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1. Introduction

A semigroup S is called an epigroup if for each element a in S there exists some power an

of a such that an is a member of some maximal subgroup G of S. Let aω stand for the identity

of the subgroup G. It is known that aaω(= aωa) lies in G; we then denote the group inverse

of aaω in G by a and call it the pseudo-inverse of a. Thus, an epigroup can alternatively be

regarded as a unary semigroup with the unary operation of taking pseudo-inverse x 7→ x. For

these and more informations on the theory of epigroups we refer to Shevrin [1,2] and his survey

[3]. For the further growth of the related topics on the theory of epigroups, we refer to Shevrin

and Ovsyannikov [4], Volkov [5], Wang and Jin [6], Wang and Luo [7] and Liu [8–10].

It is known that a recurring theme throughout the study of some subclasses of the class

of semigroups (for examples, regular semigroups, epigroups) is the role of the idempotent. The

idempotent-generated subsemigroup of a semigroup S is called the core of S. Since the 1970s, a

number of works concerning the core of a regular semigroup have been given (see, for example,

Fitz-Gerald [11], Eberhart et al [12] and Hall [13]). Theorem 3 in [13] says that for a regular

semigroup S, the core of S is completely regular if and only if S is E-solid: i.e., for all idempotents

e, f, g in S with eLgRf , there exists an idempotent h in S such that eRhLf.
For an epigroup, its core is itself an epigroup (and this satement will be repeated in Section

2). Some works have been done devotedly or partly on epigroups (including its subclasses, for

example, the class of finite semigroups) whose cores belong to some known subclass of semigroups

(see, for example, Moura [14], Almeida and Moura [15], Auinger and Szendrei [16] and certain

contents of Almeida [17]). In this paper we will focus on epigroups whose cores are completely

regular. In Section 2, we start with some basic properties of this type; in particular, we present an
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example to illustrate that even for an epigroup with a completely regular core, the subepigroup

and the subsemigroup generated by idempotens in the same regular D-class D of it, respectively,

may be different. Under what conditions they are equal, in Section 4, we give one answer,

where we show that, for an epigroup with a completely regular core, the subsemigroup ⟨E(D)⟩
generated by idempotents in a regular D-class D is completely regular if and only if the identity

of the group containing the product of any two idempotents in ⟨E(D)⟩ also lies in ⟨E(D)⟩.
Moreover, in this section, some special subclasses of epigroups with completely regular cores

are also considered. The principal result in the paper is formulated in Section 3, where we

characterize epigroups whose cores are completely regular in terms of the behaving of the product

of two idempotents, in terms of epidivisors, in terms of certain decomposition, as well as in

terms of identities respectively. The readers will see that some proofs in the paper mainly use

mathematical induction and Fitz-Gerald’s method.

2. Preliminaries

In this paper, we adopt the notation and terminology of [18–21], and for a background of

epigroups we refer to [1,2] or [3].

The set of idempotents of a subset A of a semigroup S is denoted by E(A). The set of

idempotents of S is denoted by E(S). On E(S) there is a natural partial order relation defined

by the rule that

e ≤ f ⇔ ef = fe = e.

Let S be a semigroup, and let a be an element in S. An element x in S is an inverse of a

in S if axa = a and xax = x. The set of inverses of a is denoted by V (a), and a is regular if

V (a) is not empty. The set of regular elements of S is denoted by Reg(S), and we say that S is

regular if Reg(S) = S. The element a in S is completely regular if there exists x ∈ V (a) such

that ax = xa, and S is called completely regular if all its elements have this property. Obviously,

a ∈ S is completely regular if and only if a is a member of some subgroup G of S, that is, a is

a group element of S. Then the set of all completely regular elements of a semigroup S (i.e.,

the group part of S) is denoted by Gr(S). For a D-class D of S, if D contains at least one

idempotent, then it is called a regular D-class of S. The collection of all the regular D-classes of

S is denoted by Reg(S/D). Then for any D ∈ Reg(S/D), E(D) ̸= ∅ and every element of D is

regular [21, Proposition 2.3.1]. For the element a ∈ S, write the principal ideal S1aS1 generated

by a as J(a) and the D-class containing a by Da. It should be emphasized that Green’s relation

D coincides with Green’s relation J in an epigroup S, that is, b ∈ Da if and only if J(b) = J(a).

In the remainder of this paper, S always stands for an epigroup unless it is stated.

For any a ∈ S, the least positive integer k such that ak ∈ Gr(S) is called the index of a

and will be denoted by ind(a). Of course a ∈ Gr(S) (in this case ind(a) = 1) if and only if

aaω = a. Formally, we sometimes write ak+ω instead of akaω (note that this is well-defined:

since aaω = aωa). Recall that for any a ∈ S and any n ≥ ind(a), an ∈ Gr(S) (see [1, Lemma

1]); then an+ω can be written in the abbreviation an if n ≥ ind(a).
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A subepigroup of an epigroup is a subsemigroup closed under taking pseudo-inverse as well.

A homomorphic image of a subsemigroup of a given semigroup is called a divisor of the semigroup.

