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Abstract In the paper, we derive a multi-symplectic Fourier pseudospectral method for

Zhiber-Shabat equation. The Zhiber-Shabat equation, which describes many important phys-

ical phenomena, has been investigated widely in last several decades. The multi-symplectic

geometry and multi-symplectic Fourier pseudospectral method for the Zhiber-Shabat equation

is presented. The numerical experiments are given, showing that the multi-symplectic Fourier

pseudospectral method is an efficient algorithm with excellent long-time numerical behaviors.

Keywords the Zhiber-Shabat equation; multi-symplectic theory; Fourier pseudospectral
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1. Introduction

In the paper, we consider the following Zhiber-Shabat equation

uxt + αemu + βe−mu + γe−2mu = 0, (1.1)

where α, β, γ are three non-zero real numbers, m is a positive integer. The equation (1.1)

contains Liouville equation, Sinh-Gordon equation and Dodd-Bullouh-Mikhailov equation.

When β ̸= 0, γ = 0, equation (1.1) becomes Sinh-Gordon equation. When β = 0, γ = 0,

equation (1.1) becomes Liouville equation. When β = 0, γ ̸= 0, equation (1.1) becomes Dodd-

Bullouh-Mikhailov equation. Recently, Wazwaz [1] obtained some solitary wave and periodic

wave solutions for special Dodd-Bullough-Mikhailov equation by using the tanh method. Fan

and Hon [2] obtained some exact explicit parametric representations of the traveling solutions

for the generalized Dodd-Bullough-Mikhailov equation by using the proposed extended tanh

method. Tang [3] obtained some explicit parametric representations of the traveling solutions

for special Dodd-Bullough-Mikhailov equation by using the method of bifurcation theory of

dynamical systems. Rui [4] obtained some explicit parametric representations of the traveling

solutions for equation (1.1) by using the method of bifurcation theory of dynamical systems.

However, to our knowledge, no much work has been done to construct the numerical solutions

for equation (1.1) till now.
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In the paper we consider numerical method to study Zhiber-Shabat equation (1.1). However,

since the common numerical methods are not conservative, all the qualitative behavior such as

norm conservation of the system has been lost in the discretization. In recent years, there has

been an increasing emphasis on constructing numerical methods to preserve certain invariant

quantities in the continuous dynamical systems. Feng [5] proposed a new approach to computing

Hamiltonian systems from the view point of symplectic geometry in 1984. The disadvantage of

this approach is that it is global. To overcome this limitation, Bridge and Reich [6,7] presented

a multi-symplectic integrator based on a multi-symplectic structure of some Hamiltonian PDEs.

An outline of the paper is as follows. In Section 2, we present the multi-symplectic geometry

for the Zhiber-Shabat equation. In Section 3, the multi-symplectic Hamilton formulations for

equation (1.1) are established and three local conservation laws are obtained. Section 4 involves

the construction of multi-symplectic Fourier pseudospectral method and error estimates of energy

conservation law. In Section 5, numerical experiments are given.

2. Multi-symplectic geometry for the Zhiber-Shabat equation

In the section, we consider the multi-symplectic geometry for Zhiber-Shabat equation (1.1).

The covariant configuration space for Zhiber-Shabat equation is X×U . We define the first-order

prolongation of X × U as

U (1) = X × U × U1,

where X = (x, t) represents the space of independent variables, U = (u) represents the space of

dependent variables, U1 = (ux, ut) represents the space consisting of first-order partial deriva-

tives.

Let φ : X → U be a section and we denote first prolongation of φ by

pr1φ = (x, t, u, ux, ut).

The Lagrangian density for theZhiber-Shabat equation (1.1) is

£(pr1(φ)) = L(pr1(φ))dx ∧ dt, (2.1)

where

L(pr1(φ)) = −1

2
utux +

α

m
emu − β

m
e−mu − γ

2m
e−2mu. (2.2)

We define the action functional by

S(φ) =

∫
M

£(pr1(φ)), M is an open set of X. (2.3)

Let V be a vector filed on X × U with the form

V = τ(x, t)
∂

∂t
+ ξ(x, t)

∂

∂x
+ α(x, t, v)

∂

∂v
.

