{-1}; \alpha] : I[x, x^{-1}; \alpha] = \wp[x, x^{-1}; \alpha]$. Thus

$$\Sigma_{U[x,x^{-1};\alpha]} \operatorname{-Ass}(R[x,x^{-1};\alpha]) \supseteq \{ \wp[x,x^{-1};\alpha] \mid \wp \in \Sigma_U \operatorname{-Ass}(R) \}.$$

Let $m(x) = \sum_{i=s}^{n} m_i x^i$ be a skew Laurent polynomial in $R[x, x^{-1}; \alpha]$. We say that $\Sigma \operatorname{deg}(m(x)) = k$ if there exists some $k \in \mathbb{Z}$ such that $m_k \notin U$ and $m_i \in U$ if i > k. We say that $m(x) = \sum_{i=s}^{n} m_i x^i$ with $\Sigma \operatorname{deg}(m(x)) = k$ is a Σ -good skew Laurent polynomial if $U : m_k \subseteq U : m_i$ for all i < k. Then by using the same way as in the proof of Proposition 3.9, we obtain that

$$\Sigma_{U[x,x^{-1};\alpha]} - \operatorname{Ass}(R[x,x^{-1};\alpha]) \subseteq \{\wp[x,x^{-1};\alpha] \mid \wp \in \Sigma_U - \operatorname{Ass}(R)\}.$$

Therefore

$$\Sigma_{U[x,x^{-1};\alpha]} \operatorname{Ass}(R[x,x^{-1};\alpha]) = \{ \wp[x,x^{-1};\alpha] \mid \wp \in \Sigma_U \operatorname{Ass}(R) \}.$$

Corollary 3.16 We have the following:

(1) Let R be an α -compatible NI-ring where α is an automorphism of R. Then

$$\Sigma_{\operatorname{nil}(R)[x,x^{-1};\alpha]}\operatorname{-Ass}(R[x,x^{-1};\alpha]) = \{\wp[x,x^{-1};\alpha] \mid \wp \in \Sigma_{\operatorname{nil}(R)}\operatorname{-Ass}(R)\}$$

(2) Let R be an α -compatible 2-primal ring where α is an automorphism of R. Then

$$NAss(R[x, x^{-1}; \alpha]) = \{ \wp[x, x^{-1}; \alpha] \mid \wp \in NAss(R) \}.$$

Proof (1) Let $U = \operatorname{nil}(R)$. Using the same method as in the proof of Corollary 3.12, we have $\operatorname{nil}(R)$ is an α -compatible Σ -ideal. Then according to Theorem 3.15, we complete the proof.

(2) Let $U = \operatorname{nil}(R)$. By the proof of (1), we have $\operatorname{nil}(R)$ is an α -compatible Σ -ideal. Analogously to [10, Lemma 2.6], we show that $\operatorname{nil}(R)[x, x^{-1}; \alpha] = \operatorname{nil}(R[x, x^{-1}; \alpha])$. According to Theorem 3.15, we complete the proof. \Box Corollary 3.17 Let R be a 2-primal ring. Then

 $NAss(R[x, x^{-1}]) = \{ \wp[x, x^{-1}] \mid \wp \in NAss(R) \}.$

Proof It follows directly from Corollary 3.16.

Let $\alpha : R \longrightarrow R$ be an endomorphism and U an ideal of R. In the following we investigate the relationship between the Σ -associated primes of the skew power series ring $R[[x; \alpha]]$ and that of the ring R. \Box

Definition 3.18 Let $k \in \mathbb{Z}$ and $m(x) = \sum_{i=0}^{\infty} m_i x^i \notin U[[x; \alpha]]$. We say that m(x) is a k- Σ -good power series if $m_k \notin U$, and $U : m_k \subseteq U : m_i$ if i < k.

Definition 3.19 Let U be an ideal of R and $m(x) = \sum_{i=0}^{\infty} m_i x^i \notin U[[x; \alpha]]$. We say that m(x) is a Σ -good power series if there exists some $k \in \mathbb{Z}$ such that $m_k \notin U$ and $U : m_k \subseteq U : m_i$ if $i \neq k$.

Proposition 3.20 Let U be an ideal of R and $m(x) = \sum_{i=0}^{\infty} m_i x^i \notin U[[x;\alpha]]$. If R is a left perfect ring, then there exists $r \in R$ such that m(x)r is a Σ -good power series.