A divisor obtained from a subepigroup of an epigroup is called an epidivisor.

For a subset X ⊆ S, ⟨X⟩ is the subsemigroup of S generated by X, while ⟨⟨X⟩⟩ is the

subepigroup of S generated by X. Any element of ⟨⟨X⟩⟩ can be represented as a unary semigroup

term over X, where operations are multiplication and taking pseudo-inverse. As stated at the

beginning of the 3rd paragraph in Section 1, the core ⟨E(S)⟩ of S is in fact a subepigroup of S,

that is, ⟨E(S)⟩ = ⟨⟨E(S)⟩⟩; for this conclusion we refer to Lemma 2.6 in [3] (followed by further

details on its origin there). We recall that if En denotes the set of all elements of S which can

be written as the product of n idempotents of S, then ⟨E(S)⟩ =
∪∞

n=1 E
n.

We will denote the class of all epigroups by E and the variety of all epigroups of index

at most n (treated as unary semigroups) by En. The variety E1 is the variety of all completely

regular semigroups, and in this paper we use the conventional notation CR to denote this variety.

For a subclass V of E , we define

E(V) = {S ∈ E|⟨E(S)⟩ ∈ V}.

In this paper we mainly pay attention to the subclass E(CR) within the class of epigroups.

The next lemma can be drawn from Lemma II.2.3 in [22].

Lemma 2.1 Let S ∈ E(CR) and e1, e2, . . . , en ∈ E(S). Then

e1e2 . . . en =(e1e2 . . . en)
ω(ene1 . . . en−1)

ω(en−1en . . . en−2)
ω . . .

(e2e3 . . . ene1)
ω(e1e2 . . . en)

ω.

From Lemma 2.1, the pseudo-inverse of the product of idempotents coming from the ordered

n-tuple (e1, e2, . . . , en) successively is a factorization into the product of terms

(eiei+1 . . . ene1e2 . . . ei−1)
ω

beginning with ei in the turn (e1, en, . . . , e2, e1) as a clockwise rotation, as follows:

e1

en

.

.

.

e3

e2 H

We recall that from Observation 2.3 in [10] S is a completely regular if and only if for any

a ∈ S, aaω = a.

Lemma 2.2 S ∈ E(CR) if and only if ⟨E(S)⟩ ⊆ Gr(S).

Proof Necessity is clear. Conversely, assume that ⟨E(S)⟩ ⊆ Gr(S). Then for any a ∈ ⟨E(S)⟩,
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aaω = a, and, since as mentioned ⟨E(S)⟩ is a subepigroup of S, we get that ⟨E(S)⟩ is a completely

regular subsemigroup of S. Therefore, S ∈ E(CR). �
We remark that if S ∈ E(CR), then, from Proposition 2.4.2 in [21], for K ∈ {L,R,H}, we

have K⟨E(S)⟩ = KS ∩ (⟨E(S)⟩ × ⟨E(S)⟩), since ⟨E(S)⟩ is a (completely) regular subsemigroup

of S (according to this comment, if S ∈ E(CR), an element in ⟨E(S)⟩ is a completely regular

element of S must be a completely regular element of ⟨E(S)⟩). But the corresponding assertion

for D is not true if we consider, for example, the semigroup B2, where

B2 = ⟨c, d|c2 = d2 = 0, cdc = c, dcd = d⟩.

As mentioned in [21, Section 2.4], cd, dc ∈ ⟨E(S)⟩ = E(S) and cdDSdc, while (cd, dc) /∈ D⟨E(S)⟩;

therefore D⟨E(S)⟩ ̸= DS ∩ (⟨E(S)⟩ × ⟨E(S)⟩).
Naturally, it is worthwhile to study both ⟨E(D)⟩ and ⟨⟨E(D)⟩⟩ of S generated by all idem-

potents in some regular D-class D of S. We emphasize that even for S ∈ E(CR), in general,

⟨E(D)⟩ is not equal to ⟨⟨E(D)⟩⟩. This is demonstrated by the following example.

Example 2.3 Let F2 be defined in the variety E2 by the presentation

F2 = ⟨⟨c, d | cdc = c, dcd = d, c2 = c2+ω, d2 = d2+ω, ck+ωd = cdk+ω, dl+ωc = dcl+ω, k, l ∈ Z⟩⟩.

The semigroup F2 is a B2-extension of a completely simple semigroup M2(∞) (that is, an

ideal extension ofM2(∞) by B2), whereM2(∞) ≃ M[2, C1,∞, 2;
( ε ε
ε γ2

)
] (ε is the identity element

and γ is a generator of infinite cyclic group C1,∞), and its egg-box picture can be presented in

Figure 1. Clearly, F2 ∈ E(CR), and for the D-class D containing the idempotent cd,

⟨E(D)⟩ = {cd, dc, c2n, d2n, c2n+1d, d2n+1c, n ∈ Z+}.

