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1. Introduction

In this paper, all groups considered are finite groups. Let G be a finite group. Given

a nonempty subset H of G, the normal closure of H in G is the intersection of all normal

subgroups of G which contain H, it is denoted by HG. Obviously, HG is the smallest normal

subgroup containing H and it is easy to show that HG = ⟨hg|h ∈ H, g ∈ G⟩. If H is a subgroup

of G, we notice that H ≤ HG ≤ G and

H = HG if and only if H EG.

Thus a subgroup may be regarded as “far normal” if it has “large” normal closure or “nearly

normal” if it has “small” normal closure. Finite p-groups with “small” normal closure have

been investigated in [1–3], respectively. On the other hand, finite p-groups with “large” normal

closure have also been investigated. For example, Janko [4] classified finite p-groups G such that

|G : HG| = p for every nonnormal subgroup H of G. Zhao and Guo [5] classified finite p-groups

G such that |G : HG| ≤ p2 for every nonnormal cyclic subgroup H of G. As a continuation

of Janko, Zhao and Guo’s works, we classify finite p-groups such that G/HG is cyclic for every

nonnormal subgroup H of G in this paper.

For convenience, a finite p-group G is called a Cc-group if G/HG is cyclic for every minimal

nonnormal subgroup H.

In Lemma 2.4, we give some equivalent conditions for a finite p-group G to be a Cc-group.
It turns out that G is a Cc-group if and only if every nonnormal subgroup of G is contained in

exactly one maximal subgroup of G. In [6], Janko gave a classification of such finite p-groups.

Received October 6, 2014; Accepted May 25, 2015

Supported by the National Natural Science Foundation of China (Grant Nos. 11371232; 11226048; 11401355) and

the Natural Science Foundation of Shanxi Province (Grant No. 2013011001-1).

* Corresponding author

E-mail address: junqiangchang@163.com (Junqiang ZHANG)



522 Junqiang ZHANG, Ruijiao LU and Wentian LI

Hence Cc-groups are classified. This paper will give an independent proof of this classification

by using central extension. In Theorem 3.1, Cc-groups will be classified up to isomorphism and

more detail information of Cc-groups will be given.

Throughout this paper, p is always a prime. Let G be a finite p-group. The nth term of the

lower central series of G is denoted by Gn and G′ = G2. We use c(G), exp(G) and d(G) to denote

the nilpotency class, the exponent and the minimal number of generators of G respectively. o(g)

denotes the order of g, and M lG denotes that M is a maximal subgroup of G. We also use Cpn

and Epn to denote the cyclic group and the elementary abelian group of order pn, respectively,

where Cp0 = Ep0 = 1.

We also use the following notation.

Ω1(G) = ⟨g ∈ G | gp = 1⟩ and f1(G) = ⟨gp | g ∈ G⟩.

Mp(n,m) = ⟨a, b | ap
n

= bp
m

= 1, ab = a1+pn−1

⟩,where n ≥ 2.

Mp(n,m, 1) = ⟨a, b; c | ap
n

= bp
m

= cp = 1, [a, b] = c, [c, a] = [c, b] = 1⟩,

where n ≥ m, and m+ n ≥ 3 if p = 2.

The other terminology and notations are standard, as in [7].

2. Preliminaries

A nonabelian p-group is said to be minimal nonabelian if all its proper subgroups are abelian.

A p-group is said to be Dedekindian if all its subgroups are normal.

Lemma 2.1 ([8]) Let G be a minimal nonabelian p-group. Then G is Q8, Mp(m,n), or

Mp(m,n, 1).

Lemma 2.2 ([9, Theorem 1.1]) If G is Dedekindian, then G is either abelian or G ∼= Q8 ×E2n .

Lemma 2.3 Let G be a finite p-group. If |G′| ≥ p2, then there exists N EG such that G/N is

not a Dedekindian group, where N ≤ G′ ∩ Z(G) and |K| = p.

