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1. Introduction

The study of single path behavior of stochastic process is often based on the study of its

power variations. A quite extensive literature have been developed on this subject, see e.g.

Corcuera et al. [1], Gradinaru et al. [2] for references concerning the power variations of Gaussian

and Gaussian-related processes, and Barndorff-Nielsen et al. [3] (and the references therein) for

applications of power variation techniques to the continuous time modeling of financial markets.

Recall that, a real number p > 1 being given, the p-power variation of a process X, with respect

to a subdivision πn = {0 = tn,0 < tn,1 < · · · < tn,n = 1} of [0, 1], is defined to be the sum

n−1∑
k=0

∣∣Xtn,k+1
−Xtn,k

∣∣p . (1)

For simplicity, consider from now on the case where tn,k = k/n, for n ∈ N∗ and k ∈ {0, 1, 2, . . . , n}.
When weights are introduced in (1), some interesting phenomenon appears. More precisely, con-

sider quantities such as
n−1∑
k=0

f
(
Xk/n

) (
X(k+1)/n −Xk/n

)p
, (2)

where the function f : R → R is assumed to be smooth enough. Notice that (2) is called weighted

power variations because of the presence of the factor f
(
Xk/n

)
.

Before dwelling on sub-fractional Brownian motion (see Section 2 for precise definition), let

us recall some recent results concerning (2) when X = BH , the fractional Brownian motion with
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Hurst index H ∈ (0, 1) and when p ≥ 2 is an integer, the asymptotic behavior of (2) received a

lot of attentions (see Gradinaru and Nourdin [2] and Neuenkirich and Nourdin [4]). The analysis

of the asymptotic behavior of quantities of type (2) is motivated, for instance, by the study of

the exact rates of convergence of some approximation schemes of scalar stochastic differential

equations driven by BH (see [2], [4] and references therein for precise statements), besides, of

course, the traditional applications of quadratic variations to parameter estimation problems.

However, it turned out that it was also interesting itself because it highlighted new phenomena

with respect to some classical results obtained in the seminal works by Breuer and Major [5],

Dobrushin and Major [6], Giraitis and Surgailis [7] or Taqqu [8]. Indeed, we know that, for any

0 < H < 3/4, the convergence

1√
n

n−1∑
l=0

[
n2H

(
BH

(l+1)/n −BH
l/n

)2

− 1
]

Law−−−−→
n→∞

N (0, σ2
H), (3)

holds, where σH denotes a constant depending only H which can be computed explicitly.

Nourdin [9] began the study of asymptotic analysis of (2) with BH instead of X. If H < 1/4,

he proved that

n2H−1
n−1∑
l=0

f
(
BH

l/n

) [
n2H

(
BH

(l+1)/n −BH
l/n

)2

− 1
]

L2

−−−−→
n→∞

1

4

∫ 1

0

f ′′(BH
s )ds, (4)

and if H < 1/6,

n3H−1
n−1∑
l=0

[
f
(
BH

l/n

)
n3H

(
BH

(l+1)/n −BH
l/n

)3

+
3

2
f
(
BH

l/n

)
n−H

]
L2

−−−−→
n→∞

−1

8

∫ 1

0

f ′′′(BH
s )ds. (5)

As pointed out by Nourdin [9], (4) is somewhat surprising when compared with (3). Indeed,

instead of an L2-convergence, we only have a convergence in law in (3). Observe that, since

2H − 1 < −1/2 if and only if H < 1/4, convergence (3) and (4) are, of course, not contradictory.

Let us also stress that the study in Nourdin [9] and Nourdin et al. [10] and [11] has been used

in Gradinaru and Nourdin [2] and Neuenkirich and Nourdin [4] to deduce the exact rate of

convergence of some approximation schemes of scalar stochastic differential equations driven

by fractional Brownian motion. Nourdin et al. [11] proved some central and non-central limit

theorem for the (renormalized) weighted power variation of order q ≥ 2 of fractional Brownian

motion with Hurst parameter H ∈ (0, 1), where q is an integer. Moreover, Belfadli [12] extended

Nourdin [9] to a more general self-similar Gaussian process, namely the bi-fractional Brownian

motion.