It is true that ⟨E(D)⟩ ̸= ⟨⟨E(D)⟩⟩, since c2 /∈ ⟨E(D)⟩, while c2 ∈ ⟨⟨E(D)⟩⟩.

c

dc

cd

d

@@

ck+ω

dk+ωc = dck+ω

ck+ωd = cdk+ω

dk+ω

Figure 1 The egg-box picture of F2

Recall that for any a, b ∈ S, (ab)ωD(ba)ω (see [1, Lemma 5]). As a corollary, we have

Lemma 2.4 Let a1, a2, . . . , an ∈ S and a = a1a2 . . . an. Then for i = 1, 2, . . . , n,

(aiai+1 . . . ana1a2 . . . ai−1)
ωDaω.
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Lemma 2.5 If S ∈ E(CR), then

⟨E(S)⟩ =
∪

D∈Reg(S/D)

⟨E(D)⟩ =
∪

D∈Reg(S/D)

⟨⟨E(D)⟩⟩.

Proof Obviously,
∪

D∈Reg(S/D)⟨E(D)⟩ ⊆ ⟨E(S)⟩, since ⟨E(D)⟩ ⊆ ⟨E(S)⟩. For the reverse

inclusion, take x = e1e2 . . . en, ei ∈ E(S), i = 1, 2, . . . , n. Analogous to the proof of Lemma II.6.2

in [22] (for the more general case concerning regular semigroups, see [20, Theorem 1.4.18], and

this technique appeared firstly in Fitz-Gerald [11]), set

fi = eiei+1 . . . enxe1 . . . ei, i = 1, 2, . . . , n.

Since by hypothesis x ∈ Gr(S), that is, xxω = x, it is routine to check that x = f1f2 . . . fn and

fi ∈ E(S). Also from Lemma 2.4, for i = 1, 2, . . . , n, fiDf1; hence, x ∈ ⟨E(D)⟩, where D is a

regular D-class containing elements fi. Therefore ⟨E(S)⟩ ⊆
∪

D∈Reg(S/D)⟨E(D)⟩, as required.
For the second equality in this lemma, since ⟨E(S)⟩ =

∪
D∈Reg(S/D)⟨E(D)⟩ as we have just

proved in the preceding paragraph, and ⟨E(D)⟩ ⊆ ⟨⟨E(D)⟩⟩ for any D ∈ Reg(S/D), we have

⟨E(S)⟩ ⊆
∪

D∈Reg(S/D)⟨⟨E(D)⟩⟩. Thus

⟨E(S)⟩ ⊆
∪

D∈Reg(S/D)

⟨⟨E(D)⟩⟩ ⊆ ⟨⟨E(S)⟩⟩.

But ⟨E(S)⟩ = ⟨⟨E(S)⟩⟩ and so ⟨E(S)⟩ =
∪

D∈Reg(S/D)⟨⟨E(D)⟩⟩. �
Before stating and proving the next proposition using induction on the number of elementary

operations, let us first present a related definition. For any subset X ⊆ S, the depth of a term

over X is defined recursively as follows (due to Shevrin, for example, see [4, Subsection 1.2]):

the depth of any element of X is equal to 0; if u, v ∈ ⟨⟨X⟩⟩ are terms of depth m,n, respectively,

then the depth of uv is m+ n+ 1, and the depth of u is m+ 1.

Proposition 2.6 If S ∈ E(CR), then for an element e ∈ E(S),

⟨⟨E(De)⟩⟩ ⊆
∪

f∈E(S)
f≤e

⟨E(Df )⟩,

and
∪

f∈E(S)
f≤e

⟨E(Df )⟩ ∈ CR.

Proof Let u ∈ ⟨⟨E(De)⟩⟩. Then u can be represented as a unary semigroup term over E(De),

where operations are multiplication and taking pseudo-inverse. The proof is proceeded by in-

duction on the depth n ≥ 0 of u. The base step n = 0 is obviously true, and so we proceed to

the inductive step. If n ≥ 1, then the term u can be written possibly into the following cases:

either u = u1u2 for some “shorter” terms u1, u2, or u = v where v is of depth n− 1.

In the first case, by the inductive hypothesis, the terms ui (i = 1, 2) may be written in the

forms

u1 = f1f2 . . . fk, u2 = gk+1gk+2 . . . gm,

where f1, f2, . . . , fk ∈ E(Df ), gk+1, gk+2, . . . , gm ∈ E(Dg), f, g ≤ e, whence

u = f1f2 . . . fk · gk+1gk+2 . . . gm.
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Using Fitz-Gerald’s method, as we have already done for an element in the core in the proof of

Lemma 2.5, u can also be viewed as the product of the idempotents in the same D-class, that is,

u = h1h2 . . . hm, where h1, h2, . . . , hm ∈ E(Dh1) and

h1 = f1f2 . . . fkgk+1gk+2 . . . gmuf1,

h2 = f2f3 . . . fkgk+1gk+2 . . . uf1f2,

· · ·

hk = fkgk+1 . . . gmuf1f2 . . . fk,

hk+1 = gk+1gk+2 . . . gmuf1f2 . . . fkgk+1,

· · ·

hm = gmuf1f2 . . . fkgk+1gk+2 . . . gm.