Proof Since |G′| ≥ p2, G is not Dedekindian. By [9, Lemma 2.1], there exists K EG such that

|G′ : K| = p and G/K is not Dedekindian. Thus there exists N ≤ K ∩ Z(G) ≤ G′ ∩ Z(G) such

that |N | = p. Since G/K ∼= (G/N)/(K/N), G/N is not Dedekindian. �
A minimal nonnormal subgroup of a finite group G is a nonnormal subgroup whose proper

subgroups are normal in G. We have the following

Lemma 2.4 Let G be a finite p-group which is not Dedekindian. Then the following statements

are equivalent.

(1) The factor group G/HG is cyclic for every minimal nonnormal subgroup H of G.

(2) The factor group G/HG is cyclic for every nonnormal subgroup H of G.

(3) Every subgroup of Φ(G) is normal in G and d(G) = 2.

(4) Every nonnormal subgroup is contained in exactly one maximal subgroup of G.



Finite p-groups and normal closures of nonnormal subgroups 523

Proof (1)⇒(2). Let H be a nonnormal subgroup of G. Then there exists L ≤ H such that L

is a minimal nonnormal subgroup of G. Thus G/LG is cyclic. It follows that G/HG is cyclic.

(2)⇒(3). Let H ≤ Φ(G). Then HG ≤ Φ(G). Since G/Φ(G) is not cyclic, G/HG is not

cyclic. It follows that H EG. Thus every subgroup of Φ(G) is normal in G.

Let H be a minimal nonnormal subgroup of G. By [9, Lemma 1.4], H is cyclic. Let

H = ⟨a⟩. Since HG ≤ HG′ and G/HG is cyclic, G/HG′ is cyclic. Let G/HG′ = ⟨b̄⟩. Then

G = ⟨a, b,G′⟩ = ⟨a, b⟩. Thus d(G) = 2.

(3)⇒(4). Since d(G) = 2, M1 ∩ M2 = Φ(G) for any two distinct maximal subgroups M1

and M2 of G. If H ≤ M1 ∩M2 = Φ(G), then H EG. It follows that (4) holds.

(4)⇒(1). Let H be a minimal nonnormal subgroup of G. Then H is contained in exactly one

maximal subgroup of G. It follows that HΦ(G) is contained in exactly one maximal subgroup

of G. Hence G/HΦ(G) is of order p by correspondence theorem. Let G/HΦ(G) = ⟨ā⟩. Then

G = ⟨a,H,Φ(G)⟩ = ⟨a⟩HG. Thus G/HG = ⟨ā⟩. (1) holds. �

Lemma 2.5 Let G be a Cc-group. Then the following statements hold.

(1) If N EG, then G/N is a Cc-group.
(2) The derived subgroup G′ is cyclic.

(3) If H ≤ Φ(G) and H ∩G′ = 1, then H ≤ Z(G).

Proof (1) Let G = G/N and H = H/N 5 G. Then H 5 G. Notice that G/(H
G
) = G/HG ∼=

G/HG. Since G is a Cc-group, G is a Cc-group.
(2) Since G is a Cc-group, d(G) = 2 by Lemma 2.4(3). Let G = ⟨a, b⟩. Then G′ = ⟨[a, b]g |

g ∈ G⟩. Since ⟨[a, b]⟩ ≤ Φ(G), ⟨[a, b]⟩EG by Lemma 2.4(3). It follows that G′ = ⟨[a, b]⟩.
(3) If H ≤ Φ(G), then H EG by Lemma 2.4(3). It follows that [H,G] ≤ H ∩G′ = 1. Thus

H ≤ Z(G). �

Lemma 2.6 Let G be a finite p-group. Then G is a Cc-group if G is one of following groups.

(1) G is a 2-group of maximal class.

(2) G is a minimal nonabelian p-group.

