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Abstract In this paper we introduce a concept, called Σ-associated primes, that is a gen-

eralization of both associated primes and nilpotent associated primes. We first observe the

basic properties of Σ-associated primes and construct typical examples. We next describe

all Σ-associated primes of the Ore extension R[x;α, δ], the skew Laurent polynomial ring

R[x, x−1;α] and the skew power series ring R[[x;α]], in terms of the Σ-associated primes of

R in a very straightforward way. Consequently several known results relating to associated

primes and nilpotent associated primes are extended to a more general setting.
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1. Introduction

Throughout this paper all rings R are associative with identity, and all modules are right

unital. The set of all nilpotent elements of R is denoted by nil(R). A ring R is called an NI

ring [10] if nil(R) forms an ideal, and a ring R is reduced if it has no nonzero nilpotent elements.

Let U and V be two nonempty subsets of R. We define U : V = {x ∈ R | V x ⊆ U}. If V is

singleton, say V = {m}, we use U : m in place of U : {m}. It is easy to see that if U , V are two

right ideals of R, then U : V is an ideal of R and such an ideal is usually called the quotient of

U by V .

Given a right R-module NR, the right annihilator of NR in R is denoted by rR(NR) = {a ∈
R | Na = 0}. We say that NR is prime if NR ̸= 0, and rR(NR) = rR(N

′
R) for every nonzero

submodule N ′
R ⊆ NR (see [1]). Let MR be a right R-module. Then an ideal ℘ of R is called

associated prime of MR if there exists a prime submodule NR ⊆ MR such that ℘ = rR(NR).

The set of associated primes of MR is denoted by Ass(MR) (see [1]). Associated primes are

well-known in commutative algebra for their important role in the primary decomposition, and

have attracted a lot of attention in recent years. In [4], Brewer and Heinzer used localization
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theory to prove that the associated primes of the polynomial ring R[x] (viewed as a module over

itself) over a commutative ring R are all extended; that is, every ℘ ∈ Ass(R[x]) may be expressed

as ℘ = ℘0[x], where ℘0 = ℘ ∩ R ∈ Ass(R). Using results of Shock in [13] on good polynomials,

Faith has provided a new proof in [5] of the same result which does not rely on localization or

other tools from commutative algebra. In [1], Scott Annin showed that Brewer and Heinzer’s

result still holds in the more general setting of a polynomial module M [x] over a skew polynomial

ring R[x;α], with possibly noncommutative base R. So the properties of associated primes over

a commutative ring can be profitably generalized to noncommutative setting as well. For more

details and properties of associated primes, we refer to [1–5].

For a set X of a ring R, NAnnR(X) = {a ∈ R | Xa ⊆ nil(R)} will stand for the weak

annihilator of X in R (see [11]). Due to Ouyang and Birkenmeier [11], a right ideal I of R is a

right quasi-prime ideal if I ̸⊆ nil(R) and NAnnR(I) = NAnnR(I
′) for every right ideal I ′ ⊆ I

and I ′ ̸⊆ nil(R). Let R be an NI ring. An ideal ℘ of R is called a nilpotent associated prime

of R if there exists a right quasi-prime ideal I such that ℘ = NAnnR(I). The set of nilpotent

associated primes of R is denoted by NAss(R) (see [11]). Note that Ass(R) and NAss(R) are two

different sets in general. But if R is a reduced ring, then Ass(R) = NAss(R). In [11], Ouyang

and Birkenmeier also showed that the nilpotent associated primes of the Ore extension R[x;α, δ]

can be determined in terms of the nilpotent associated primes of the ring R.

Motivated by the results in [1–5] and [11], in this article, we continue the study of Σ-

associated primes of R. We first introduce the notion of Σ-associated primes, which is a gen-

eralization of both associated primes and nilpotent associated primes, and investigate its basic

properties. We next describe the Σ-associated primes of the Ore extension R[x;α, δ], the skew

Laurent polynomial ring R[x, x−1;α] and the skew power series ring R[[x;α]], in terms of the

Σ-associated primes of R in a very straightforward way. As a consequence we extend and unify

several known results related to associated primes and nilpotent associated primes.

2. Σ-associated primes

In this section we introduce the notion of Σ-associated primes and investigate its basic

properties. We begin with the following definition.

Definition 2.1 Let U be an ideal of R. For a right ideal I of R, we say that I is ΣU -prime if

I ̸⊆ U and U : I = U : I ′ for every right ideal I ′ ⊆ I and I ′ ̸⊆ U .

Let U be an ideal of R. In the following remark, we offer a few basic properties of the

ΣU -prime ideals.

Remark 2.2 Let U be an ideal of R.

(1) If U = 0 where 0 denotes the zero ideal of R, then for any right ideal I of R, U : I =

rR(I), and so I is a Σ0- prime ideal if and only if I is a prime submodule of RR. Let R be an

NI ring and let U = nil(R). Then U : I = NAnnR(I), and so I is a Σnil(R)-prime ideal if and

only if I is a right quasi-prime ideal. Hence both prime submodules of RR and right quasi-prime
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ideals of R are special Σ-prime ideals.

(2) Any nonzero ideal of a domain R is a prime submodule of RR, a right quasi-prime ideal

of R as well as a Σ0-prime ideal of R.

(3) Recall that an ideal P of a ring R is said to be a prime ideal if P ̸= R and for right

ideals U , V in R, UV ⊆ P implies that U ⊆ P or V ⊆ P . Hence if U is a prime ideal, then for

all right ideals I and I ′ with I ̸⊆ U , I ′ ⊆ I and I ′ ̸⊆ U , we have U : I = U : I ′ = U . So if U is a

prime ideal, then any ideal I ̸⊆ U is ΣU -prime.

(4) Let U be an ideal of R and let I and J be right ideals of R with I ̸⊆ U and J ̸⊆ U . If

U : I ̸= U : J , then I
⊕

J is not ΣU -prime. Hence the direct sums of ΣU -prime ideals need not

be ΣU -prime. So the direct products of ΣU -prime ideals also need not be ΣU -prime.

(5) Let U be an ideal of R and I a right ideal of R with I ̸⊆ U . If all the right ideals J $ I

are contained in U , then I is ΣU -prime.