Notice that f1Df implies that there exist s, t in S1 such that f1 = sft and f ≤ e if and only if

ef = fe = f . Then

h1 = hω
1 = (f1f2 . . . fkgk+1gk+2 . . . gmuf1)

ω = (sftf2 . . . fkgk+1gk+2 . . . gmuf1)
ω

= (s · eftf2 . . . fkgk+1gk+2 . . . gmuf1)
ωD(eftf2 . . . fkgk+1gk+2 . . . gmuf1s)

ω

= (e · eftf2 . . . fkgk+1gk+2 . . . gmuf1s)
ωD(eftf2 . . . fkgk+1gk+2 . . . gmuf1se)

ω.

If we set (eftf2 . . . fkgk+1gk+2 . . . gmuf1se)
ω = h, then obviously h ∈ E(S), h ≤ e, h1, h2, . . . , hm ∈

E(Dh). Therefore, u ∈ ⟨E(Dh)⟩ for some idempotent h ≤ e.

For the second case, by the inductive hypothesis, there exists some f ∈ E(S) with f ≤ e

such that v ∈ ⟨E(Df )⟩, namely, v = f1f2 . . . fk, fi ∈ E(Df ), i = 1, 2, . . . , k. Then from Lemma

2.1,

u = v = (f1f2 . . . fk)
ω(fkf1 . . . fk−1)

ω(fk−1fk . . . fk−2)
ω . . . (f1f2 . . . fk)

ω,

and also from Lemma 2.4

(f1f2 . . . fk)
ωD(fkf1 . . . fk−1)

ωD(fk−1fk . . . fk−2)
ωD . . .D(f2f3 . . . fkf1)

ω.

Notice that f1Df implies that there exist s, t in S1 such that f1 = sft, and f ≤ e if and only if

ef = fe = f . Then

(f1f2 . . . fk)
ω =(sftf2 . . . fk)

ω = (s · eftf2 . . . fk)ωD(eftf2 . . . fks)
ω

=(e · eftf2 . . . fks)ωD(eftf2 . . . fkse)
ω.

If we set (eftf2 . . . fkse)
ω = g, then obviously g ∈ E(S), g ≤ e, u ∈ ⟨E(Dg)⟩.

Similar manipulation yields
∪

f∈E(S)
f≤e

⟨E(Df )⟩ is a subepigroup of ⟨E(S)⟩. Then by hypoth-

esis we have
∪

f∈E(S)
f≤e

⟨E(Df )⟩ ∈ CR. �
To formulate the main result in this paper, we need a semigroup given by the following

V = ⟨e, f | e2 = e, f2 = f, fe = 0⟩;

and we end this section by giving a lemma which will be used in the next section to prove the

main result, and of course it is independently interesting.
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Lemma 2.7 ([5, Lemma 1.3]) Every semigroup S in which the product of any two idempotents

is completely regular is E-solid.

3. Epigroups whose cores are completely regular

Now we give the principal result in this paper presented in the following theorem which

gives some characterizations of epigroups whose cores are completely regular.

Theorem 3.1 The following conditions on an epigroup S are equivalent:

(i) S ∈ E(CR);

(ii) There is no semigroup V among the epidivisors of S;

(iii) ⟨E(S)⟩ =
∪

e∈E(S)⟨E(De)⟩ and
∪

f∈E(S)
f≤e

⟨E(Df )⟩ ∈ CR for any e ∈ E(S);

(iv) ⟨E(S)⟩ =
∪

D∈Reg(S/D)⟨⟨E(D)⟩⟩ and ⟨⟨E(D)⟩⟩ ∈ CR for any regular D-class D of S;

(v) ⟨E(S)⟩ =
∪

e∈E(S)⟨E(J(e))⟩ and ⟨E(J(e))⟩ ∈ CR for any e ∈ E(S);

(vi) S satisfies the identity (xωyω)ω+1 = xωyω.

Proof The equivalence of (i) and (ii) is a corollary of Proposition 1.2 in [5].

(i)⇒(iii). This follows from Lemma 2.5 and Proposition 2.6.

(iii)⇒(iv). We show first that
∪

e∈E(S)⟨E(De)⟩ =
∪

e∈E(S)(
∪

f∈E(S)
f≤e

⟨E(Df )⟩). Clearly∪
e∈E(S)

⟨E(De)⟩ ⊆
∪

e∈E(S)

( ∪
f∈E(S)

f≤e

⟨E(Df )⟩
)
,

since ⟨E(De)⟩ ⊆
∪

f∈E(S)
f≤e

⟨E(Df )⟩. Also∪
e∈E(S)

( ∪
f∈E(S)

f≤e

⟨E(Df )⟩
)
⊆

∪
e∈E(S)

⟨E(De)⟩,

since
∪

f∈E(S)
f≤e

⟨E(Df )⟩ ⊆
∪

e∈E(S)⟨E(De)⟩. Thus

⟨E(S)⟩ =
∪

e∈E(S)

⟨E(De)⟩ =
∪

e∈E(S)

( ∪
f∈E(S)

f≤e

⟨E(Df )⟩
)
.