Motivated by all these results, we will show in the present note that the convergence (5)

still holds for another self-similar Gaussian process, namely the subfractional Brownian motion

(see below for a precise definition), which has been proposed by Bojdecki et al. [13]. The sub-

fractional Brownian motion has properties analogous to those of fractional Brownian motion

(self-similarity, long-range dependence, Hölder paths, the variation and the renormalized vari-

ation). However, in comparison with fractional Brownian motion, the sub-fractional Brownian

motion has non-stationary increments and the increments over non-overlapping intervals are
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more weakly correlated and their covariance decays polynomially as a higher rate in comparison

with fractional Brownian motion (for this reason in Bojdecki et al. [13] is called sub-fractional

Brownian motion). Therefore, it seems interesting to study the weighted cubic variation of sub-

fractional Brownian motion. And we need more precise estimates to prove our results because

of the non-stationary increments. As in Nourdin [9], our main tool for the proof is based on the

integration by parts formula of Malliavin calculus.

This paper is organized as follows. Section 2 contains some preliminaries for sub-fractional

Brownian motion. In Section 3, we state and prove our main result convergence similar to (5),

but in the case where BH is replaced by the sub-fractional Brownian motion SH .

2. Preliminaries and notations

We begin by briefly recalling some basic facts about stochastic calculus with respect to a

sub-fractional Brownian motion. Let SH = {SH
t , t ∈ [0, 1]} be a sub-fractional Brownian motion

with parameter H ∈ (0, 1) defined on a completed probability space (Ω,F , P ). It means that

SH is a centered Gaussian process with the covariance function given by

CH(s, t) ≡ E
[
SH
t SH

s

]
= s2H + t2H − 1

2

[
(s+ t)2H + |t− s|2H

]
. (6)

For H = 1/2, SH coincides with the standard Brownian motion B. SH being neither

a semi-martingale nor a Markov process unless H = 1/2, many of the powerful techniques

from stochastic analysis are not available when dealing with SH . The sub-fBm has properties

analogous to those of fractional Brownian motion (self-similarity, long-range dependence, Hölder

paths), and, for s ≤ t, satisfies the following estimates:

[1 ∧ (2− 22H−1)](t− s)2H ≤ E
[(
SH
t − SH

s

)2] ≤ [1 ∨ (2− 22H−1)](t− s)2H . (7)

So its increments are not stationary. Further works for sub-fractional Brownian motion can be

found in Bojdecki et al. [13–16], Dzhaparidze and Zanten [17], Liu-Yan [18], Shen-Yan [19], Tudor

[20–23] and Yan et al. [24,25].

We denote by E the set of step R-valued functions on [0, 1]. Let H be the Hilbert space

defined as the closure of E with respect to the scalar product

⟨1[0,t], 1[0,s]⟩H = CH(s, t). (8)

We denote by ∥ · ∥H the associated norm. The mapping 1[0,t] → SH
t can be extended to an

isometry between H and the Gaussian space H1(S
H) associated with SH . We denote this

isometry by ξ → SH(ξ).

Let S be the set of smooth cylindrical functionals of the form

F = h
(
SH(ξ1), . . . , S

H(ξn)
)
,

where n ≥ 1 and h ∈ C∞
b (Rn) and ξi ∈ H . The Malliavin derivative of a functional F defined

as above is given by

DF =
n∑

i=1

∂h

∂xi

(
SH(ξ1), . . . , S

H(ξn)
)
ξi
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and this operator can be extended to the closure Dm,2(m ≥ 1) of S with respect to the norm

∥F∥2m,2 = E|F |2 + E∥DF∥2H + · · ·+ E∥DmF∥2H ⊙m

where H ⊙m denotes the m fold symmetric tensor product of H and the m-th derivative Dm is

defined by iteration. The Malliavin derivative satisfies the following chain rule. For every random

variable F = (F1, F2, . . . , Fn) with components in D1,2 and for every continuously differentiable

function µ : Rn → R with bounded partial derivative, we obtain µ(F1, . . . , Fn) ∈ D1,2 and for

any s ∈ [0, 1]:

Dsµ(F1, . . . , Fn) =

n∑
i=1

∂µ

∂xi
(F1, . . . , Fn)DsFi.

The divergence integral I is the adjoint operator of D. Concretely, a random variable

u ∈ L2(Ω,H ) belongs to the domain of the divergence operator I (in symbol Dom(I)) if

E|⟨DF, u⟩H | ≤ c∥F∥L2(Ω)

for every F ∈ S . In this case I(u) is given by the duality relationship

E(FI(u)) = E⟨DF, u⟩H

for any F ∈ D1,2, and we have the following integration by parts:

FI(u) = I(Fu) + ⟨DF, u⟩H (9)

for any u ∈ Dom(I), F ∈ D1,2 such that Fu ∈ L2(Ω,H ). Moreover, one can see Nualart [26]

and references therein for more details about the Malliavin calculus.

3. Main results and proofs

In this section, we assume that H ∈ (0, 1/6). For simplicity, we denote

∆SH
k/n = SH

(k+1)/n − SH
k/n, δk/n = 1[k/n,(k+1)/n] and εk/n = 1[0,k/n].