Proof (1) Let H be a nonnormal subgroup of G. Since G is a 2-group of maximal class, Gi is

the unique normal subgroup of order 2n−i. It follows that HG = Gi or a maximal subgroup of

G. If HG = Gi, which is cyclic, then H char Gi ▹ G. It follows that H ▹ G, a contradiction.

Thus HG is a maximal subgroup of G and so G/HG is cyclic. It follows that G is a Cc-group.
(2) Let H be a nonnormal subgroup of G. Notice that G is a minimal nonabelian p-group,

we get d(G) = 2, |G′| = p and Z(G) = Φ(G). It follows that H � Φ(G) and HΦ(G) is of index

at most p. Since H is not normal in G, H < HG ≤ HG′ and |HG′ : H| = p. Thus HG = HG′.

Let G = G/HG. Then

|G/Φ(G)| = |G/Φ(G)| = |G/Φ(G)H| = p.

It follows that G/HG is cyclic. So G is a Cc-group. �
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3. The main results and their proofs

If all subgroups of G are normal, then G is a Dedekindian group. The groups have been

classified. Thus we consider the Cc-groups with nonnormal subgroups in this section.

Theorem 3.1 Let G be a finite p-group with nonnormal subgroups. Then G is a Cc-group if

and only if one of the following occurs.

I. Mp(n,m) or Mp(n,m, 1).

II. 2-groups of maximal class of order ≥ 24.

III. Nonmetacyclic 2-groups of order 2n+2, where n ≥ 3.

(1) ⟨a, b, c | a2n = b2 = 1, [a, b] = c, c2 = a−4, [c, a] = 1, [c, b] = c−2⟩.
(2) ⟨a, b, c | a2n = 1, b2 = a2

n−1

, [a, b] = c, c2 = a−4, [c, a] = 1, [c, b] = c−2⟩.
In groups (1) and (2) of III, G′ = ⟨c⟩ ∼= C2n−1 ,Φ(G) = ⟨a2⟩ × ⟨a2c⟩ ∼= C2n−1 × C2, Z(G) =

⟨a2n−1⟩ × ⟨a2c⟩ ∼= C2
2 .

(3) ⟨a, b, c | a2n = b4 = 1, [a, b] = c, c2 = a−4, [c, a] = 1, [c, b] = c−2⟩, where G′ = ⟨c⟩ ∼=
C2n−1 ,Φ(G) = ⟨a2⟩ × ⟨a2c⟩ × ⟨b2⟩ ∼= C2n−1 × C2 × C2, Z(G) = ⟨a2n−1⟩ × ⟨a2c⟩ × ⟨b2⟩ ∼= C3

2 .

IV. Metacyclic 2-groups of order 2n+2, where n ≥ 3.

(1) ⟨a, b | a2n = b4 = 1, [a, b] = a−2⟩.
(2) ⟨a, b | a2n = b4 = 1, [a, b] = a−2+2n−1⟩.
In groups (1) and (2) of IV, G′ = ⟨a2⟩ ∼= C2n−1 , Φ(G) = ⟨a2⟩ × ⟨b2⟩ ∼= C2n−1 × C2, Z(G) =

⟨a2n−1⟩ × ⟨b2⟩ ∼= C2
2 .

Proof Let G be a Cc-group with nonnormal subgroups. By Lemma 2.4(3), every subgroup of

Φ(G) is normal in G and d(G) = 2. If p > 2, then Φ(G) ≤ Z(G) by [7, §4, Exercise 8]. It

follows that G is a minimal nonabelian p-group. Since G has nonnormal subgroups, G is not

Dedekindian. By Lemma 2.1, we get G is isomorphic to Mp(n,m) or Mp(n,m, 1).