Let U be an ideal of R and I a right ideal of R. Suppose that

Rn =




a a12 · · · a1n

0 a · · · a2n
...

...
. . .

...

0 0 · · · a

 | a, aij ∈ R


,

In =




b b12 · · · b1n

0 b · · · b2n
...

...
. . .

...

0 0 · · · b

 | b, bij ∈ I


,

and

Tn(U) =




x x12 · · · x1n

0 x · · · x2n

...
...

. . .
...

0 0 · · · x

 | x ∈ U, xij ∈ R


.

Then under usual matrix operations, In is a right ideal of Rn, and Tn(U) is an ideal of Rn.

Proposition 2.3 Let U be an ideal of R and I a right ideal of R. Then In is a ΣTn(U)-prime

ideal of Rn if and only if I is a ΣU -prime ideal of R.

Proof ⇒. Suppose that In is ΣTn(U)-prime and I ′ is a right ideal of R with I ′ ⊆ I and

I ′ ̸⊆ U . We will show that U : I = U : I ′. Since U : I ⊆ U : I ′ is clear, it suffices to show

that U : I ′ ⊆ U : I. Since I ′ ⊆ I and I ′ ̸⊆ U , we have I ′n ⊆ In and I ′n ̸⊆ Tn(U). Thus
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Tn(U) : In = Tn(U) : I ′n since In is ΣTn(U)-prime. If a ∈ U : I ′, then


x x12 · · · x1n

0 x · · · x2n

...
...

. . .
...

0 0 · · · x




a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 ∈ Tn(U)

for each


x x12 · · · x1n

0 x · · · x2n

...
...

. . .
...

0 0 · · · x

 ∈ I ′n, and so


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 ∈ Tn(U) : I ′n = Tn(U) : In.

Thus for each x ∈ I, we have


x 0 · · · 0

0 x · · · 0
...

...
. . .

...

0 0 · · · x




a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 ∈ Tn(U), and so xa ∈ U

for each x ∈ I. Hence a ∈ U : I and so U : I = U : I ′. Therefore I is ΣU -prime.

⇐. Assume that I is ΣU -prime and V is a right ideal of Rn with V ⊆ In and V ̸⊆ Tn(U).

We see that Tn(U) : V = Tn(U) : In. Clearly, Tn(U) : In ⊆ Tn(U) : V . So we only need to show

the reverse containment. Consider the set defined as follows:

W =


r ∈ I |


r r12 · · · r1n

0 r · · · r2n
...

...
. . .

...

0 0 · · · r

 ∈ V


.

Then W is a right ideal of R with W ⊆ I. Since V ̸⊆ Tn(U), we have W ̸⊆ U . If


r r12 · · · r1n

0 r · · · r2n
...

...
. . .

...

0 0 · · · r




a a12 · · · a1n

0 a · · · a2n
...

...
. . .

...

0 0 · · · a

 ∈ Tn(U)

for each


r r12 · · · r1n

0 r · · · r2n
...

...
. . .

...

0 0 · · · r

 ∈ V , then ra ∈ U for each r ∈ W and so a ∈ U : W . Since I is
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ΣU -prime, we have a ∈ U : W = U : I. Hence for each


x x12 · · · x1n

0 x · · · x2n

...
...

. . .
...

0 0 · · · x

 ∈ In, we have


x x12 · · · x1n

0 x · · · x2n

...
...

. . .
...

0 0 · · · x




a a12 · · · a1n

0 a · · · a2n
...

...
. . .

...

0 0 · · · a

 ∈ Tn(U),

and so Tn(U) : V ⊆ Tn(U) : In. Hence Tn(U) : V = Tn(U) : In. Therefore, In is ΣTn(U)-prime.

Based on Proposition 2.3, one may suspect that In may be ΣUn -prime whenever I is ΣU -

prime. But the following example erases the possibility.

Example 2.4 Let R be a domain, U = 0 and I a nonzero right ideal of R. Then U2 ={(
0 0

0 0

)}
and I2 =

{(
a a12

0 a

)
| a, a12 ∈ I

}
. Obviously, I is ΣU=0-prime since R is a

domain. Now we show that I2 is not ΣU2 -prime. Since I ̸= 0, we can find

(
x x12

0 x

)
∈ I2

with x ̸= 0. If

(
x x12

0 x

)(
a a12

0 a

)
=

(
0 0

0 0

)
, then xa = 0 and xa12 + x12a = 0.

From xa = 0 and x ̸= 0, we obtain a = 0. From xa12 + x12a = 0 and a = 0, we obtain

a12 = 0. Thus U2 : I2 =

{(
0 0

0 0

)}
. Consider the set V =

{(
0 b

0 0

)
| b ∈ I

}
. Then

V is a right ideal of R2 with V ⊆ I2 and V ̸⊆ U2. Let c be a nonzero element of R. Since(
0 b

0 0

)(
0 c

0 0

)
=

(
0 0

0 0

)
for each

(
0 b

0 0

)
∈ V , we have U2 : I2 ̸= U2 : V . Therefore

I2 is not ΣU2 -prime.

From Example 2.4, we know that In need not be a prime submodule of (Rn)Rn whenever I

is a prime submodule of RR. As to right quasi-prime ideals, we have the following.

Corollary 2.5 Let R be a domain. Then for any nonzero right ideal I of R, In is a right

quasi-prime ideal of Rn.

Proof Let U = 0. Then

Tn(U) =




0 x12 · · · x1n

0 0 · · · x2n

...
...

. . .
...

0 0 · · · 0

 | xij ∈ R


= nil(Rn).

Since R is a domain and U = 0, any nonzero right ideal I of R is ΣU=0-prime. Thus we complete

the proof by Proposition 2.3 and Remark 2.2.
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Let R be a ring and W (R) =


 a 0 0

a21 a a23

0 0 a

 | a, aij ∈ R

. Then W (R) is a 3 × 3

subring of M3(R) under usual matrix addition and multiplication. Let U be an ideal and I a

right ideal of R. Define D(U) and W (I) as follows:

D(U) =


 a 0 0

a21 a a23

0 0 a

 | a ∈ U, aij ∈ R

 ,

and

W (I) =


 a 0 0

a21 a a23

0 0 a

 | a, aij ∈ I

 .