Then by hypothesis every element in ⟨E(S)⟩ is completely regular, which, by Lemma 2.2, implies

S ∈ E(CR). Furthermore, from Lemma 2.5, ⟨E(S)⟩ =
∪

D∈Reg(S/D)⟨⟨E(D)⟩⟩; and ⟨⟨E(D)⟩⟩ ∈
CR follows immediately, since a subepigroup of a completely regular (sub)semigroup must be

completely regular.

(iv)⇒(v). It is clear that (iv) implies (i) and then S ∈ E(CR). Clearly,
∪

e∈E(S)⟨E(J(e))⟩ ⊆
⟨E(S)⟩ and the reverse inclusion follows by Lemma 2.5, since for any e ∈ E(S), De ⊆ J(e). It is

also easy to check that ⟨E(J(e))⟩ ∈ CR by Lemma 2.2.

(v)⇒(vi). For any x, y ∈ S, xωyω ∈ ⟨E(S)⟩, then the assumption in (v) means that xωyω ∈
Gr(S), that is, (xωyω)ω+1 = xωyω.

(vi)⇒(i). Let a ∈ ⟨E(S)⟩. Notice that ⟨E(S)⟩ =
∪∞

n=1 E
n. Then a ∈ En for some n ∈ N.

Once we prove that a ∈ Gr(S), then, by Lemma 2.2, the proof will be completed. We prove it
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by induction on n ≥ 1. The base step n = 1 is trivially true and by the assumption in (vi) the

step n = 2 is also true.

For the step n = 3, write a = efg, where e, f, g ∈ E(S). By the hypothesis that the product

of two arbitrary idempotents is a group element, we have

efg = e(fg)ω · fg = ef · (ef)ωg,

e(fg)ω = efg · fg, (ef)ωg = ef · efg,

(ef)ω(fg)ω = ef · ef(fg)ω = ef · e(fg)ω = (ef)ωg · fg,

e(fg)ω = ef(fg)ω = ef · (ef)ω(fg)ω, (ef)ωg = (ef)ω(fg)ω · fg,

so that

efgRe(fg)ωL(ef)ω(fg)ωR(ef)ωgLefg.

Thus efg, e(fg)ω, (ef)ωg and (ef)ω(fg)ω are located in the egg-box picture of Defg as indicated

in Figure 2.

efg

(ef)ωg = (ef)ωfg

e(fg)ω = ef(fg)ω

(ef)ω(fg)ω

Figure 2 The locations of efg, e(fg)ω, (ef)ωg and (ef)ω(fg)ω in Defg

Since, by the hypothesis in (vi), (ef)ωg, e(fg)ω, (ef)ω(fg)ω are all completely regular, say,

(ef)ωgH((ef)ωg)ω, e(fg)ωH(e(fg)ω)ω, (ef)ω(fg)ωH((ef)ω(fg)ω)ω.

Thus the locations of efg, ((ef)ωg)ω, (e(fg)ω)ω and ((ef)ω(fg)ω)ω in the egg-box picture of

Defg are as indicated in Figure 3.

Now from Lemma 2.7 there exists an idempotent in Hefg and then Hefg is a subgroup of S

(see [21, Corollary 2.2.6]), so that efg ∈ Gr(S), as required.

efg

((ef)ωg)ω

(e(fg)ω)ω

((ef)ω(fg)ω)ω

Figure 3 The locations of efg, (e(fg)ω)ω, ((ef)ωg)ω and ((ef)ω(fg)ω)ω in Defg

For the inductive step, suppose that n ≥ 4. Then a = e1e2 . . . en for some ei ∈ E(S). Since

e3e4 . . . en ∈ En−2, by the inductive hypothesis, we get e3e4 . . . en = (e3e4 . . . en)
ωe3e4 . . . en.

Then a = e1e2 · e3 . . . en = e1e2(e3e4 . . . en)
ω · e3e4 . . . en. While

e1e2(e3e4 . . . en)
ω = e1e2 · e3e4 . . . en · e3e4 . . . en = a · e3e4 . . . en;
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therefore aR e1e2(e3e4 . . . en)
ω. On the other hand,

e1e2(e3e4 . . . en)
ω = e1e2 · (e1e2)ω(e3e4 . . . en)ω,

(e1e2)
ω(e3e4 . . . en)

ω = e1e2 · e1e2(e3e4 . . . en)ω,

so that e1e2(e3e4 . . . en)
ω L (e1e2)

ω(e3e4 . . . en)
ω.

As above, considering the element (e1e2)
ωe3e4 . . . en in a similar way, we have

a = e1e2 · e3e4 . . . en = e1e2 · (e1e2)ωe3e4 . . . en,

(e1e2)
ωe3e4 . . . en = e1e2 · e1e2 . . . en = e1e2 · a,

(e1e2)
ωe3e4 . . . en = (e1e2)

ω(e3e4 . . . en)
ω · e3e4 . . . en,

(e1e2)
ω(e3e4 . . . en)

ω = (e1e2)
ωe3e4 . . . en · e3e4 . . . en,

so that

aL (e1e2)
ωe3e4 . . . en R (e1e2)

ω(e3e4 . . . en)
ω.

