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Abstract This paper deals with two concepts of polynomial dichotomy for linear difference

equations which are defined in a Banach space and whose norms can increase not faster

than exponentially. Some illustrating examples clarify the relations between these concepts.

Our approach is based on the extension of techniques for exponential dichotomy to the case

of polynomial dichotomy. The obtained results are generalizations of well-known theorems

about the exponential stability and exponential dichotomy.
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1. Introduction

In the last decades, the asymptotic behavior of solutions of evolution equations both in finite-

dimensional and infinite-dimensional spaces has witnessed significant development [1–17]. The

notion of (uniform) exponential dichotomy introduced by Perron [10] for differential equations

and by Li [5] for difference equations plays a central role in the theory of dynamical systems.

The exponential dichotomy property has made an important progress since the appearance

of two remarkable monographs due to Massera and Schäffer [9], respectively, Daleckii and Krein

[4]. Later, diverse and important concepts of exponential dichotomy were studied by Sacher and

Sell in [15], Barreira and Valls [1,2].

The concept of polynomial asymptotic behavior has been considered in the notable works

of Barreira and Valls [3] for evolution operators. Remarkable results were obtained by Megan et

al. [6] for Barreira-Valls polynomial stability of evolution operators and for polynomial stability in

[7,8]. Moreover, characterizations for uniform and nonuniform polynomial dichotomy of evolution

operators have been given in [13], respectively, and [14].

In this paper, we study two polynomial dichotomy concepts for linear discrete-time systems

in Banach spaces. The main objective is to give characterizations for polynomial dichotomies of

linear difference equations. The obtained results are generalizations of some well-known theorems
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in the case of exponential stability given in [7,11] and in the case of exponential dichotomy in

[12]. Some simple examples are included to illustrate the connections between the dichotomy

concepts considered in the present paper.

2. Preliminaries

Let X be a real or complex Banach space. The norm on X and on B(X) the Banach algebra

of all bounded linear operators acting on X, will be denoted by ∥ · ∥. Let ∆ = {(m,n) ∈ N2,m ≥
n}, T = {(m, r, n) ∈ N3,m ≥ r ≥ n}. Let I be the identity operator on X.

In the present paper we consider linear discrete-time system of difference equations

xn+1 = A(n)xn, n ∈ N, (1)

where A : N → B(X) is a sequence in B(X). Then every solution x = {xn} of the system (1) is

given by xm = An
mxn for all (m,n) ∈ ∆, where the mapping A : ∆ → B(X) is defined by

An
m :=

{
I, m = n

A(m− 1) · · ·A(n), m > n.

It is easy to see that Ar
mAn

r = An
m, for all (m, r, n) ∈ T .

For the particular case when (1) is autonomous, i.e., A(n) = A ∈ B(X) for all n ∈ N, then
An

m = Am−n for all (m,n) ∈ ∆.

Definition 2.1 An application P : N → B(X) is said to be a projection family on X if

P 2(n) = P (n), for all n ∈ N.

Remark 2.2 If P : N → B(X) is a projection family on X, then the mapping Q : N →
B(X), Q(n) = I − P (n) is also a projection family on X, which is called the complementary

projection of P . One can easily see that

P (n)Q(n) = Q(n)P (n) = 0,

for every n ∈ N.

Definition 2.3 A projection family P : N → B(X) is said to be compatible with the system

(1), if

A(n)P (n) = P (n+ 1)A(n),

for all n ∈ N.

Remark 2.4 If the projection family P : N → B(X) is compatible with the system (1), then its

complementary projection Q : N → B(X) is also compatible with the system (1). In addition,

An
mP (n) = P (m)An

m and An
mQ(n) = Q(m)An

m

for all (m,n) ∈ ∆.

In what follows, for a projection family P : N → B(X) compatible with the system (1), we
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will denote

PAn
m = An

mP (n) and QAn
m = An

mQ(n).

We deduced that

PAr
mPAn

r = PAn
m and QAr

mQAn
r = QAn

m

for all (m, r, n) ∈ T .