Then D(U) is an ideal of W (R) and W (I) is a right ideal of W (R). �

Proposition 2.6 Let U be an ideal and I a right ideal of R. Then W (I) is ΣD(U)-prime if and

only if I is ΣU -prime.

Proof By the same method as in the proof of Proposition 2.3, we complete the proof. �

Corollary 2.7 Let R be a domain. Then for any nonzero right ideal I of R, W (I) is a right

quasi-prime ideal of W (R).

Proof Let U = 0. Note that nil(W (R)) =


 0 0 0

a21 0 a23

0 0 0

 | aij ∈ R

 = D(U). Then we

complete the proof by Proposition 2.6 and Remark 2.2. �

Definition 2.8 Let U be an ideal of R. An ideal ℘ of R is called ΣU -associated prime if there

exists a ΣU -prime ideal I of R such that ℘ = U : I. The set of ΣU -associated primes of R is

denoted by ΣU -Ass(R).

Clearly, if ℘ is ΣU -associated prime, then ℘ is a prime ideal of R. Let U = 0. Then ℘ is

Σ0-associated prime if and only if ℘ is an associated prime ideal of RR. Suppose that R is an NI

ring and U = nil(R). Then ℘ is ΣU=nil(R)-associated prime if and only if ℘ is nilpotent associated

prime. Hence both associated primes and nilpotent associated primes are special Σ-associated

primes.

Example 2.9 Let R be a domain and let

Rn =




a a12 · · · a1n

0 a · · · a2n
...

...
. . .

...

0 0 · · · a

 | a, aij ∈ R
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and

U =




0 a12 · · · a1n

0 0 · · · a2n
...

...
. . .

...

0 0 · · · 0

 | aij ∈ R


.

Then for any ideal V of Rn with V ̸⊆ U , we have U : V = U . Hence ΣU -Ass(Rn) = {U}.

Example 2.10 Let k be any field, and consider the ring R =

(
k 0

k k

)
of 2×2 lower triangular

matrices over k. We can write down all of the proper nonzero right ideals of R :{
m1 =

(
0 0

k k

)
, m2 =

(
k 0

k 0

)
,m3 =

(
k 0

0 0

)
, α =

(
0 0

k 0

)}
.

Note that m1, m3 and α are ideals of R, and m3 is a right ideal of R.

(1) Let U = 0. Then by [3], we have Σ0-Ass(R) = Ass(RR) = {m1}.
(2) Let U = α = nil(R). Then by [11], we have Σnil(R)-Ass(R) = NAss(R) = {m1,m2}.
(3) Let U = m1. Then all the right ideals of R not contained in U = m1 are m2 and m3

with m2 ⊇ m3. Now we show that m2 is Σm1 -prime. Clearly, m1 ⊆ m1 : m2 since m2m1 = 0.

Given

(
a 0

b c

)
∈ m1 : m2, we have

(
1 0

0 0

)(
a 0

b c

)
=

(
a 0

0 0

)
∈ m1. Then a = 0

and so

(
a 0

b c

)
∈ m1. Hence m1 : m2 = m1. Similarly, we have m1 : m3 = m1. Therefore m2

is Σm1 -prime, and Σm1 -Ass(R) = {m1}.
(4) Let U = m2. Then all the right ideals of R not contained in m2 are m1. By a routine

computations, we have m1 is Σm2 -prime, and Σm2-Ass(R) = {m2}.

3. Σ-associated primes over extension rings

In this section we always denote the Ore extension by R[x;α, δ], where α : R −→ R is an

endomorphism and δ : R −→ R is an α-derivation. Recall that an α-derivation δ is an additive

operator on R with the property that δ(ab) = α(a)δ(b) + δ(a)b for all a, b ∈ R. The elements of

R[x;α, δ] are polynomials in x with coefficients written on the left. Multiplication in R[x;α, δ]

is given by the multiplication in R and the condition xa = α(a)x+ δ(a) for all a ∈ R.

For any 0 ≤ i ≤ j, f j
i ∈ End(R,+) will denote the map which is the sum of all possible

words in α and δ built with i letters α and j − i letters δ.

Using recursive formulas for the f j
i ’s and induction, as done in [8], one can show with a

routine computation that

xja =

j∑
i=0

f j
i (a)x

i.

This formula uniquely determines a general product of polynomials in R[x;α, δ] and will be used

freely in what follows.
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Let I be a subset of R. I[x;α, δ] means the set {u0 + u1x + · · · + unx
n ∈ R[x;α, δ] | ui ∈

I, 0 ≤ i ≤ n}, that is, for any skew polynomial f(x) = u0 + u1x + · · · + unx
n ∈ R[x;α, δ],

f(x) ∈ I[x;α, δ] if and only if ui ∈ I for all 0 ≤ i ≤ n.

Let α be an endomorphism and δ an α-derivation of R. Following Hashemi and Moussavi

[6], a ring R is said to be α-compatible if for each a, b ∈ R, ab = 0 ⇔ aα(b) = 0. Moreover, R

is called δ-compatible if for each a, b ∈ R, ab = 0 ⇒ aδ(b) = 0. If R is both α-compatible and

δ-compatible, then R is said to be (α, δ)-compatible.

Let I be an ideal of R. Due to Hashemi [7], I is said to be α-compatible if for each a, b ∈
R, ab ∈ I ⇔ aα(b) ∈ I. Moreover, I is called δ-compatible if for each a, b ∈ R, ab ∈ I ⇒ aδ(b) ∈ I.

If I is both α-compatible and δ-compatible, then I is said to be (α, δ)-compatible. Clearly, a

ring R is an (α, δ)-compatible ring if and only if 0 is an (α, δ)-compatible ideal.

The following lemma appears in [7].

Lemma 3.1 ([7, Proposition 2.3]) Let I be an (α, δ)-compatible ideal, and a, b ∈ R.

(1) If ab ∈ I, then aαn(b) ∈ I and αn(a)b ∈ I for every positive integer n. Conversely, if

aαk(b) or αk(a)b ∈ I for some positive integer k, then ab ∈ I.