Next, we complete the proof by induction on |G′| for p = 2. Assume |G′| = 2. By Lemma

2.4(3), we get d(G) = 2. It follows that G is a minimal nonabelian p-group. By Lemma 2.1,

group G is Mp(n,m) or Mp(n,m, 1). Assume |G′| ≥ 22. Then there exists a normal subgroup

N of order 2 of G such that N ≤ G′ ∩ Z(G). Let G = G/N . Then G is a Cc-group by Lemma

2.5(1), G has nonnormal subgroups by Lemma 2.3 and |G′| < |G′|. By induction, G is one of

groups of Theorem.

Case 1 G is a 2-group of maximal class or G ∼= Mp(n, 1), where n ≥ 2.

Let G = ⟨a, b⟩ and N = ⟨x⟩. Then G is metacyclic by [10, Theorem 1]. Thus N = ⟨a2n⟩
and G = ⟨a, b⟩. It follows that ⟨a⟩ is a cyclic maximal subgroup of G. Since |G′| ≥ p2, G is a

2-group of maximal class by [7, Theorem 1.2]. Thus G is one of groups of type II.

Case 2 G ∼= Mp(n,m), where n,m ≥ 2.

Let G = ⟨a, b | a2
n

= b
2m

= 1, [a, b] = a2
n−1

⟩ and N = ⟨x⟩. Then G is metacyclic by [10,

Theorem 1]. Thus N = ⟨a2n⟩ and G = ⟨a, b⟩ with relations

a2
n+1

= 1, b2
m

= aj2
n

, [a, b] = a2
n−1+k2n ,
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where j, k ∈ {0, 1}.
We can assume that j = 0. In fact, if j = 1 and m ≥ n, then (b−2m−n+1 · a2)2n−1

=

b−2m ·a2n = 1. It follows that ⟨b−2m−n+1 ·a2⟩∩G′ = 1. Notice that a2 /∈ Z(G), then b−2m−n+1 ·a2 /∈
Z(G). Hence ⟨b−2m−n+1 · a2⟩ 5 G. This contradicts Lemma 2.4(3). It follows that m < n if

j = 1. Since m ≥ 2, n ≥ 3. Let b1 = ba−2n−m

. Then b2
m

1 = 1. So we can assume that j = 0.

Since ⟨b2⟩ ≤ Φ(G), by Lemma 2.4(3), we get ⟨b2⟩ E G. Notice that ⟨b2⟩ ∩ G′ = 1, then

[a, b2] = 1. Thus

1 = [a, b2] = [a, b]2[a, b, b] = a2
n

[a2
n−1

, b] = a2
n

[a, b]2
n−1

= a2
n

a2
2n−2

.

It follows that n− 2 ≡ 0 (modn+ 1), which implies that n = 2.

If m ≥ 3, then (a2b2
m−2

)2
2

= (a2
2

b2
m−1

)2 = a2
3

b2
m

= 1. It follows that ⟨a2b2m−2⟩ ∩G′ = 1.

Notice that a2 /∈ Z(G), then a2b2
m−2

/∈ Z(G). Hence ⟨a2b2m−2⟩ 5 G. This contradicts Lemma

2.4(3). It follows that m = 2.

Now G is one of groups of IV(1) or IV(2).

Case 3 G ∼= M2(n,m, 1), where n ≥ m and m+ n ≥ 3.

Let G = ⟨a, b, c | a2
n

= b
2m

= c2 = 1, [a, b] = c, [a, c] = [b, c] = 1⟩. By Lemma 2.5(2), we get

G′ is cyclic. It follows that N = ⟨c2⟩. Thus

G = ⟨a, b, c | a2
n

= ci2, b2
m

= cj2, c2
2

= 1, [a, b] = c1+k2, [a, c] = cs2, [b, c] = ct2⟩,

where i, j, k, s, t ∈ {0, 1}.
We can assume k = 0 by letting c1 = c1+k2.

We may assume s = 0, that is, [a, c] = 1. If st = 0, without loss of generality, we can let

s = 0. If st = 1, letting a1 = ab, then [a1, c] = [a, c][b, c] = c4 = 1. Thus we can assume that

s = 0.