Thus a, (e1e2)
ωe3e4 . . . en, e1e2(e3e4 . . . en)

ω and (e1e2)
ω(e3e4 . . . en)

ω are located in the egg-box

picture of Da as indicated in Figure 4.

a

(e1e2)
ωe3e4 . . . en

e1e2(e3e4 . . . en)
ω

(e1e2)
ω(e3e4 . . . en)

ω

Figure 4 The locations of a, (e1e2)
ωe3e4 . . . en, e1e2(e3e4 . . . en)

ω and (e1e2)
ω(e3e4 . . . en)

ω in Da

Since (e1e2)
ωe3e4 . . . en ∈ En−1, e1e2(e3e4 . . . en)

ω ∈ E3, (e1e2)
ω(e3e4 . . . en)

ω ∈ E2, from

the facts we have proved and the inductive hypothesis, these elements are all completely regular.

Similar to the proof for the step n = 3, the locations of a, ((e1e2)
ωe3e4 . . . en)

ω, (e1e2(e3e4 . . . en)
ω)ω

and ((e1e2)
ω(e3e4 . . . en)

ω)ω in the egg-box picture of Da are as indicated in Figure 5. Then a-

gain from Lemma 2.7, there exists an idempotent in Ha and then Ha is a subgroup of S, and so

a ∈ Gr(S), as required. �

a

((e1e2)
ωe3e4 . . . en)

ω

(e1e2(e3e4 . . . en)
ω)ω

((e1e2)
ω(e3e4 . . . en)

ω)ω

Figure 5 The locations of a, ((e1e2)
ωe3e4 . . . en)

ω, (e1e2(e3e4 . . . en)
ω)ω

and ((e1e2)
ω(e3e4 . . . en)

ω)ω in Daω

Remark 3.2 The equivalence of (i) and (vi) in Theorem 3.1 for a finite semigroup is known (for

example, see [17, Exercise 5.2.17]). For an epigroup S, besides the direct proof of “(vi)⇒(i)” in

our proof, we can check it from the point of view of properties of regularity. From Result 2 in [23],
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for an arbitrary semigroup U , ⟨E(U)⟩ is the regular subsemigroup of U if and only if the product

of two arbitrary idempotents in U is regular. Thus for the given S, the identity in (vi) in Theorem

3.1 implies that ⟨E(S)⟩ is the regular subepigrop of S (recall that ⟨E(S)⟩ = ⟨⟨E(S)⟩⟩ mentioned

early) and is inherited by ⟨E(S)⟩ (that is, ⟨E(S)⟩ satisfies the identity (xωyω)ω+1 = xωyω).

Now we may consider solely the regular subepigroup T = ⟨E(S)⟩ instead of S, since we only

investigate the behaving of ⟨E(S)⟩ and nothing else. Trivially T is a semiband (recall that a

semiband is a regular semigroup generated by its idempotent). From Lemma 2.7, T is E-solid

and thus T is completely regular, as required, in view of Theorem 3 in [13] (which says that for a

regular semigroup U , ⟨E(U)⟩ is completely regular if and only if U is E-solid). We remark that

here the check showing that any element a in ⟨E(S)⟩ is completely regular relys on the regularity

(for example, the proof of [13, Theorem 3] utilizes the inverse of a, while our proof mainly takes

advantage of the unary operation of taking pseudo-inverse since we deal with epigroups viewed

as unary semigroups). In fact, by using the technique of biordered sets, as in the proof of [20,

Theorem 3.4.11], it was also shown that a semiband is completely regular if and only if the

semiband is E-solid.

4. Some restrictions

In this section we consider some special subclasses of the class of epigroups whose cores are

completely regular and begin by determining whether a completely 0-simple semigroup has this

property.

In general, the core of a completely 0-simple semgiroup is not completely regular. For

example, the completely 0-simple semgiroup A2 given by a presentation

A2 = ⟨c, d | c2 = 0, d2 = d, cdc = c, dcd = d⟩

is idempotent-generated, so the core of A2 is A2 itself and is not completely regular. We remark

that A2 has an epidivisor consisting precisely of elements 0, c, cd and dc, which is isomorphic to

V (here e = cd, f = dc).

We recall that every completely 0-simple semigroup S is isomorphic to some Rees matrix

semigroup M0(I,G,Λ;P ) over the 0-group G0 with the regular sandwich matrix P = (pλi) (see

[21, Theorem 3.2.3]). It is easy to identify that for S = M0(I,G,Λ;P ),

E(S) = {(i, pλi, λ) ∈ S | i ∈ I, λ ∈ Λ, pλi ̸= 0} ∪ {0},

Gr(S) = {(i, g, λ) ∈ S | i ∈ I, λ ∈ Λ, g ∈ G, pλi ̸= 0} ∪ {0}.

We refer to Howie [24] for an investigation of the core of a completely 0-simple semgiroup.