(2) If ab ∈ I, then αmδn(b) ∈ I and δm(a)αn(b) ∈ I for any nonnegative integers m, n.

Lemma 3.2 Let I be an (α, δ)-compatible ideal and a, b ∈ R. If ab ∈ I, then af j
i (b) ∈ I and

f j
i (a)b ∈ I for all 0 ≤ i ≤ j.

Proof It follows directly from Lemma 3.1.

Lemma 3.3 Let U be an (α, δ)-compatible ideal. If mr ∈ U , then mxir ∈ U [x;α, δ].

Proof We have mxir = mf i
0(r) +mf i

1(r)x+ · · ·+mf i
i−1(r)x

i−1 +mαi(r)xi. Then by Lemma

3.2, we complete the proof. �

Proposition 3.4 Let U be an (α, δ)-compatible ideal and I a right ideal of R with ℘ = U : I.

If I is ΣU -prime, then we have the following.

(1) ℘[x;α, δ] = U [x;α, δ] : I[x;α, δ].

(2) I[x;α, δ] is ΣU [x;α,δ]-prime.

Proof (1) Let i(x) = a0+a1x+· · ·+amxm ∈ I[x;α, δ] and p(x) = b0+b1x+· · ·+bnx
n ∈ ℘[x;α, δ].

Then

i(x)p(x) =
( m∑

i=0

aix
i
)( n∑

j=0

bjx
j) =

m+n∑
k=0

( ∑
s+t=k

( m∑
i=s

aif
i
s(bt)

))
xk.

Since aibt ∈ U for all 0 ≤ i ≤ m and 0 ≤ t ≤ n, we obtain aif
i
s(bt) ∈ U by Lemma 3.2,

and so
∑

s+t=k(
∑m

i=s aif
i
s(bt)) ∈ U for all 0 ≤ k ≤ m + n. Thus i(x)p(x) ∈ U [x;α, δ] and so

U [x;α, δ] : I[x;α, δ] ⊇ ℘[x;α, δ].

In order to prove the reverse inclusion, let f(x) =
∑m

i=0 aix
i ∈ U [x;α, δ] : I[x;α, δ]. Then

for each r ∈ I, we have rf(x) =
∑m

i=0 raix
i ∈ U [x;α, δ] and so rai ∈ U for each r ∈ I and

each 0 ≤ i ≤ m. Thus for each 0 ≤ i ≤ m, ai ∈ U : I = ℘ and so f(x) ∈ ℘[x;α, δ]. Hence



Σ-associated primes over extension rings 513

U [x;α, δ] : I[x;α, δ] ⊆ ℘[x;α, δ]. Therefore U [x;α, δ] : I[x;α, δ] = ℘[x;α, δ] is proved.

(2) It suffices to show that for every i(x) ∈ I[x;α, δ] and i(x) ̸∈ U [x;α, δ], we have

U [x;α, δ] : (i(x)R[x;α, δ]) = U [x;α, δ] : I[x;α, δ] = ℘[x;α, δ],

where i(x)R[x;α, δ] denotes the right ideal of R[x;α, δ] generated by i(x).

In the following we use essentially the same method as in the proof of [2, Theorem 2.1] to

claim the above statement. Clearly,

U [x;α, δ] : (i(x)R[x;α, δ]) ⊇ U [x;α, δ] : I[x;α, δ] = ℘[x;α, δ].

Now assume that the reverse inclusion fails. There would exist an element g(x) ̸∈ ℘[x;α, δ] such

that i(x)R[x;α, δ]g(x) ∈ U [x;α, δ]. Choose g(x) =
∑l

i=0 aix
i (al ̸= 0) of smallest possible degree

l satisfying these conditions.

Suppose that al ∈ ℘ = U : I. Then g′(x) =
∑l−1

i=0 aix
i ̸∈ ℘[x;α, δ], and since alx

l ∈
℘[x;α, δ] ⊆ U [x;α, δ] : (i(x)R[x;α, δ]), we would have i(x)R[x;α, δ]g′(x) ∈ U [x;α, δ]. But now

the fact that g′(x) has degree less than l contradicts the minimality of l. Thus we may assume

that al ̸∈ ℘. Let ik ̸= 0 be the leading coefficients of i(x) ∈ I[x;α, δ]. Since I is ΣU -prime,

U : (ikR) = U : I = ℘ where ikR is the right ideal of R generated by ik. Hence there exists

r ∈ R with ikral ̸∈ U . By the α-compatibility, ikα
k(ral) ̸∈ U . So the leading coefficient of

i(x)rg(x) is not contained in U , contradicting the statement that i(x)R[x;α, δ]g(x) ⊆ U [x;α, δ].

Thus we finish the proof of (2). �
Let U be an ideal of R and m(x) = m0 +m1x + · · · +mkx

k + · · · +mnx
n ̸∈ U [x;α, δ]. If

mk ̸∈ U , and mi ∈ U for all i > k, then we say that the Σ-degree of m(x) is k. To simplify

notations, we write Σdeg(m(x)) for the Σ-degree of m(x). If m(x) ∈ U [x;α, δ], then we define

Σdeg(m(x)) = −1.

Definition 3.5 Letm(x) = m0+m1x+· · ·+mkx
k+· · ·+mnx

n ̸∈ U [x;α, δ] with Σdeg(m(x)) = k.

We say that m(x) is a Σ-good polynomial if for any i < k, U : mk ⊆ U : mi.

In the following example, we offer a few natural constructions of Σ-good polynomials.

Example 3.6 Let U be an ideal of R.

(1) Any element not contained in U is a Σ-good polynomial of Σ-degree 0.

(2) An ideal P of R is called a completely prime ideal if ab ∈ P implies that a ∈ P or b ∈ P .

If U is a completely prime ideal and m ̸∈ U , then any skew polynomial with leading coefficient

m is a Σ-good polynomial.

(3) Let U be an (α, δ)-compatible completely prime ideal and m ̸∈ U . If b ∈ R with

mxnb ̸∈ U [x;α, δ], then the skew polynomial mxnb is a Σ-good polynomial of Σ-degree n and

leading coefficient mαn(b).