Also C will denote a generic constant independent of k, l, n that can be different from line to

line.

We will make use of the following assumption on the weight function f .

Assumption (Hm): f : R → R belongs to Cm and, for any p > 0 and any i = 1, 2, . . . ,m,

sup
s∈[0,1]

E[|f (i)(SH
s )|p] < ∞. (10)

The main result of this note is the following

Theorem 3.1 Let SH be a sub-fractional Brownian motion with parameter H such that 0 <

H < 1
6 , and let f : R → R be a function satisfying (H6). Then we have,

n3H−1
n−1∑
k=0

[
f
(
SH
k/n

)
n3H

(
∆SH

k/n

)3

+
3

2
f ′(SH

k/n)n
−H

]
L2

−−−−→
n→∞

−1

8

∫ 1

0

f ′′′ (SH
s

)
ds. (11)

We will need several lemmas. The proof of the first two lemmas being immediate to check,

the details are left to the readers.
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Lemma 3.2 For any x ≥ 0, we have 0 ≤ (x+ 1)2H − x2H ≤ 1.

Lemma 3.3 (1) If 2H < 1, then the sequence φ defined by

φ(k) := 2(k + 1)2H + (22H − 2)k2H − (2k + 1)2H ,

satisfies

φ(k) ∼ Ck2H−1, k → ∞.

In particular, φ is bounded.

(2) If 2H < 1, then the sequence ϕ defined by

ϕ(k) := (2k + 1)2H − 22H−1(k + 1)2H − 22H−1k2H ,

satisfies

ϕ(k) ∼ Ck2H−2, k → ∞.

In particular,
∑

k≥0 |ϕ(k)| < ∞.

Lemma 3.4 (1) If 0 < H < 1/2, then as n tends to infinity,

n−1∑
k,l=0

∣∣⟨εl/n, δk/n⟩H ∣∣ = o
(
n2−2H

)
.

(2) If 0 < H < 1/6, for k, l = 0, 1, . . . , n− 1, then as n tends to infinity,

n−1∑
k,l=0

∣∣⟨δk/n, δl/n⟩H ∣∣ = o
(
n2−6H

)
.

Proof The first point has been proved in Liu-Yan [18]. We only prove the second point. For

0 ≤ k, l ≤ n− 1, we have

⟨δk/n, δl/n⟩H =
1

2
n−2H [2(k + l + 1)2H − (k + l + 2)2H − (k + l)2H+

|k − l − 1|2H + |k − l + 1|2H − 2|k − l|2H ],

and therefore

n−1∑
k,l=0

∣∣⟨δk/n, δl/n⟩H ∣∣ ≤1

2
n−2H

n−1∑
k,l=0

[
|2(k + l + 1)2H − (k + l + 2)2H − (k + l)2H | +

||k − l − 1|2H + |k − l + 1|2H − 2|k − l|2H |
]

≤Cn = o(n2−6H), since H < 1/6. �

Lemma 3.5 If H < 1
2 , f and g are two functions satisfying the condition (H3), then

n3H
n−1∑
k,l=0

E
{
f
(
SH
k/n

)
g
(
SH
l/n

)(
∆SH

k/n

)3 }

= −3

2
n−H

n−1∑
k,l=0

E
{
f ′

(
SH
k/n

)
g
(
SH
l/n

)}
−
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1

8
n−3H

n−1∑
k,l=0

E
{
f ′′′

(
SH
k/n

)
g
(
SH
l/n

)}
+ o

(
n2−3H

)
.

Proof For 0 ≤ k, l ≤ n− 1, we use the integration by parts formula to have

n3HE
{
f
(
SH
k/n

)
g
(
SH
l/n

)(
∆SH

k/n

)3 }
= n3HE

{
f ′′′

(
SH
k/n

)
g
(
SH
l/n

)
⟨εk/n, δk/n⟩3H +

3f ′′
(
SH
k/n

)
g′
(
SH
l/n

)
⟨εl/n, δk/n⟩H ⟨εk/n, δk/n⟩2H +

3f ′
(
SH
k/n

)
g′′

(
SH
l/n

)
⟨εl/n, δk/n⟩2H ⟨εk/n, δk/n⟩H +

3f ′
(
SH
k/n

)
g
(
SH
l/n

)
⟨εk/n, δk/n⟩H ⟨δk/n, δk/n⟩H +

f
(
SH
k/n

)
g′′′

(
SH
l/n

)
⟨εl/n, δk/n⟩3H + 3f

(
SH
k/n

)
g′
(
SH
l/n

)
⟨εl/n, δk/n⟩H ⟨δk/n, δk/n⟩H

}
≡

6∑
i=1

Ai
k,l,n. (12)