Since [a2, b] = [a, b]2 = c2 ̸= 1, a2 ̸∈ Z(G). It follows that n ≥ 2. Notice that ⟨a2⟩ ≤ Φ(G),

by Lemma 2.4(3), ⟨a2⟩EG. Thus [a2, b] = c2 ∈ ⟨a2⟩. It follows that i = 1.

If t = 0, that is [b, c] = 1, then [a, b2] = [a, b]2 = c2. Thus b2 ̸∈ Z(G). It follows that m ≥ 2.

Since ⟨b2⟩ ≤ Φ(G), by Lemma 2.5(3), we can get j = 1. If n ≥ m, then (b2a2
n−m+1

)2
m−1

=

b2
m

a2
n

= 1. It follows that ⟨b2a2n−m+1⟩ ∩ G′ = 1. Notice that ⟨b2a2n−m+1⟩ ≤ Φ(G), then

⟨b2a2n−m+1⟩ ≤ Z(G), which contradicts that [b2a2
n−m+1

, a] = [b2, a] = c2 ̸= 1. If m ≥ n, consider

⟨a2b2m−n+1⟩, we can get a contradiction too. Thus t = 1.

Since (a2
n−1

c)2 = a2
n

c2 = c4 = 1, ⟨a2n−1

c⟩ ∩ G′ = 1. Notice that ⟨a2n−1

c⟩ ≤ Φ(G), then

⟨a2n−1

c⟩ ≤ Z(G). It follows that

1 = [a2
n−1

c, b] = [a, b]2
n−1

[c, b] = c2
n−1

c2 = c2(1+2n−2).

We obtain that t+ 2n−2 ≡ 0 (mod 2). Thus n = 2.

We assert that m ≤ 2. Otherwise, if m ≥ 3, then a2b2
m−1

, a2b2
m−2 ∈ Φ(G) − Z(G).

By Lemma 2.5(3), we can get ⟨a2b2m−1⟩ ∩ G′ ̸= 1 and ⟨a2b2m−2⟩ ∩ G′ ̸= 1. If j = 1, then

(a2b2
m−1

)2 = 1. It follows that ⟨a2b2m−1⟩ ∩G′ = 1, a contradiction. If j = 0, then (a2b2
m−2

)2
2

=

(a2
2

b2
m−1

)2 = 1. It follows that ⟨a2b2m−2⟩ ∩G′ = 1, a contradiction too. Thus m ≤ 2.
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If m = 1, then G is one of groups III(1) or (2).

If m = 2, we can get j = 0. If j = 1, then ⟨b2c⟩ ≤ Φ(G) and ⟨b2c⟩ � Z(G). By Lemma

2.5(3), we can get ⟨b2c⟩ ∩G′ ̸= 1. Since (b2c)2 = b4c2 = 1, ⟨b2c⟩ ∩G′ = 1, a contradiction. Thus

j = 0 if m = 2, and G is one of groups III(3).

Case 4 G is one of groups III(1) of Theorem.

Let G = ⟨ā, b̄ | ā2n = 1, b̄2 = 1, [ā, b̄] = c̄, c̄2 = ā−4, [c̄, ā] = 1, [c̄, b̄] = c̄−2⟩ and N = ⟨x⟩.
Then

G = ⟨a, b | a2
n

= xi, b2 = xj , [a, b] = cxk, c2 = a−4xl, [c, a] = xs, [c, b] = c−2xt⟩,

where i, j, k, l, s, t ∈ {0, 1}.
By Lemma 2.5(2), G′ is cyclic. It follows that G′ = ⟨c⟩ and N = ⟨c2n−1⟩. If a2

n

= 1,

notice that n ≥ 3, then 1 = (a−4xl)2
n−2

= (c2)2
n−2

= c2
n−1

, a contradiction. Thus i = 1. Since

b2 ∈ N ≤ Z(G), by computation, we get 1 = [a, b2] = [a, b]2[a, b, b] = c2c−2xt = xt. Thus t = 0.