The following proposition indicates that for a completely 0-simple semgiroup S = M0(I,G,Λ;P ),

the condition S ∈ E(CR) is involved solely with an arrangement of non-zero entries of P .

Proposition 4.1 Let S = M0(I,G,Λ;P ) be a Rees matrix semigroup. Then S ∈ E(CR) if and

only if for all i, j ∈ I, λ, µ ∈ Λ,

pλi ̸= 0, pλj ̸= 0, pµj ̸= 0 ⇒ pµi ̸= 0.
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Proof Suppose that pλi ̸= 0, pλj ̸= 0, pµj ̸= 0. Then (i, pλi, λ), (j, pµj , µ) ∈ E(S), so that by

Theorem 3.1

(i, pλi, λ)(j, pµj , µ) = (i, pλipλjpµj , µ) ∈ Gr(S),

which gives pµi ̸= 0, since by hypothesis (i, pλipλjpµj , µ) ̸= 0.

For the converse, by Theorem 3.1, it suffices to prove that for any e, f ∈ E(S), ef ∈ GrS.

If e = 0 or f = 0, obviously ef ∈ GrS. It remains to show the case e ̸= 0, f ̸= 0. In this case, let

e = (i, pλi, λ), f = (j, pµj , µ) with i, j ∈ I, λ, µ ∈ Λ such that pλi ̸= 0, pµj ̸= 0. Now

ef = (i, pλi, λ)(j, pµj , µ) = (i, pλipλjpµj , µ).

If pλj = 0, clearly ef = 0 ∈ Gr(S); if pλj ̸= 0, then by hypothesis pµi ̸= 0, which also gives

ef ∈ Gr(S). �
As we have mentioned earlier (see Example 2.3), if S ∈ E(CR), we cannot obtain ⟨E(D)⟩ =

⟨⟨E(D)⟩⟩ for every regular D-class D of S. We now ask what else is necessary to conclude that

⟨E(D)⟩ = ⟨⟨E(D)⟩⟩ for some regular D-class D of S.

Proposition 4.2 Let S ∈ E(CR) andD be a regular D-class of S. Then for any two idempotents

e, f ∈ ⟨E(D)⟩, (ef)ω ∈ ⟨E(D)⟩ if and only if ⟨⟨E(D)⟩⟩ = ⟨E(D)⟩. In this case, ⟨E(D)⟩ is a

completely regular subsemigroup of S.

Proof If ⟨⟨E(D)⟩⟩ = ⟨E(D)⟩, then for any e, f ∈ ⟨E(D)⟩, ef, ef ∈ ⟨E(D)⟩, so that (ef)ω ∈
⟨E(D)⟩. The fact that ⟨E(D)⟩ is a completely regular subsemigroup of S is clear.

Conversely, to show that ⟨⟨E(D)⟩⟩ = ⟨E(D)⟩, we need to show that for any a ∈ ⟨E(D)⟩,
a ∈ ⟨E(D)⟩. Write a = e1e2 . . . en, ei ∈ D, i = 1, 2, . . . , n. Then from Lemma 2.1

a = (e1e2 . . . en)
ω(ene1 . . . en−1)

ω(en−1en . . . en−2)
ω . . . (e1e2 . . . en)

ω.

If we can show that elements (eiei+1 . . . ene1e2 . . . ei−1)
ω (i = 1, 2, . . . , n) are all in ⟨E(D)⟩, then

a ∈ ⟨E(D)⟩, and this will complete the proof. The fact that these elements are all in ⟨E(D)⟩ is
guaranteed by the following Lemma. �

Lemma 4.3 Let S ∈ E(CR) and D be a regular D-class of S. If for any two idempotents

e, f ∈ ⟨E(D)⟩, (ef)ω ∈ ⟨E(D)⟩, then for any a ∈ ⟨E(D)⟩, aω ∈ ⟨E(D)⟩.

Proof Let a = e1e2 . . . en, ei ∈ D, i = 1, 2, . . . , n. We show that aω ∈ ⟨E(D)⟩. The proof is by

induction on n ≥ 1, The base step n = 1 is trivially true. By hypothesis the step n = 2 is also

true.

For the step n = 3, analogous to the proof of “(vi)⇒(i)” in Theorem 3.1, the locations

of aω, ((e1e2)
ωe3)

ω, (e1(e2e3)
ω)ω and ((e1e2)

ω(e2e3)
ω)ω in the egg-box picture of Daω are as

indicated in Figure 6; then aω =
(
(e1(e2e3)

ω)ω ·((e1e2)ωe3)ω
)ω

. By hypothesis it is easy to check

that aω ∈ ⟨E(D)⟩.
For the inductive step, suppose that n ≥ 4. Analogous to the proof of “(vi)⇒(i)” in Theorem

3.1, the locations of aω, ((e1e2)
ωe3e4 . . . en)

ω, (e1e2(e3e4 . . . en)
ω)ω and ((e1e2)