The flow exp(λV ) of the vector V is a one-parameter transformation group of X × U and

transforms a section φ : M → U to a family of sections φ̃ : M̃ → U , which depend on the

parameter λ.
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By direct calculation, we can obtain the variation of the action functional (2.3) as follows

δS =
d

dλ
|λ=0S(φ̃) =

d

dλ
|λ=0

∫
M̃

[−1

2
ũt̃ũx̃ +

α

m
emũ − β

m
e−mũ − γ

2m
e−2mũ]dx̃ ∧ dt̃

=

∫
M

Idx ∧ dt+

∫
∂M

B, (2.4)

where

I =(Dt(−
α

m
emu +

β

m
e−mu +

γ

2m
e−2mu) +Dx(−

1

2
u2t ))V

t+

(Dt(−
1

2
u2x) +Dx(−

α

m
emu +

β

m
e−mu +

β

2m
e−2mu))V x+

(uxt + αemu + βe−mu + γe−2mu)V u, (2.5)

B =((− α

m
emu +

β

m
e−mu +

γ

2m
e−2mu)dx+

1

2
u2tdt)V

t+

(−1

2
u2xdx− (

1

2
u2t + (− α

m
emu +

β

m
e−mu +

γ

2m
e−2mu))dt)V x+

(−1

2
utdt+

1

2
uxdx)V

u. (2.6)

Chen [8] have proved that the variation τ yields the local energy conservation law

Dt(−
1

2
u2x) +Dx(−

α

m
emu +

β

m
e−mu +

β

2m
e−2mu) = 0, (2.7)

the variation ξ yields the local momentum conservation law

Dt(−
1

2
u2x) +Dx(−

α

m
emu +

β

m
e−mu +

β

2m
e−2mu) = 0, (2.8)

the variation α yields the Euler-Lagrange equation

∂L

∂u
− d

dt
(
∂L

∂ut
)− d

dx
(
∂L

∂ux
) = uxt + αemu + βe−mu + γe−2mu = 0. (2.9)

If we define the Cartan form

Θ£ = −1

2
utdu ∧ dt+

1

2
uxdu ∧ dx+ (

1

2
utux +

α

m
emu − β

m
e−2mu − γ

2m
e−2mu)dx ∧ dt, (2.10)

then multi-symplectic form is Ω£ = dΘ£, and the multi-symplectic form formula is∫
∂M

(pr1φ)∗(pr1V ⌋Ω£ = 0.

3. Multi-symplectic structure for the Zhiber-Shabat equation

With the multi-symplectic theory [9–11], many partial differential equations can be written

as multi-symplectic system

Mzt +Kzx = ∇zS(z), z ∈ Rd, (x, t) ∈ R2, (3.1)

whereM,K ∈ Rd×d are the skew-symmetric matrices, S : Rn → R is a smooth function, ∇zS(z)

denotes the gradient of the function S = S(z) with respect to variable z.

The multi-symplectic system (3.1) has multi-symplectic conservation law (MSCL)

∂

∂t
w +

∂

∂x
k = 0, (3.2)
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where

w = dz ∧M+dz, k = dz ∧K+dz. (3.3)

The multi-symplectic system (3.1) satisfies the local energy conservation law (LECL)

∂

∂t
E +

∂

∂x
F = 0, (3.4)

where E = S(z) + zTxK+z, F = −zTt K+z, and local momentum conservation law( LMCL)

∂

∂t
I +

∂

∂x
G = 0, (3.5)

where

I = −zTxM+z, G = S(z) + zTt M+z.

M+ and K+ satisfy

M =M+ −MT
+ , K = K+ −KT

+ .

By introducing a pair of conjugate momenta ut = ψ, ux = φ, the Zhiber-Shabat equation

(1.1) can be written as the first-order PDEs
1
2φt +

1
2ψx = −αemu − βe−mu − γe−2mu,

−1
2ux = −1

2φ,

−1
2ut = − 1

2ψ.

(3.6)

If we define the state variable z = (u, ψ, φ)T , the PDEs (3.6) is equivalent to the multi-

symplectic system (3.1), where the skew-symmetric matrices are

M =

 0 0 1
2

0 0 0

− 1
2 0 0

 , K =

 0 1
2 0

−1
2 0 0

0 0 0

 ,
and the smooth Hamiltonian is

S(z) = − α

m
emu +

β

m
e−mu +

γ

2m
e−2mu +

1

2
ψφ. (3.7)

The system (3.6) satisfies the multi-symplectic conservation law (3.2), where

w = dz ∧M+dz =
1

2
du ∧ dφ, k = dz ∧K+dz =

1

2
du ∧ dψ.