We can assume k = 0 by letting c1 = cxk. It follows that

G = ⟨a, b | a2
n+1

= 1, b2 = cj2
n−1

, [a, b] = c, c2 = a−4cl2
n−1

, [c, a] = cs2
n−1

, [c, b] = c−2⟩,

where j, l, s ∈ {0, 1}.
If s = 1, then

(c1+l2n−2

a2)2 = c2cl2
n−1

a4 = a−4cl2
n−1

cl2
n−1

a4 = 1.

It follow that ⟨c1+l2n−2

a⟩ ∩ G′ = 1. Notice that ⟨c1+l2n−2

a⟩ ≤ Φ(G), by Lemma 2.5(3), we get

⟨c1+l2n−2

a⟩ ≤ Z(G). Since n ≥ 3 and [c, a] ∈ Z(G), by computation, we get [c1+l2n−2

a2, a] =

[c1+l2n−2

, a] = [c, a] = cs2
n−1 ̸= 1, a contradiction. Thus s = 0.

If l = 1, then (ca2−2n−1

)2 = c2a2
2−2n = 1. It follows that ⟨ca2−2n−1⟩ ∩ G′ = 1. Notice

that ⟨ca2−2n−1⟩ ≤ Φ(G), by Lemma 2.5(3), ⟨ca2−2n−1⟩ ≤ Z(G). Since n ≥ 3 and [c, a] = 1, by

computation, we get

[ca2−2n−1

, b] = [c, b][a2−2n−1

, b] = c−2[a2, b][a−2n−1

, b] = c−2[a, b]2[a, b, a][a, b]−2n−1

= c−2n−1

̸= 1,

a contradiction. Thus l = 0.

If j = 0, then G is one of groups III(1). If j = 1, then G is one of groups III(2).

Case 5 G is one of groups III(2) of Theorem.

Let G = ⟨ā, b̄ | ā2n = 1, b̄2 = ā2
n−1

, [ā, b̄] = c̄, c̄2 = ā−4, [c̄, ā] = 1, [c̄, b̄] = (c̄)−2⟩ and N = ⟨x⟩.
Then

G = ⟨a, b | a2
n

= xi, b2 = a2
n−1

xj , [a, b] = cxk, c2 = a−4xl, [c, a] = xs, [c, b] = c−2xt⟩,

where i, j, k, l, s, t ∈ {0, 1}.
By a similar argument as in case 4, we can get G′ = ⟨c⟩ and x = c2

n−1

= a2
n

. Since

[a2, b] = [a, b]2[a, b, a] and [a2, b, a2] = [c, a2][xs, a2] = [c, a]2 = 1, noticing that n ≥ 3, we can get

1 = [b2, b] = [a2
n−1

x, b] = [(a2)2
n−2

, b] = [a2, b]2
n−2

= [a, b]2
n−1

= c2
n−1

,
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a contradiction. Thus G/N is not one of groups III(2).

Case 6 G is one of groups III(3) of Theorem.

Let G = ⟨ā, b̄ | ā2n = 1, b̄4 = 1, [ā, b̄] = c̄, c̄2 = ā−4, [c̄, ā] = 1, [c̄, b̄] = (c̄)−2⟩ and N = ⟨x⟩.
Then

G = ⟨a, b | a2
n

= xi, b4 = xj , [a, b] = cxk, c2 = a−4xl, [c, a] = xs, [c, b] = c−2xt⟩,

where i, j, k, l, s, t ∈ {0, 1}.
We can assume k = 0 by letting c1 = cxk. By a similar argument as in Case 4, we can get

G′ = ⟨c⟩, and x = c2
n−1

= a2
n

and s = 0.