Definition 2.5 The linear discrete-time system (1) is said to be uniformly exponentially di-

chotomic if there exist two constants N ≥ 1 and v > 0 such that

ev(m−n) (∥PAn
mx∥+ ∥Q(n)x∥) ≤ N (∥P (n)x∥+ ∥QAn

mx∥)

for all (m,n, x) ∈ ∆×X.

Definition 2.6 The linear discrete-time system (1) is said to be uniformly polynomially di-

chotomic if there exist two constants N ≥ 1 and v > 1 such that

(
m+ 1

n+ 1
)v (∥PAn

mx∥+ ∥Q(n)x∥) ≤ N (∥P (n)x∥+ ∥QAn
mx∥)

for all (m,n, x) ∈ ∆×X.

Remark 2.7 The linear discrete-time system (1) is uniformly polynomially dichotomic if and

only if there are N ≥ 1 and v > 1 such that

(
m+ 1

n+ 1
)v (∥PAr

mx∥+ ∥QAr
nx∥) ≤ N (∥PAr

nx∥+ ∥QAr
mx∥)

for all (m,n, r, x) ∈ T ×X.

Remark 2.8 It is obvious that if the linear discrete-time system (1) is uniformly exponentially

dichotomic with v > 1, then it is uniformly polynomially dichotomic. But the converse statement

is not necessarily valid. This fact is illustrated by the following example.

Example 2.9 Let X = R2 and A : N → B(R2) defined by

A(n)(x1, x2) =
( n2 + 1

(n+ 1)
2
+ 1

x1,
(n+ 1)

2
+ 1

n2 + 1
x2

)
for all (n, x1, x2) ∈ N× R2. Let us consider the projection families P,Q : N → B(R2) defined by

P (n)(x1, x2) = (x1, 0), Q(n)(x1, x2) = (0, x2)

for all n ∈ N and all x = (x1, x2) ∈ X. We have that

PAn
m(x1, x2) = (

n2 + 1

m2 + 1
x1, 0), QAn

m(x1, x2) = (0,
m2 + 1

n2 + 1
x2).

Then

(
m+ 1

n+ 1
)2(∥PAn

mx∥+ ∥Q(n)x∥) = (m+ 1)
2

m2 + 1

n2 + 1

(n+ 1)
2 ∥P (n)x∥+ (

m+ 1

n+ 1
)2 ∥Q(n)x∥

≤ 2
(
∥P (n)x∥+ m2 + 1

n2 + 1
∥Q(n)x∥

)
= 2 (∥P (n)x∥+ ∥QAn

mx∥)
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for all (m,n, x) ∈ ∆ × R2. Thus Definition 2.6 is satisfied for N = v = 2, hence system (1) is

uniformly polynomially dichotomic.

On the other hand, if we suppose that system (1) is uniformly exponentially dichotomic,

then there exist N ≥ 1 and v > 0 such that ev(m−n) · n2+1
m2+1 ≤ N for all (m,n) ∈ ∆. In particular,

for n = 0, we obtain evm ≤ N(m2 + 1), which is absurd for m → ∞. Hence system (1) is not

uniformly exponentially dichotomic.

Definition 2.10 The linear discrete-time system (1) is said to be polynomially dichotomic if

there exist three constants N ≥ 1, v > 0 and µ ≥ 0 such that

(
m+ 1

n+ 1
)v (∥PAn

mx∥+ ∥Q(n)x∥) ≤ N(n+ 1)µ (∥P (n)x∥+ ∥QAn
mx∥) ,

for all (m,n, x) ∈ ∆×X.

Remark 2.11 The linear discrete-time system (1) is polynomially dichotomic if and only if

there are N ≥ 1, v > 0 and µ ≥ 0 such that

(
m+ 1

n+ 1
)v (∥PAr

mx∥+ ∥QAr
nx∥) ≤ N(n+ 1)µ (∥PAr

nx∥+ ∥QAr
mx∥) ,

for all (m,n, r, x) ∈ T ×X.

Remark 2.12 If the linear discrete-time system (1) is uniformly polynomially dichotomic, then

it is polynomially dichotomic. But the converse statement is not necessarily valid. This fact is

illustrated by the following example.