The system (3.6) has a local energy conservation law (3.4), where

E = S(z) + zTxK+z = − α

m
emu +

β

m
e−mu +

γ

2m
e−2mu +

1

2
ψφ− 1

4
ψux +

1

4
uψx,

F = −zTt K+z = −1

4
ψut +

1

4
uψt.

The system (3.6) also has local momentum conservation law (3.5), where

I = −zTxM+z = −1

4
φux +

1

4
uφx,

G = S(z) + zTt M+z = − α

m
emu +

β

m
e−mu +

γ

2m
e−2mu +

1

2
ψφ− 1

4
φut +

1

4
uφt.
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4. Multi-symplectic Fourier pseudospectral method for the Zhiber-
Shabat equation

In this section, we will apply Fourier pseudospectral method to the Zhiber-Shabat equation

(1.1). Bridges and Reich [11] proposed multi-symplectic spectral discretization on Fourier space.

Based on their theory, many authors proposed multi-symplectic Fourier pseudospectral method

for Hamiltonian PDEs with periodic boundary conditions.

The discretization of the multi-symplectic system (3.1) and the multi-symplectic conserva-

tion law (3.2) can be solved numerically by

M∂j,nt znj +K∂j,nx znj = ∇zS(z
n
j ), (4.1)

∂j,nt wn
j + ∂j,nx knj = 0, (4.2)

where

wn
j =

1

2
dznj ∧Mdznj , knj =

1

2
dznj ∧Kdznj ,

∂j,nt and ∂j,nx are discretizations of the partial derivatives ∂t and ∂x, respectively.

Definition 4.1 The numerical scheme (4.1) of multi-symplectic system (3.1) is said to be

multi-symplectic if equation (4.2) is a discrete conservation law of equation (3.1).

We consider Zhiber-Shabat equation (1.1) with the periodic boundary condition u(L1, t) =

u(L2, t). We approximate u(x, t) by INu(x, t) which interpolates u(x, t) at the following set of

collocation points xj = L1 + L
N , j = 0, 1, 2, . . . , N − 1, where N is an even number, L is the

period. We approximate u(x, t) by INu(x, t)

INu(x, t) =
N−1∑
j=0

ujgj(x), (4.3)

where uj = u(xj , t), gj(xk) = δkj . gj(x) is a trigonometric polynomial of degree N
2 given explicitly

by

gj(x) =
1

N

N
2∑

l=−N
2

1

Cl
eilµ(x−xj), (4.4)

where Cl = 1(|l| ̸= N
2 ), CN

2
= C−N

2
= 2, µ = 2π

L . Substituting equation (4.4) into the expression

of INu(x, t) gives

INu(x, t) =

N
2∑

l=−N
2

1

Cl
eilµx

1

N

N−1∑
j=0

uje
−ilµxj , (4.5)

ui = INu(xi, t) =

N
2∑

l=−N
2

1

Cl
eilµxi

1

N

N−1∑
j=0

uje
−ilµxj . (4.6)

For u, v, we can define the bilinear form

(u, v)N = h

N−1∑
j=0

u(xj , t)v(xj , t),
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(INu(xi, t), v(xj , t))N = (u(xi, t), v(xj , t))N .

The crucial step here is to obtain values for the derivative dk

dxk IN (x, t) at the collocation

points xi in terms of the values ui. The resulting expression at the points xi is

dk

dxk
IN (xi, t) =

1

N

N−1∑
j=0

uj
dkgj(xi)

dxk
= (Dku)i,

where Dk represents Fourier pseudospectral differential matrix with the elements

(D1)i,j


1

2
µ(−1)i+j cot(µ

xi − xj
2

), i ̸= j,

0, i = j,

(D2)i,j


1

2
µ2(−1)i+j+1 1

sin2(µ
xi−xj

2 )
, i ̸= j,

−µ2N2+2
12 , i = j.

Definition 4.2 Let u = (u0, u1, u2, . . . , uN−1)
T and v = (v0, v1, v2, . . . , vN−1)

T . We define the

Hadamard product of vectors by

u ◦ v = (u0v0, u1v1, u2v2, . . . , uN−1vN−1)
T .

Theorem 4.3 Let u = (u0, u1, u2, . . . , uN−1)
T and v = (v0, v1, v2, . . . , vN−1)

T , where ui =

u(xi, t), vi = v(xi, t), i = 0, 1, 2, . . . , N − 1. We can obtain

DN (u ◦ v) = DNu ◦ v +DNv ◦ u.