(4) Suppose that m(x) is a Σ-good polynomial. Then m(x)xi is also Σ-good for any i ≥ 0.

Lemma 3.7 For any m(x) = m0 +m1x+ · · ·+mkx
k + · · ·+mnx

n ̸∈ U [x;α, δ], if U is (α, δ)-

compatible, then there exists r ∈ R such that m(x)r is a Σ-good polynomial.
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Proof Assume the result is false and letm(x) = m0+m1x+· · ·+mkx
k+· · ·+mnx

n ̸∈ U [x;α, δ] be

a counterexample of minimality Σ-degree k ≥ 1. In particular, m(x) is not a Σ-good polynomial.

Hence there exists i ≤ k such that U : mk ̸⊆ U : mi. So we can find b ∈ R with mkb ∈ U and

mib ̸∈ U . Note that the degree k coefficient ofm(x)b ismkα
k(b)+

∑n
i=k+1 mif

i
k(b) andmkα

k(b) ∈
U due to the (α, δ)-compatibility of U . On the other hand, we have Σdeg(m(x)) = k. Thus

mi ∈ U for all i > k, and so mif
i
k(b) ∈ U for all k < i ≤ n. Thus mkα

k(b)+
∑n

i=k+1 mif
i
k(b) ∈ U

and so m(x)b has Σ-degree at most k− 1. Now we show that m(x)b ̸∈ U [x;α, δ]. Suppose on the

contrary that m(x)b ∈ U [x;α, δ]. Then we have

m(x)b =(m0 +m1x+ · · ·+mkx
k + · · ·+mnx

n)b

=

n∑
s=0

msf
s
0 (b) +

( n∑
s=1

msf
s
1 (b)

)
x+ · · ·+

( n∑
s=k

msf
s
k(b)

)
xk + · · ·+

mnα
n(b)xn ∈ U [x;α, δ].

So we have
n∑

s=i

msf
s
i (b) ∈ U,

n∑
s=i+1

msf
s
i+1(b) ∈ U, . . . ,

n∑
s=k−1

msf
s
k−1(b) ∈ U.

From
∑n

s=k−1 msf
s
k−1(b) ∈ U and the conditions that:

(a) mi ∈ U for all i > k,

(b) mkb ∈ U ,

(c) U is an (α, δ)-compatible ideal,

we obtain that mk−1b ∈ U . Similarly, we obtain mk−2b ∈ U,mk−3b ∈ U, . . . ,mib ∈ U . This

contradicts the fact thatmib ̸∈ U . Thusm(x)b ̸∈ U [x;α, δ]. By the minimality of k, we know that

there exists c ∈ R with m(x)bc Σ-good, which contradicts the fact that m(x) is a counterexample

to the statement. �

Lemma 3.8 Let U be an (α, δ)-compatible ideal and m(x) = m0+m1x+· · ·+mkx
k+· · ·+mnx

n

be a Σ-good polynomial with Σdeg(m(x)) = k. Then for any r ∈ R with m(x)r ̸∈ U [x;α, δ], we

have m(x)r is also a Σ-good polynomial with Σdeg(m(x)r) = k.

Proof We have

m(x)r = (m0 +m1x+ · · ·+mkx
k + · · ·+mnx

n)r

=
n∑

s=0

msf
s
0 (r) + (

n∑
s=1

msf
s
1 (r))x+ · · ·+ (

n∑
s=k

msf
s
k(r))x

k + · · ·+mnα
n(r)xn

= ∆0 +∆1x+ · · ·+∆kx
k + · · ·+∆nx

n

where ∆p =
∑n

s=p msf
s
p (r), p = 0, 1, . . . , n.

Since Σdeg(m(x)) = k, we have mj ∈ U for all j > k, and so ∆j =
∑n

s=j msf
s
j (r) ∈ U (j >

k), and
∑n

s=k+1 msf
s
k(r) ∈ U . Suppose

∆k =
n∑

s=k

msf
s
k(r) = mkα

k(r) +
n∑

s=k+1

msf
s
k(r) ∈ U.
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Then mkα
k(r) ∈ U , and so by Lemma 3.1, we have mkr ∈ U . Since m(x) is a Σ-good polynomial

with Σdeg(m(x)) = k, we have mir ∈ U for all 0 ≤ i ≤ k, and so mir ∈ U for all 0 ≤ i ≤ n. Then

it is easy to see that m(x)r ∈ U [x;α, δ], contradicting the fact that m(x)r ̸∈ U [x;α, δ]. Thus

we obtain Σdeg(m(x)r) = k. If a ∈ U : ∆k, then ∆ka = mkα
k(r)a + (

∑n
s=k+1 msf

s
k(r))a ∈ U ,

and so mkα
k(r)a ∈ U since ms ∈ U for all s > k. Then by Lemma 3.1, we obtain mkra ∈ U .

Since m(x) is a Σ-good polynomial with Σdeg(m(x)) = k, we have mira ∈ U for all i < k, and

so mira ∈ U for all 0 ≤ i ≤ n. Since U is an (α, δ)-compatible ideal, it is easy to see that

∆ia = (
∑n

s=i msf
s
i (r))a ∈ U . Hence U : ∆k ⊆ U : ∆i for all i < k. Therefore m(x)r is a Σ-good

polynomial. �

A ideal I of R is a Σ-ideal if a2b ∈ I implies ab ∈ I for all a, b ∈ R.

Proposition 3.9 Let U be an (α, δ)-compatible ideal and m(x) = m0 +m1x + · · · +mkx
k +

· · · + mnx
n be a Σ-good polynomial with Σdeg(m(x)) = k and U : (mkR) = ℘, where mkR

denotes the right ideal of R generated by mk. Then we have the following.

(1) We have U [x;α, δ] : (m(x)R[x;α, δ]) = ℘[x;α, δ], where m(x)R[x;α, δ] denotes the

right ideal of R[x;α, δ] generated by m(x).

(2) If U is a Σ-ideal and m(x)R[x;α, δ] is ΣU [x;α,δ]-prime, then mkR is ΣU -prime.

Proof (1) We first show that

U [x;α, δ] : (m(x)R[x;α, δ]) ⊇ ℘[x;α, δ].