Example 2.13 Let X = R2 and A : N → B(R2) defined by

A(n)(x1, x2) = (
φn

φn+1
x1,

ϕn+1

ϕn
x2)

for all (n, x1, x2) ∈ N× R2, where the sequences φ, ϕ : N → R are given by

φn = (n+ 1)2(n+ 1− n sin
nπ

2
), ϕn = n2(n+ 1 + n sin

nπ

2
).

Let us consider the projection families P,Q : N → B(R2) defined by

P (n)(x1, x2) = (x1, 0), Q(n)(x1, x2) = (0, x2)

for all n ∈ N and all x = (x1, x2) ∈ X. We have that

PAn
m(x1, x2) =

( (n+ 1)2(n+ 1− n sin(nπ/2))

(m+ 1)2(m+ 1−m sin(mπ/2))
x1, 0

)
and

QAn
m(x1, x2) =

(
0,

m2(m+ 1 +m sin(mπ/2))

n2(n+ 1 + n sin(nπ/2))
x2

)
.

Then

(∥PAn
mx∥+ ∥Q(n)x∥) ≤ (

n+ 1

m+ 1
)2(2n+ 1) ∥P (n)x∥+ 2(n+ 1)m2

(2n+ 1)n2
(
n+ 1

m+ 1
)2 ∥Q(n)x∥

≤ 2(n+ 1)(
n+ 1

m+ 1
)2 (∥P (n)x∥+ ∥QAn

mx∥)
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for all (m,n, x) ∈ ∆ × R2. Thus Definition 2.10 is satisfied for N = v = 2 and µ = 1, hence

system (1) is polynomially dichotomic.

On the other hand, if we suppose that system (1) is uniformly polynomially dichotomic,

then according to Definition 2.6 there exist N ≥ 1 and v > 1 such that

(
m+ 1

n+ 1
)v ≤ N

m2 (m+ 1 +m sin (mπ/2))

n2 (n+ 1 + n sin (nπ/2))

for all (m,n) ∈ ∆. In particular, for m = 4k + 3 and n = 4k + 1, k ∈ N, we obtain that

(
4k + 4

4k + 2
)v ≤ N

(4k + 3)
2

(4k + 1)
2
(8k + 3)

,

which is false for k → ∞. Hence system (1) is not uniformly polynomially dichotomic.

3. The main results

Theorem 3.1 The linear discrete-time system (1) is uniformly polynomially dichotomic if and

only if there exist M ≥ 1, α > 0, D ≥ 1 and β > 1 such that

(i) ∥PAr
mx∥ ≤ M(m+1

n+1 )
α ∥PAr

nx∥,
(ii) ∥QAr

nx∥ ≤ M(m+1
n+1 )

α ∥QAr
mx∥,

(iii)
∑∞

k=n
(k+1)β−1

(n+1)β
∥PAn

kx∥ +
∑m

k=n
(m+1)β

(k+1)β+1 ∥QAn
kx∥ ≤ D (∥P (n)x∥+ ∥QAn

mx∥), for all

(m,n, r, x) ∈ T ×X.

Proof Necessity. By Remark 2.7, it is easy to see that the relations (i) and (ii) hold. Now we

prove (iii). Let (m,n, x) ∈ ∆×X and β ∈ (1, v). We have

∞∑
k=n

(k + 1)
β−1

(n+ 1)
β

∥PAn
kx∥+

m∑
k=n

(m+ 1)
β

(k + 1)
β+1

∥QAn
kx∥

≤ N ∥P (n)x∥
∞∑

k=n

(k + 1)
β−1

(n+ 1)
β

(
n+ 1

k + 1
)
v

+N ∥QAn
mx∥

m∑
k=n

(m+ 1)
β

(k + 1)
β+1

(
k + 1

m+ 1
)v

≤ N ∥P (n)x∥
(n+ 1)

β−v

∞∑
k=n

(k + 1)
β−v−1

+
N

(m+ 1)
v−β

∥QAn
mx∥

m∑
k=n

(k + 1)
v−β−1

≤ N

v − β
(∥P (n)x∥+ ∥QAn

mx∥) ≤ D (∥P (n)x∥+ ∥QAn
mx∥) ,

where D = 1 +N/(v − β).