From the above analysis, we can obtain a semi-discrete system for (3.6)

1

2

dφj

dt
+

1

2
(D1ψ)j = −αemuj − βe−muj − γe−2muj ,

−1

2
(D1u)j = −1

2
φj ,

−1

2

duj
dt

= −1

2
ψj ,

(4.7)

where φj = φ(xj , t), ψj = ψ(xj , t), uj = u(xj , t).

Theorem 4.4 The scheme (4.7) satisfies semi-discrete multi-symplectic conservation laws,

d

dt
wi +

N−1∑
j=0

(D1)i,jki,j = 0, i = 1, 2, . . . , N − 1, (4.8)

and satisfies the total symplecticity in time d
dt

∑N−1
i=0 wi = 0, where{

wi =
1
2dui ∧ dφi,

ki,j =
1
2dui ∧ dψj .

In order to derive the algorithms conveniently, we give some operators definition. Define

the finite difference operator

Dtu
j =

uj+1 − uj

∆t
, (4.9)
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and averaging operator

Atu
j =

uj+1 + uj

2
. (4.10)

From the above analysis, applying the midpoint symplectic integration in time, we can

obtain a fully discrete system for (3.6)
1

2
Dtφ

n
j +

1

2
(D1Atψ

n)j = −αemAtu
n
j − βe−mAtu

n
j − γe−2mAtu

n
j ,

−1

2
(D1Atu

n)j = −1

2
Atφ

n
j ,

−1

2
Dtu

n
j = −1

2
Atψ

n
j .

(4.11)

Theorem 4.5 The scheme (4.11) satisfies fully discrete multi-symplectic conservation laws,

Dtw
j
i +

N−1∑
k=0

(D1)i,kAtk
j
i,k = 0, i = 1, 2, . . . , N − 1, (4.12)

and satisfies the total symplecticity in time
∑N−1

i=0 wj+1
i =

∑N−1
i=0 wj

i , where
wj

i =
1

2
duji ∧ dφj

i ,

kji,k =
1

2
duki ∧ dψk

j .

To evaluate the local conservation laws of energy, we use the discretizations of the form

(RE)
n
j = DtE

n
j + (D1AtF

n)j , (4.13)

where 
En

j = S(Zn
j )−

1

2
(Zn

j )
TK(D1Z

n)j ,

AtF
n
j =

1

2
(AtZ

n
j )

TK(DtZ
n
j ),

(RE)
n
j is called the residual of LECL.

Under periodic boundary condition, we can define the discrete energy as follows

εn = ∆x
n−1∑
j=0

En
j . (4.14)

Theorem 4.6 For the multi-symplectic Hamiltonian system (4.11), the residual of LECL of

equation (3.6) satisfies the following expression
(RE)

n+ 1
2

j = − α

m∆t
(emun+1

j − emun
j ) +

α

2∆t
(un+1

j − unj )(e
mun+1

j + emun
j )+

β

m∆t
(e−mun+1

j − e−mun
j ) +

β

2∆t
(un+1

j − unj )(e
−mun+1

j + e−mun
j )+

γ

2m∆t
(e−2mun+1

j − e−2mun
j ) +

γ

2∆t
(un+1

j − unj )(e
−2mun+1

j + e−2mun
j ),



558 Junjie WANG and Shengping LI

and global discrete energy of equation (4.11) satisfies the following expression
εn = ε0 +∆x

n−1∑
n=0

n−1∑
j=0

[− α

m
(emun+1

j − emun
j ) +

α

2
(un+1

j − unj )(e
mun+1

j + emun
j )+

β

m
(e−mun+1

j − e−mun
j ) +

β

2
(un+1

j − unj )(e
−mun+1

j + e−mun
j )+

γ

2m
(e−2mun+1

j − e−2mun
j ) +

γ

2
(un+1

j − unj )(e
−2mun+1

j + e−2mun
j )].