Let r(x) = r0 + r1x + · · · + rsx
s + · · · + rtx

t ∈ R[x;α, δ] with Σdeg(r(x)) = s, and h(x) =

h0 + h1x + · · · + hlx
l + · · · + hqx

q ∈ ℘[x;α, δ] with Σdeg(h(x)) = l. In order to show that

m(x)r(x)h(x) ∈ U [x;α, δ], we need only to show that

( k∑
i=0

mix
i
)( s∑

j=0

rjx
j
)( l∑

v=0

hvx
v
)
∈ U [x;α, δ].

A typical term of (
∑k

i=0 mix
i)(
∑s

j=0 rjx
j)(
∑l

v=0 hvx
v) is mix

irjx
jhvx

v. The coefficients of

mix
irjx

jhvx
v can be written as sums of monomials in mi, f

β
α (rj) and fδ

γ (hv). Consider each

monomial mif
β
α (rj)f

δ
γ (hv). Since hv ∈ ℘ = U : (mkR), we have mkRhv ⊆ U . Since m(x) is

a Σ-good polynomial with Σdeg(m(x) = k, we obtain miRhv ⊆ U for all i ≤ k. Since U is

(α, δ)-compatible, by Lemma 3.2, we obtain mif
β
α (R)fδ

γ (hv) ⊆ U, and so mif
β
α (rj)f

δ
γ (hv) ∈ U.

Thus mix
irjx

jhvx
v ∈ U [x;α, δ] and so

( k∑
i=0

mix
i
)( s∑

j=0

rjx
j
)( l∑

v=0

hvx
v
)
∈ U [x;α, δ].

Hence U [x;α, δ] : (m(x)R[x;α, δ]) ⊇ ℘[x;α, δ].

For the reverse inclusion, assume that g(x) = b0+ b1x+ · · ·+ blx
l+ · · ·+ bmxm ∈ U [x;α, δ] :

(m(x)R[x;α, δ]) with Σdeg(g(x)) = l. Then we have m(x)R[x;α, δ]g(x) ⊆ U [x;α, δ]. Note that
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m(x)R[x;α, δ]g(x) ⊆ U [x;α, δ] if and only if( k∑
i=0

mix
i
)
R[x;α, δ]

( l∑
j=0

bjx
j
)
⊆ U [x;α, δ]

if only if ( k∑
i=0

mix
i
)
R
( l∑

j=0

bjx
j
)
⊆ U [x;α, δ].

The leading coefficients of ( k∑
i=0

mix
i
)
R
( l∑

j=0

bjx
j
)

is mkα
k(Rbl). Since U is (α, δ)-compatible, by Lemma 3.1, we obtain mkRbl ⊆ U , and so

bl ∈ ℘ = U : (mkR). Since m(x) is a Σ-good polynomial with Σdeg(m(x)) = k, we obtain

miRbl ⊆ U for all 0 ≤ i ≤ k. Thus from (
∑k

i=0 mix
i)R(

∑l
j=0 bjx

j) ⊆ U [x;α, δ], we obtain

(
∑k

i=0 mix
i)R(

∑l−1
j=0 bjx

j) ⊆ U [x;α, δ]. Using the same method as above, we obtain bl−1 ∈ ℘.

Continuing this procedure yields bl ∈ ℘, bl−1 ∈ ℘, . . . , b0 ∈ ℘. Since bv ∈ U for all v > l, it is easy

to see that for all v > l, bv ∈ U : (mkR) = ℘. Hence for all 0 ≤ j ≤ m, bj ∈ ℘. So g(x) = b0 +

b1x+· · ·+blx
l+· · ·+bmxm ∈ ℘[x;α, δ], which implies that U [x;α, δ] : (m(x)R[x;α, δ]) ⊆ ℘[x;α, δ].

Therefore U [x;α, δ] : (m(x)R[x;α, δ]) = ℘[x;α, δ].

(2) Since mk ̸∈ U , we have mkR ̸∈ U . Assume that a right ideal Q ⊆ mkR, and Q ̸⊆
U . Then U : Q ⊇ U : (mkR). Now we show that U : Q ⊆ U : (mkR) = ℘. Set W =

{m(x)r | r ∈ Q}, and let WR[x;α, δ] be the right ideal of R[x;α, δ] generated by W . Clearly,

WR[x;α, δ] ⊆ m(x)R[x;α, δ]. Since Q ̸⊆ U , there exists a ∈ R such that mka ∈ Q and

mka ̸∈ U . If mk · mka ∈ U , then by the condition that U is a Σ-ideal, we have mka ∈ U .

This contradicts the fact that mka ̸∈ U . Thus mk · mka ̸∈ U . Now we show that m(x)mka ̸∈
U [x;α, δ]. Assume on the contrary that m(x)mka ∈ U [x;α, δ]. Since Σdeg(m(x)) = k, we have

m(x)mka ∈ U [x;α, δ] if and only if (m0 + m1x + · · · + mkx
k)mka ∈ U [x;α, δ]. The leading

coefficient of (m0 +m1x+ · · ·+mkx
k)mka is mkα

k(mka). Thus we have mkα
k(mka) ∈ U , and

so mkmka ∈ U since U is (α, δ)-compatible. This contradicts the fact that mkmka ̸∈ U . Hence

m(x) ·mka ̸⊆ U [x;α, δ], and so WR[x;α, δ] ̸⊆ U [x;α, δ]. Since m(x)R[x;α, δ] is ΣU [x;α,δ]-prime,

we obtain

U [x;α, δ] : (WR[x;α, δ]) = U [x;α, δ] : (m(x)R[x;α, δ]) = ℘[x;α, δ].

Suppose q ∈ U : Q. Then rq ∈ U for each r ∈ Q. For any m(x)rf(x) ∈ WR[x;α, δ] where

f(x) = a0+a1x+ · · ·+alx
l ∈ R[x;α, δ] and r ∈ Q. The typical term of m(x)rf(x) is mix

irajx
j .