Sufficiency. Let (m,n, x) ∈ ∆×X. If m > 2n, we have

(
m+ 1

n+ 1
)β (∥PAn

mx∥+ ∥Q(n)x∥)

≤ 2

m+ 1

n∑
k=[m/2]

(
m+ 1

n+ 1
)
β

∥PAn
mx∥+

2n∑
k=n

(m+ 1)
β

(n+ 1)
β+1

∥Q(n)x∥

≤ 2M
n∑

k=[m/2]

(k + 1)
β−1

(n+ 1)
β

(
m+ 1

k + 1
)
α+β−1

∥PAn
kx∥+
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M
2n∑
k=n

(m+ 1)
β

(n+ 1)
β+1

(
k + 1

n+ 1
)
α

∥QAn
kx∥

≤ 2M

n∑
k=[m/2]

(k + 1)
β−1

(n+ 1)
β

(
m+ 1

[m/2] + 1
)
α+β−1

∥PAn
kx∥+

M
2n∑
k=n

(m+ 1)
β

(k + 1)
β+1

(
k + 1

n+ 1
)
α+β+1

∥QAn
kx∥

≤ 2α+β+1M
∞∑

k=n

(k + 1)
β−1

(n+ 1)
β

∥PAn
kx∥+

M
2n∑
k=n

(m+ 1)
β

(k + 1)
β+1

(
2n+ 1

n+ 1
)
α+β+1

∥QAn
kx∥

≤ 2α+β+1MD (∥P (n)x∥+ ∥QAn
mx∥) .

On the other hand, if 2n ≥ m ≥ n, then

(
m+ 1

n+ 1
)β (∥PAn

mx∥+ ∥Q(n)x∥) ≤ M(
m+ 1

n+ 1
)α+β (∥P (n)x∥+ ∥QAn

mx∥)

≤ M2α+β (∥P (n)x∥+ ∥QAn
mx∥) .

Finally, by Definition 2.6 we conclude that the system is uniformly polynomially dichotomic. �
A sufficient condition for uniform polynomial dichotomy of discrete linear-time systems is

presented by the following theorem.

Theorem 3.2 If there are two constants D ≥ 1 and β > 1 such that

m∑
k=n

(
m+ 1

k + 1
)
β ∥∥

PAk
mx

∥∥+

m∑
k=n

(
k + 1

n+ 1
)
β ∥∥

QAk
mx

∥∥ ≤ D (∥P (n)x∥+ ∥QAn
mx∥)

for all (m,n, x) ∈ ∆ × X, then the linear discrete-time system (1) is uniformly polynomially

dichotomic.

Proof From the hypothesis it results that

(
m+ 1

n+ 1
)β (∥PAn

mx∥+ ∥Q(n)x∥) ≤
m∑

k=n

(
m+ 1

k + 1
)
β ∥∥

PAk
mx

∥∥+
m∑

k=n

(
k + 1

n+ 1
)
β ∥∥

QAk
mx

∥∥
≤ D (∥P (n)x∥+ ∥QAn

mx∥)

for all (m,n, x) ∈ ∆×X. Hence system (1) is uniformly polynomially dichotomic. �

Theorem 3.3 The linear discrete-time system (1) is polynomially dichotomic if and only if

there exist constants α, β with α > 2β ≥ 0 and K ≥ 1 such that

m∑
k=n

(
m+ 1

k + 1
)
α( 1

k + 1

∥∥
PAk

mx
∥∥+ ∥QAn

kx∥
)
≤ K(m+ 1)β (∥P (n)x∥+ ∥QAn

mx∥) (2)

for all (m,n, x) ∈ ∆×X.