We claim that
∑6

i=1 A
i
k,l,n = o

(
n2−3H

)
for i = 2, 3, 5, 6. Let us first consider the cases

where i = 2 and i = 6. It is easy to check that

⟨εk/n, δk/n⟩H =
1

2n2H

(
2(k + 1)2H + (22H − 2)k2H − (2k + 1)2H − 1

)
, (13)

and

⟨εl/n, δk/n⟩H =
1

n2H

[
(k + 1)2H − k2H +

1

2
(k + l)2H − 1

2
(k + l + 1)2H+

1

2
(|k − l|2H − |k − l + 1|2H)

]
. (14)

Using Lemma 3.2, (13) and (14), we have

|⟨εl/n, δk/n⟩H | ≤ Cn−2H
[
(k + 1)2H − k2H + ||k − l|2H − |k − l + 1|2H |

]
, (15)

and∣∣⟨εk/n, δk/n⟩2H ⟨εl/n, δk/n⟩H
∣∣ ≤ Cn−6H

[
(k + 1)2H − k2H + ||k − l|2H − |k − l + 1|2H |

]
. (16)

This yields, under (H3),

n−1∑
k,l=0

|A2
k,l,n| ≤ Cn1−H = o

(
n2−3H

)
, since H < 1/6,

n−1∑
k,l=0

|A6
k,l,n| ≤ Cn1+H = o

(
n2−3H

)
, since H < 1/6.

Similarly, we prove that
∑n−1

k,l=0 |Ai
k,l,n| = o

(
n2−3H

)
for i = 3 and 5. It remains to consider the

terms A1
k,l,n and A4

k,l,n. From Lemma 3.2, (13) and (14), we deduce∣∣∣⟨εk/n, δk/n⟩H +
1

2n2H

∣∣∣ ≤ 1

2
n−2H

[
2|(k + 1)2H − k2H |+ |(2k)2H − (2k + 1)2H |

]
, (17)
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and ∣∣∣⟨εk/n, δk/n⟩3H +
1

8n6H

∣∣∣ ≤ Cn−6H
[
2|(k + 1)2H − k2H |+ |(2k)2H − (2k + 1)2H |

]
. (18)

Thus, since H < 1/6,

n3H
n−1∑
k,l=0

∣∣∣⟨εk/n, δk/n⟩3H +
1

8n6H

∣∣∣ ≤ Cn1−H = o
(
n2−3H

)
. (19)

Moreover ∣∣∣⟨εk/n, δk/n⟩H ⟨δk/n, δk/n⟩H +
1

2n2H

∣∣∣ ≤ C|⟨εk/n, δk/n⟩H +
1

2n2H
|

≤ Cn−2H
[
2|(k + 1)2H − k2H |+ |(2k)2H − (2k + 1)2H |

]
. (20)

Thus, for H < 1/6,

n3H
n−1∑
k,l=0

∣∣∣⟨εk/n, δk/n⟩H ⟨δk/n, δk/n⟩H +
1

2n2H

∣∣∣ ≤ Cn1+H = o
(
n2−3H

)
. (21)

This yields, under (H3),

n−1∑
k,l=0

|A4
k,l,n| = −3

2
n−H

n−1∑
k,l=0

E
{
f ′

(
SH
k/n

)
g
(
SH
l/n

)}
+ o

(
n2−3H

)
,

n−1∑
k,l=0

|A1
k,l,n| = −1

8
n−3H

n−1∑
k,l=0

E
{
f ′′′

(
SH
k/n

)
g
(
SH
l/n

)}
+ o

(
n2−3H

)
.

Thus the proof of Lemma 3.5 is completed. �

Lemma 3.6 If 0 < H < 1/6, and f, g are two functions satisfying the condition (H6), then

n6H
n−1∑
k,l=0

E
{
f
(
SH
k/n

)
g
(
SH
l/n

)(
∆SH

k/n

)3 (
∆SH

l/n

)3 }

=
9

4n2H

n−1∑
k,l=0

E
{
f ′

(
SH
k/n

)
g′
(
SH
l/n

)}
+

3

16n4H

n−1∑
k,l=0

E
{
f ′

(
SH
k/n

)
g′′′

(
SH
l/n

)}
+

3

16n4H

n−1∑
k,l=0

E
{
f ′′′

(
SH
k/n

)
g′
(
SH
l/n

)}
+

1

64n6H

n−1∑
k,l=0

E
{
f ′′′

(
SH
k/n

)
g′′′

(
SH
l/n

)}
+

o
(
n2−6H

)
. (22)