Proof We rewrite equation (4.11) in a compact form as

MDtz
n
j +K

N−1∑
k=0

(D1)j,kAtz
n
j = ∇zS(Atz

n
j ). (4.15)

It follows from Wang [10] that the residual of LECL of equation (4.15) satisfies

(RE)
n+ 1

2
j = DtS(Z

n
j )− (DtZ

n
j ,∇ZS(AtZ

n
j )). (4.16)

Substituting equation (3.7) into equation (4.16), we can derive that the residual of LECL of

equation (4.11) satisfies the following expression
(RE)

n+ 1
2

j = − α

m∆t
(emun+1

j − emun
j ) +

α

2∆t
(un+1

j − unj )(e
mun+1

j + emun
j )+

β

m∆t
(e−mun+1

j − e−mun
j ) +

β

2∆t
(un+1

j − unj )(e
−mun+1

j + e−mun
j )+

γ

2m∆t
(e−2mun+1

j − e−2mun
j ) +

γ

2∆t
(un+1

j − unj )(e
−2mun+1

j + e−2mun
j ).

By Wang [10], the discrete energy of equation (4.11) satisfies

εn = ε0 +∆x
n−1∑
n=0

n−1∑
j=0

[S(Zn+1
j )− S(Zn

j )− (Zn+1
j − Zn

j )
TS(ZAtn

j )]. (4.17)

Substituting equation (3.7) into equation (4.17), we can derive that the discrete energy of equa-

tion (4.11) satisfies the following expression
εn = ε0 +∆x

n−1∑
n=0

n−1∑
j=0

[− α

m
(emun+1

j − emun
j ) +

α

2
(un+1

j − unj )(e
mun+1

j + emun
j )+

β

m
(e−mun+1

j − e−mun
j ) +

β

2
(un+1

j − unj )(e
−mun+1

j + e−mun
j )+

γ

2m
(e−2mun+1

j − e−2mun
j ) +

γ

2
(un+1

j − unj )(e
−2mun+1

j + e−2mun
j )].

Assume ∆t is sufficiently small, then there exist two constants C1, C2 independent of ∆t

and ∆x, such that |(RE)
n+ 1

2
j | ≤ C1∆t

2, |εn+1 − εn| ≤ C2∆t
3.

5. Numerical experiments

In this section, the numerical experiments are presented to illustrate the theoretical results

in the previous sections by using the multi-symplectic Fourier pseudospectral method.

Example 5.1 When m = 1, the Zhiber-Shabat equation (1.1) has an analytic soliton solution

u = ln[
3γ(1−

√
3)

2β
− 9γ

2β
sech2(

9αγ

4βω
x− ωt)]. (5.1)
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We consider the problem 
uxt + αeu + βe−u + γe−2u = 0,

u0 = ln[ 3γ(1−
√
3)

2β − 9γ
2β sech2( 9αγ4βωx)],

u(L1, t) = u(L2, t),

(5.2)

where α = 1, β = 1, γ = −1, w = 1.

Figure 1 The wave form of the numerical solution Figure 2 The wave form of the numerical solution

with x ∈ [−20, 20], t ∈ [0, 50]

We simulate the solution (5.2) with the initial condition and boundary condition using the

multi-symplectic Fourier pseudospectral method (4.11) with x ∈ [−20, 20], t ∈ [0, 50], ∆t = 0.01,

and ∆x = 0.01. Figure 1 shows the wave form of the numerical solution, and shows that the

waves emerge without any changes in their shapes, which indicates that the proposed method

simulated the solitary wave well.

Example 5.2 When m = 1, the Zhiber-Shabat equation (1.1) has an analytic soliton solution

u = ln[
3γ(1−

√
3)

2β
+

9γ

2β
csch2(

9αγ

4βω
x− ωt)]. (5.3)

We consider the problem
uxt + αeu + βe−u + γe−2u = 0,

u0 = ln[
3γ(1−

√
3)

2β
− 9γ

2β
csch2(

9αγ

4βω
x)],

u(L1, t) = u(L2, t),

(5.4)

where α = 1, β = 1, γ = −2, w = 1. We simulate the solution (5.4) with the initial conditions

and boundary conditions using the multi-symplectic Fourier pseudospectral method (4.11) with

x ∈ [−20, 20], t ∈ [0, 50], ∆t = 0.01, and ∆x = 0.01. Figure 2 shows the wave form of the

numerical solution.

From the results above, we find that the wave-forms keep their amplitudes and velocities

invariable throughout the processes of the simulations, which implies that the multi-symplectic

Fourier pseudospectral method (4.11) can preserve the local properties of the periodic wave
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solution perfectly. The numerical error of the multi-symplectic Fourier pseudospectral method

is more regular.
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