Since raj ∈ Q, we have rajq ∈ U . Then by Lemma 3.3, we have rajx
iq ∈ U [x;α, δ] and so

mix
irajx

jq ∈ U [x;α, δ]. Thus for any∑
m(x)rifi(x) ∈ WR[x;α, δ],

it is easy to see that (∑
m(x)rifi(x)

)
q ∈ U [x;α, δ].
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Hence

q ∈ U [x;α, δ] : (WR[x;α, δ]) = U [x;α, δ] : (m(x)R[x;α, δ]) = ℘[x;α, δ],

and so q ∈ ℘ = U : (mkR). Thus U : Q ⊆ U ; (mkR), and this implies that U : Q = U : (mkR).

Therefore mkR is ΣU -prime. �
With the help of Propositions 3.4 and 3.9, we get the central result of this paper.

Theorem 3.10 Let U be an (α, δ)-compatible Σ-ideal. Then we have

ΣU [x;α,δ]-Ass(R[x;α, δ]) = {℘[x;α, δ] | ℘ ∈ ΣU -Ass(R)}.

Proof Let ℘ ∈ ΣU -Ass(R). By definition, there exists a right ideal I ̸⊆ U with I being ΣU -prime

and ℘ = U : I. Then by Proposition 3.4, we have ℘[x;α, δ] = U [x;α, δ] : I[x;α, δ] and I[x;α, δ]

is ΣU [x;α,δ]-prime. Thus ℘[x;α, δ] ∈ ΣU [x;α,δ]-Ass(R[x;α, δ]) and so

ΣU [x;α,δ]-Ass(R[x;α, δ]) ⊇ {℘[x;α, δ] | ℘ ∈ ΣU -Ass(R)}.

Now we prove ⊆ in Theorem 3.10. Let I ∈ ΣU [x;α,δ]-Ass(R[x;α, δ]). By definition, there exists

a ΣU [x;α,δ]-prime ideal £ with I = U [x;α, δ] : £. Pick any m(x) = m0 + m1x + · · · + mkx
k +

· · · + mnx
n ∈ £ and m(x) ̸∈ U [x;α, δ]. By Lemma 3.7, we may assume that m(x) is Σ-good,

and Σdeg(m(x)) = k. Since £ is ΣU [x;α,δ]-prime, we have

I = U [x;α, δ] : £ = U [x;α, δ] : (m(x)R[x;α, δ])

and m(x)R[x;α, δ] is also ΣU [x;α,δ]-prime. Let ℘ = U : (mkR). Then by Proposition 3.9, we

have I = ℘[x;α, δ], and mkR is ΣU -prime. Hence

ΣU [x;α,δ]-Ass(R[x;α, δ]) ⊆ {℘[x;α, δ] | ℘ ∈ ΣU -Ass(R)}.

Therefore

ΣU [x;α,δ]-Ass(R[x;α, δ]) = {℘[x;α, δ] | ℘ ∈ ΣU -Ass(R)}. �

Corollary 3.11 Let U be a Σ-ideal of R. Then we have the following;

(1) If U is α-compatible, then ΣU [x;α]-Ass(R[x;α]) = {℘[x;α] | ℘ ∈ ΣU -Ass(R)}.
(2) If U is δ-compatible, then ΣU [x;δ]-Ass(R[x; δ]) = {℘[x; δ] | ℘ ∈ ΣU -Ass(R)}.

Corollary 3.12 Let R be an (α, δ)-compatible NI-ring.

Σnil(R)[x;α,δ]-Ass(R[x;α, δ]) = {℘[x;α, δ] | ℘ ∈ Σnil(R)-Ass(R)}.

Proof Let U = nil(R). Then by [10, Lemma 2.4] and [10, Lemma 2.5], it is easy to see that

nil(R) is an (α, δ)-compatible Σ-ideal. According to Theorem 3.10, we complete the proof. �

Corollary 3.13 ([11, Theorem 3.1]) Let R be an (α, δ)-compatible 2-primal ring. Then

NAss(R[x;α, δ]) = {℘[x;α, δ] | ℘ ∈ NAss(R)}.

Proof Let U = nil(R). Using the same method as in the proof of Corollary 3.12, we obtain

nil(R) is an (α, δ)-compatible Σ-ideal. In view of [11, Corollary 2.2], we have nil(R)[x;α, δ] =

nil(R[x;α, δ]). Then according to Theorem 3.10, we complete the proof. �
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Corollary 3.14 Let R be a 2-primal ring. Then NAss(R[x]) = {℘[x] | p ∈ NAss(R)}.

Proof It follows from Corollary 3.13.

Note that if R is an (α, δ)-compatible ring and 0 a Σ-ideal, then by Theorem 3.10, we obtain

Ass(R[x;α, δ]) = {℘[x;α, δ] | ℘ ∈ Ass(R)}. But by using some special nice properties of zero

ideal, Annin showed that the condition that 0 is a Σ-ideal is superfluous [2, Theorem 2.1].

Let α be an automorphism of a ring R. The skew Laurent polynomial ring R[x, x−1;α] is

the ring where elements are the form
∑n

i=s aix
i where s, n ∈ Z. The addition is defined as usual

and the multiplication by xib = αi(b)x for any i ∈ Z. Let I be a right ideal of R. I[x, x−1;α]

means the set {
∑n

i=s aix
i ∈ R[x, x−1;α] | ai ∈ I for all s ≤ i ≤ n}. For skew Laurent polynomial

rings, we can derive results analogous to Theorem 3.10 above. �

Theorem 3.15 Let α : R −→ R be an automorphism. If U is an α-compatible Σ-ideal, then

ΣU [x,x−1;α]-Ass(R[x, x−1;α]) = {℘[x, x−1;α] | ℘ ∈ ΣU -Ass(R)}.

Proof All statements here are proved in essentially the same way as Theorem 3.10, so we will

discuss the proof briefly. First we observe that if U is α-compatible, then U is αi-compatible for

all i ∈ Z. Let I be a right ideal of R with I ̸⊆ U and ℘ = U : I. By using the same way as in the

proof of Proposition 3.4, we can show that if I is ΣU -prime, then I[x, x−1;α] is ΣU [x,x−1;α]-prime

and U [x, x−1;α] : I[x, x−1;α] = ℘[x, x−1;α]. Thus

ΣU [x,x−1;α]-Ass(R[x, x−1;α]) ⊇ {℘[x, x−1;α] | ℘ ∈ ΣU -Ass(R)}.