Proof Note that if $m_k \in U$ for some $k \in \mathbb{Z}$, then $U : m_k = R$, and so for any coefficient m_i of m(x), we have $U : m_i \subseteq U : m_k$. Hence without loss of generality, we may assume that $m_i \notin U$ for all $0 \leq i \leq \infty$. Consider the polynomial $m^1(x) = m_0 + m_1 x$. By Lemma 3.7, there exists $r_1 \in R$ such that $m^1(x)r_1$ is a Σ -good polynomial, and so there exists $r_1 \in R$ such that $m(x)r_1$ is a 1- Σ -good power series. Then inductively, we can find $r_i \in R$ such that $m(x)r_1r_2\cdots r_i$ is i- Σ -good. Consider the descending chain of cycle right modules

$$m(x)R \supseteq m(x)r_1R \supseteq m(x)r_1r_2R \supseteq \cdots$$

Since R is left perfect, this chain stabilizes, say at $m(x)r_1r_2\cdots r_kR$. Let $m'(x) = m(x)r_1r_2\cdots r_k$. Then by analogy with the proof of [1, Theorem 5.2], we can show that $m'(x) = m(x)r_1r_2\cdots r_k$ is a Σ -good power series. \Box

Theorem 3.21 Let R be a left perfect ring and U an α -compatible Σ -ideal. Then

$$\Sigma_{U[[x;\alpha]]}(R[[x;\alpha]]) = \{ \wp[[x;\alpha]] \mid \wp \in \Sigma_U \text{-} \text{Ass}(R) \}.$$

Proof By analogy with the proof of [1, Theorem 5.1], we can show that

$$\Sigma_{U[[x;\alpha]]}(R[[x;\alpha]]) \supseteq \{ \wp[[x;\alpha]] \mid \wp \in \Sigma_U \text{-} \text{Ass}(R) \}.$$

Then by analogy with proof of Proposition 3.10, we can see the reverse containment. \Box

Corollary 3.22 Let R be an α -compatible left perfect ring. Then we have the following:

(1) If R is an NI-ring, then

 $\Sigma_{\operatorname{nil}(R)[[x;\alpha]]} \operatorname{Ass}(R[[x;\alpha]]) = \{ \wp[[x;\alpha]] \mid \wp \in \Sigma_{\operatorname{nil}(R)} \operatorname{Ass}(R) \}.$

(2) If R is a right noetherian NI ring, then

 $NAss(R[[x; \alpha]]) = \{ \wp[[x; \alpha]] \mid \wp \in NAss(R) \}.$

Proof (1) Let $U = \operatorname{nil}(R)$. Using the same method as in the proof of Corollary 3.12, we can show that $\operatorname{nil}(R)$ is an α -compatible Σ -ideal. Then we complete the proof by Theorem 3.21.

(2) Let $U = \operatorname{nil}(R)$. By the proof of (1), we obtain that $\operatorname{nil}(R)$ is an α -compatible Σ -ideal. Since R is a right noetherian NI ring, by Levitzki's Theorem [9], $\operatorname{nil}(R)$ is nilpotent. Then by [12, Proposition 2.5], we can show that $\operatorname{nil}(R)[[x;\alpha]] = \operatorname{nil}(R[[x;\alpha]])$. Then by Theorem 3.21 we complete the proof. \Box

Note that if R is an α -compatible left perfect ring, and 0 is a Σ -ideal, then by Theorem 3.21, we obtain that

$$\operatorname{Ass}(R[[x;\alpha]]) = \{ \wp[[x;\alpha]] \mid \wp \in \operatorname{Ass}(R) \}.$$
(*)

But we must mention that the condition that 0 is a Σ -ideal is superfluous. Annin showed in [1, Theorem 5.2] that if R is an α -compatible left perfect ring, then the equation (*) above is also true.

Acknowledgements The authors are deeply indebted to the referees for many valuable comments and suggestions for improvement of this paper.

References

- [1] S. ANNIN. Associated primes over skew polynomial rings. Comm. Algebra, 2002, 30(5): 2511-2528.
- [2] S. ANNIN. Associated primes over Ore extension rings. J. Algebra Appl., 2004, 2(2): 193–205.
- [3] S. ANNIN. Associated and attached primes over noncommutative rings. Ph. D. Diss., University of Californian at Berkeley, 2002.
- [4] J. BREWER, W. HEINZER. Associated primes of principal ideals. Duke Math. J., 1974, 41: 1–7.
- [5] C. FAITH. Associated primes in commutative polynomial ring. Comm. Algebra, 2000, **28**(8): 3903–3986.
- [6] E. HASHEMI, A. MOUSSAVI. Polynomial extensions of quasi-Baer rings. Acta Math. Hungar., 2005, 107(3): 207–224.
- [7] E. HASHEMI. Compatible ideals and radicles of Ore extensions. New York J. Math., 2006, 12: 349–356.
- [8] T. Y. LAM, A. LEROY, J. MATHCZUK. Primeness, semiprimeness and prime radical of ore extensions. Comm. Algebra, 1997, 25(8): 2459–2506.
- [9] T. Y. LAM. A First Course in Noncommutative Rings. Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1991.
- [10] G. MARKS. On 2-primal Ore extensions. Comm. Algebra, 2001, 29(5): 2113–2123.
- [11] Lunqun OUYANG, G. F. BIRKENMEIER. Weak annihilator over extension rings. Bull. Malays. Math. Sci. Soc. (2), 2012, 35(2): 345–357.
- [12] Lunqun OUYANG. Special weak properties of generalized power series rings. J. Korean Math. Soc., 2012, 49(4): 687–701.
- [13] R. C. SHOCK. Polynomial rings over finite dimensional rings. Pacific J. Math., 1972, 42: 251–257.