If j = 1, that is b4 = x, then (b2c2
n−2

)2 = b4c2
n−1

[b2, c2
n−2

] = x2 = 1. It follows that

⟨b2c2n−2⟩ ∩ G′ = 1. Notice that ⟨b2c2n−2⟩ ≤ Φ(G), by Lemma 2.5(3), we get ⟨b2c2n−2⟩ ≤ Z(G).

By computation,

1 = [b2c2
n−2

, b] = [c, b]2
n−2

= c−2n−1

,

a contradiction. Thus j = 0, that is b4 = 1.

Since ⟨b2⟩ ≤ Φ(G) and ⟨b2⟩ ∩ G′ = 1, by Lemma 2.5(3), we get ⟨b2⟩ ≤ Z(G). Thus

1 = [a, b2] = [a, b]2[a, b, b] = c2[c, b] = c2c−2xt = xt. It follows that t = 0.

If l = 1, that is c2 = a−4a2
n

, then (ca2
n−1+2)2 = c2a2

n+22 = 1. It follows that ⟨ca2n−1+2⟩ ∩
G′ = 1. Notice that ⟨ca2n−1+2⟩ ≤ Φ(G), by Lemma 2.5(3), we get ⟨ca2n−1+2⟩ ≤ Z(G). Thus

[ca2
n−1+2, a] = [ca2

n−1+2, b] = 1. By computation, we get

1 = [ca2
n−1+2, a] = [c, a]

and so

1 = [ca2
n−1+2, b] = [c, b][a2, b]2

n−2+1 = c−2xt(c2)2
n−2+1 = xtc2

n−1

.

This implies that t = 1, a contradiction. Thus l = 0 and G is one of groups III(3).

Case 7 G is one of groups IV(1) of Theorem.

Let G = ⟨ā, b̄ | ā2n = 1, b̄4 = 1, [ā, b̄] = ā−2⟩ and N = ⟨x⟩. Then

G = ⟨a, b | a2
n

= xi, b4 = xj , [a, b] = a−2xk⟩, where i, j, k ∈ {0, 1}.

By Lemma 2.5(2), we get G′ is cyclic. Notice that G
′
= ⟨ā⟩, then G′ = ⟨a, x⟩ = ⟨a⟩. It

follows that i = 1, that is x = a2
n

.

If j = 1, then (b2a−2n−1

)2 = b4a−2n = 1. It follows that ⟨b2a−2n−1⟩ ∩ G′ = 1. Notice

that ⟨b2a−2n−1⟩ ≤ Φ(G), by Lemma 2.5(3), we get ⟨b2a−2n−1⟩ ≤ Z(G). So 1 = [b2a−2n−1

, b] =

[a−2n−1

, b] = [a, b]−2n−1

= a2
n ̸= 1, a contradiction. Thus j = 0.

If k = 0, then G is one of groups IV(1). If k = 1, then G is one of groups IV(2).

Case 8 G is one of groups IV(2) of Theorem.

Let G = ⟨ā, b̄ | ā2n = 1, b̄4 = 1, [ā, b̄] = ā−2+2n−1⟩ and N = ⟨x⟩. Then

G = ⟨a, b | a2
n

= xi, b4 = xj , [a, b] = a−2+2n−1

xk⟩, where i, j, k ∈ {0, 1}.
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By a similar argument as in Case 7, we can get x = a2
n

and b4 = 1. It follows that

⟨b2⟩ ∩G′ = 1. Notice that ⟨b2⟩ ≤ Φ(G), by Lemma 2.5(3), we get ⟨b2⟩ ≤ Z(G). Since n ≥ 3, by

computation, we get

[a, b2] = [a, b]2[a, b, b] = [a, b]2[a−2+2n−1

, b] = [a, b]2[a, b]−2+2n−1

= [a, b]2
n−1

= a2
n

̸= 1,

a contradiction too. Thus G/N is not one of groups IV(2).

Conversely, if G is one of the groups in the Theorem, we can get easily G is a Cc-group by

Lemmas 2.6 and 2.4(3).

The proof is completed. �
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