ω(e3e4 . . . en)
ω)ω in

Daω are as indicated in Figure 7. Since by the hypothesis that ⟨E(S)⟩ is completely regular,
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it is easy to obtain that aω = ((e1e2(e3e4 . . . en)
ω)ω · ((e1e2)ωe3e4 . . . en)ω)ω. By the (inductive)

hypothesis, it is now routine to check aω ∈ ⟨E(D)⟩. �

aω

((e1e2)
ωe3)

ω

(e1(e2e3)
ω)ω

((e1e2)
ω(e2e3)

ω)ω

Figure 6 The locations of aω, ((e1e2)
ωe3)

ω, (e1(e2e3)
ω)ω and ((e1e2)

ω(e2e3)
ω)ω in Daω

Someone might take for granted that in Proposition 4.2 if S ∈ E(CR), then ⟨⟨E(D)⟩⟩ is a

completely simple subsemigroup of S. But this is not true in general; for example, the subepi-

group ⟨⟨E(Dcd)⟩⟩ of B2 generated by E(Dcd) is not completely simple.

aω

((e1e2)
ωe3e4 . . . en)

ω

(e1e2(e3e4 . . . en)
ω)ω

((e1e2)
ω(e3e4 . . . en)

ω)ω

Figure 7 The locations of aω, ((e1e2)
ωe3e4 . . . en)

ω, (e1e2(e3e4 . . . en)
ω)ω

and ((e1e2)
ω(e3e4 . . . en)

ω)ω in Daω

Recall that a semigroup is called periodic if the monogenic subsemigroup generated by

its each element is finite. Since each element in a periodic semigroup has a power which is

idempotent, by Proposition 4.2, we get

Corollary 4.4 Let S be a periodic semigroup. If S ∈ E(CR), then for any regular D-class D

of S, ⟨⟨E(D)⟩⟩ = ⟨E(D)⟩. In this case, ⟨E(D)⟩ is a completely regular subsemigroup of S.

We now turn to epigroups decomposable into semilattices of archimedean epigroups. For

the characterizations of these epigroups from different points of view, we refer to Theorem 3 in [1]

(or Theorem 3.16 in [3]), and especially it says that an epigroup S decomposes into a semilattice

of archimedean epigroups if and only if each regular D-class in S forms a (completely simple)

subsemigroup. Now let S ∈ E(CR). Comparing with periodic semigroups, if S is a semilattice of

archimedean epigroups, then for any regular D-class of S, we also get ⟨⟨E(D)⟩⟩ = ⟨E(D)⟩; while
here ⟨E(D)⟩ is completely simple subsemigroup of S and this is not the same with a periodic

semigroup. These facts will be reflected in the following proposition.

Proposition 4.5 The following conditions on an epigroup S are equivalent:

(i) S is a semilattice of archimedean epigroups, and ⟨E(S)⟩ is a completely regular sub-

semigroup of S;

(ii) ⟨E(S)⟩ =
∪

D∈Reg(S/D)⟨E(D)⟩, and for any regular D-class D of S, ⟨E(D)⟩ is a com-

pletely simple subsemigroup of S;

(iii) There are no semigroups B2, V among the epidivisors of S;



Epigroups in which the idempotent-generated subsemigroups are completely regular 541

(iv) S satisfies the identities ((xy)ω(yx)ω(xy)ω)ω = (xy)ω, (xωyω)ω+1 = xωyω.

Proof The equivalence of (iii) and (iv) is clear by virtue of Theorem 3 in [1] and Theorem 3.1

in the paper.

(i) ⇔ (iii). From Theorem 3 in [1], S is a semilattice of archimedean epigroups if and only

if there are no semigroups A2, B2 among the epidivisors of S. This together with Theorem 3.1

implies that the condition in (i) is equivalent to saying that there are no semigroups A2, B2, V

among the epidivisors of S. As mentioned in the 2nd paragraph in this section, V is among the

epidivisors of A2, so that the equivalence of (i) and (iii) holds.

(i) ⇒ (ii). Suppose that (i) holds. On the one hand, by Theorem 3.1,

⟨E(S)⟩ =
∪

D∈Reg(S/D)

⟨⟨E(D)⟩⟩,

where ⟨⟨E(D)⟩⟩ is a completely regular subsemigroup of S for any regular D-class D of S; on the

other hand, by Theorem 3 in [1], each regular D-class D is a completely simple subsemigroup,

and then ⟨⟨E(D)⟩⟩ is a completely simple subsemigroup of S (since its class forms a variety).

Also from Proposition 4.2 ⟨⟨E(D)⟩⟩ = ⟨E(D)⟩, and this completes the proof of this implication.

(ii) ⇒ (iv). Clearly the conditions in (ii) imply that S ∈ E(CR), then from Theorem 3.1

the second identity holds. For the first identity, let x, y ∈ S. Then, from Lemma 5 in [1], there

exists some regular D-class D of S such that (xy)ω, (yx)ω ∈ ⟨E(D)⟩ and so by the hypothesis

that ⟨E(D)⟩ is completely simple, we obtain ((xy)ω(yx)ω(xy)ω)ω = (xy)ω. �
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