Letm(x) =
∑n

i=s mix
i be a skew Laurent polynomial inR[x, x−1;α]. We say that Σdeg(m(x)) =

k if there exists some k ∈ Z such that mk ̸∈ U and mi ∈ U if i > k. We say that m(x) =∑n
i=s mix

i with Σdeg(m(x)) = k is a Σ-good skew Laurent polynomial if U : mk ⊆ U : mi for

all i < k. Then by using the same way as in the proof of Proposition 3.9, we obtain that

ΣU [x,x−1;α]-Ass(R[x, x−1;α]) ⊆ {℘[x, x−1;α] | ℘ ∈ ΣU -Ass(R)}.

Therefore

ΣU [x,x−1;α]-Ass(R[x, x−1;α]) = {℘[x, x−1;α] | ℘ ∈ ΣU -Ass(R)}.

Corollary 3.16 We have the following:

(1) Let R be an α-compatible NI-ring where α is an automorphism of R. Then

Σnil(R)[x,x−1;α]-Ass(R[x, x−1;α]) = {℘[x, x−1;α] | ℘ ∈ Σnil(R)-Ass(R)}.

(2) Let R be an α-compatible 2-primal ring where α is an automorphism of R. Then

NAss(R[x, x−1;α]) = {℘[x, x−1;α] | ℘ ∈ NAss(R)}.

Proof (1) Let U = nil(R). Using the same method as in the proof of Corollary 3.12, we have

nil(R) is an α-compatible Σ-ideal. Then according to Theorem 3.15, we complete the proof.

(2) Let U = nil(R). By the proof of (1), we have nil(R) is an α-compatible Σ-ideal.

Analogously to [10, Lemma 2.6], we show that nil(R)[x, x−1;α] = nil(R[x, x−1;α]). According

to Theorem 3.15, we complete the proof. �
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Corollary 3.17 Let R be a 2-primal ring. Then

NAss(R[x, x−1]) = {℘[x, x−1] | ℘ ∈ NAss(R)}.

Proof It follows directly from Corollary 3.16.

Let α : R −→ R be an endomorphism and U an ideal of R. In the following we investigate

the relationship between the Σ-associated primes of the skew power series ring R[[x;α]] and that

of the ring R. �

Definition 3.18 Let k ∈ Z and m(x) =
∑∞

i=0 mix
i ̸∈ U [[x;α]]. We say that m(x) is a k-Σ-good

power series if mk ̸∈ U , and U : mk ⊆ U : mi if i < k.

Definition 3.19 Let U be an ideal of R and m(x) =
∑∞

i=0 mix
i ̸∈ U [[x;α]]. We say that m(x)

is a Σ-good power series if there exists some k ∈ Z such that mk ̸∈ U and U : mk ⊆ U : mi if

i ̸= k.

Proposition 3.20 Let U be an ideal of R and m(x) =
∑∞

i=0 mix
i ̸∈ U [[x;α]]. If R is a left

perfect ring, then there exists r ∈ R such that m(x)r is a Σ-good power series.

Proof Note that if mk ∈ U for some k ∈ Z, then U : mk = R, and so for any coefficient mi of

m(x), we have U : mi ⊆ U : mk. Hence without loss of generality, we may assume that mi ̸∈ U

for all 0 ≤ i ≤ ∞. Consider the polynomial m1(x) = m0 + m1x. By Lemma 3.7, there exists

r1 ∈ R such that m1(x)r1 is a Σ-good polynomial, and so there exists r1 ∈ R such that m(x)r1

is a 1-Σ-good power series. Then inductively, we can find ri ∈ R such that m(x)r1r2 · · · ri is

i-Σ-good. Consider the descending chain of cycle right modules

m(x)R ⊇ m(x)r1R ⊇ m(x)r1r2R ⊇ · · ·

Since R is left perfect, this chain stabilizes, say at m(x)r1r2 · · · rkR. Let m′(x) = m(x)r1r2 · · · rk.
Then by analogy with the proof of [1, Theorem 5.2], we can show that m′(x) = m(x)r1r2 · · · rk
is a Σ-good power series. �

Theorem 3.21 Let R be a left perfect ring and U an α-compatible Σ-ideal. Then

ΣU [[x;α]](R[[x;α]]) = {℘[[x;α]] | ℘ ∈ ΣU -Ass(R)}.

Proof By analogy with the proof of [1, Theorem 5.1], we can show that

ΣU [[x;α]](R[[x;α]]) ⊇ {℘[[x;α]] | ℘ ∈ ΣU -Ass(R)}.

Then by analogy with proof of Proposition 3.10, we can see the reverse containment. �

Corollary 3.22 Let R be an α-compatible left perfect ring. Then we have the following:

(1) If R is an NI-ring, then

Σnil(R)[[x;α]]-Ass(R[[x;α]]) = {℘[[x;α]] | ℘ ∈ Σnil(R)-Ass(R)}.

(2) If R is a right noetherian NI ring, then

NAss(R[[x;α]]) = {℘[[x;α]] | ℘ ∈ NAss(R)}.
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Proof (1) Let U = nil(R). Using the same method as in the proof of Corollary 3.12, we can

show that nil(R) is an α-compatible Σ-ideal. Then we complete the proof by Theorem 3.21.

(2) Let U = nil(R). By the proof of (1), we obtain that nil(R) is an α-compatible Σ-ideal.

Since R is a right noetherian NI ring, by Levitzki’s Theorem [9], nil(R) is nilpotent. Then by

[12, Proposition 2.5], we can show that nil(R)[[x;α]] = nil(R[[x;α]]). Then by Theorem 3.21 we

complete the proof. �
Note that if R is an α-compatible left perfect ring, and 0 is a Σ-ideal, then by Theorem

3.21, we obtain that

Ass(R[[x;α]]) = {℘[[x;α]] | ℘ ∈ Ass(R)}. (∗)

But we must mention that the condition that 0 is a Σ-ideal is superfluous. Annin showed in [1,

Theorem 5.2] that if R is an α-compatible left perfect ring, then the equation (∗) above is also

true.
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