Proof Necessity. If the linear discrete-time system (1) is polynomially dichotomic, then from
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Remark 2.11 it follows that there are N ≥ 1, v > 0 and µ ≥ 0 such that for all α > 0 with

0 ≤ µ < α ≤ v ≤ v + µ < α+ 1 we have that

m∑
k=n

(
m+ 1

k + 1
)
α

(
1

k + 1

∥∥
PAk

mx
∥∥+ ∥QAn

kx∥)

≤ N ∥P (n)x∥
m∑

k=n

(
m+ 1

k + 1
)
α (k + 1)

v+µ−1

(m+ 1)
v +N ∥QAn

mx∥
m∑

k=n

(k + 1)
v+µ−α

(m+ 1)
v−α

≤ N ∥P (n)x∥ (m+ 1)α−v
m∑

k=n

(k + 1)
v+µ−α−1

+N(m+ 1)µ ∥QAn
mx∥

m∑
k=n

(
k + 1

m+ 1
)
v−α

≤ N

v + µ− α
(m+ 1)µ ∥P (n)x∥+N(m+ 1)µ

m− n+ 1

m+ 1
∥QAn

mx∥

≤ K(m+ 1)β (∥P (n)x∥+ ∥QAn
mx∥)

for all (m,n, x) ∈ ∆×X, where K = max{N(v + µ− α)
−1

, N} and β = µ.

Sufficiency. According to the relation (2), if we consider k = n, then

(
m+ 1

n+ 1
)α
( 1

n+ 1
∥PAn

mx∥+ ∥Q(n)x∥
)
≤ K(m+ 1)β (∥P (n)x∥+ ∥QAn

mx∥)

for all (m,n, x) ∈ ∆×X. From this and the hypothesis it follows that

(
m+ 1

n+ 1
)α−2β (∥PAn

mx∥+ ∥Q(n)x∥)

≤ (
m+ 1

n+ 1
)α−β ∥PAn

mx∥+ (
m+ 1

n+ 1
)α−2β ∥Q(n)x∥

≤ K(n+ 1)β+1 ∥P (n)x∥+ (
m+ 1

n+ 1
)α−2β 1

m− n+ 1

m∑
k=n

∥Q(n)x∥

≤ K(n+ 1)β+1 ∥P (n)x∥+K(
m+ 1

n+ 1
)α−2β

m∑
k=n

(n+ 1)
α

(k + 1)
α−β

∥QAn
kx∥

= K(n+ 1)β+1 ∥P (n)x∥+K(
n+ 1

m+ 1
)2β

m∑
k=n

(k + 1)
β
(
m+ 1

k + 1
)
α

∥QAn
kx∥

≤ K(n+ 1)β+1 ∥P (n)x∥+K
(n+ 1)

2β

(m+ 1)
β

m∑
k=n

(
m+ 1

k + 1
)
α

∥QAn
kx∥

≤ K(n+ 1)β+1 ∥P (n)x∥+K2(n+ 1)2β ∥QAn
mx∥

≤ K2(n+ 1)2β+1 (∥P (n)x∥+ ∥QAn
mx∥)

for all (m,n, x) ∈ ∆ × X. Thus Definition 2.10 is satisfied for v = α − 2β, µ = 2β + 1, and

N = K2. Hence the linear discrete-time system (1) is polynomially dichotomic. �
Next, we will present a sufficient condition for polynomial dichotomy of discrete linear-time

systems.

Theorem 3.4 If there are constants α > 0, β ≥ 0 and K ≥ 1 such that

m∑
k=n

(
k + 1

n+ 1
)
α (

∥PAn
kx∥+

∥∥
QAk

mx
∥∥) ≤ K(n+ 1)β (∥P (n)x∥+ ∥QAn

mx∥)
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for all (m,n, x) ∈ ∆×X, then the linear discrete-time system (1) is polynomially dichotomic.

Proof It is a simple exercise, for k = m. �

Remark 3.5 The preceding theorems are variants for the case of polynomial dichotomy prop-

erty of well-known theorems due to Popa et al. [11,12] for exponential stability and exponential

dichotomy. They can also be considered as the variants for polynomial stability of theorems

proved by Megan et al. [7], for the case of polynomial stability of variational nonautonomous

difference equations.
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