Proof Using the integration by parts formula, for 0 ≤ k, l ≤ n− 1, we can write

n6HE
{
f
(
SH
k/n

)
g
(
SH
l/n

)(
∆SH

k/n

)3 (
∆SH

l/n

)3 }
= n6HE

{
f ′′′

(
SH
k/n

)
g
(
SH
l/n

)(
∆SH

k/n

)3

⟨εk/n, δl/n⟩3H +

3f ′′
(
SH
k/n

)
g′
(
SH
l/n

)(
∆SH

k/n

)3

⟨εk/n, δl/n⟩2H ⟨εl/n, δl/n⟩H +

9f ′′
(
SH
k/n

)
g
(
SH
l/n

)(
∆SH

k/n

)2

⟨εk/n, δl/n⟩2H ⟨δk/n, δl/n⟩H +
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3f ′
(
SH
k/n

)
g′′

(
SH
l/n

)(
∆SH

k/n

)3

⟨εk/n, δl/n⟩H ⟨εl/n, δl/n⟩2H +

12f ′
(
SH
k/n

)
g′
(
SH
l/n

)(
∆SH

k/n

)2

⟨εk/n, δl/n⟩H ⟨εl/n, δl/n⟩H ⟨δk/n, δl/n⟩H +

12f ′
(
SH
k/n

)
g′
(
SH
l/n

)(
∆SH

k/n

)
⟨εk/n, δl/n⟩H ⟨δk/n, δl/n⟩2H +

3f ′
(
SH
k/n

)
g
(
SH
l/n

)(
∆SH

k/n

)3

⟨εk/n, δl/n⟩H ⟨δl/n, δl/n⟩H +

f
(
SH
k/n

)
g′′′

(
SH
l/n

)(
∆SH

k/n

)3

⟨εl/n, δl/n⟩3H +

9f
(
SH
k/n

)
g′′

(
SH
l/n

)(
∆SH

k/n

)2

⟨εl/n, δl/n⟩2H ⟨δk/n, δl/n⟩H +

18f
(
SH
k/n

)
g′
(
SH
l/n

)(
∆SH

k/n

)
⟨εl/n, δl/n⟩H ⟨δk/n, δl/n⟩2H +

3f
(
SH
k/n

)
g′
(
SH
l/n

)(
∆SH

k/n

)3

⟨εl/n, δl/n⟩H ⟨δl/n, δl/n⟩H +

6f ′
(
SH
k/n

)
g
(
SH
l/n

)(
∆SH

k/n

)
⟨εk/n, δl/n⟩H ⟨δk/n, δl/n⟩2H +

6f
(
SH
k/n

)
g
(
SH
l/n

)(
∆SH

k/n

)2

⟨δk/n, δl/n⟩3H +

9f
(
SH
k/n

)
g
(
SH
l/n

)(
∆SH

k/n

)2

⟨δk/n, δl/n⟩H ⟨δl/n, δl/n⟩H
}
≡

14∑
i=1

Bi
k,l,n. (23)

To obtain Lemma 3.6, we develop the right-hand side of the previous identity in the same

way as for the obtention of (12) in the proof of Lemma 3.5. Then, only the terms containing

⟨εk/n, δk/n⟩αH ⟨εl/n, δl/n⟩βH , for α, β ≥ 1, have a contribution to (23), as we can check by using

(13), (14), (17) and (18). The other terms are o
(
n2−6H

)
.

Consequently, the proof of this lemma will be deduced after the study of the asymptotic

behavior of
∑14

i=1 B
i
k,l,n, as n → ∞, for each i ∈ {1, 2, . . . , 14}.

Lemma 3.7 We have, as n tends to infinity

(1)

n−1∑
k,l=0

Bi
k,l,n = o

(
n2−6H

)
, for every i ̸= 8, i ̸= 11;

(2)

n−1∑
k,l=0

B8
k,l,n =

3

16n4H

n−1∑
k,l=0

E
{
f ′

(
SH
k/n

)
g′′′

(
SH
l/n

)}
+

1

64n6H

n−1∑
k,l=0

E
{
f ′′′

(
SH
k/n

)
g′′′

(
SH
l/n

)}
+ o

(
n2−6H

)
.

(3)

n−1∑
k,l=0

B11
k,l,n =

9

4n2H

n−1∑
k,l=0

E
{
f ′

(
SH
k/n

)
g′
(
SH
l/n

)}
+
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3

16n4H

n−1∑
k,l=0

E
{
f ′′′

(
SH
k/n

)
g′
(
SH
l/n

)}
+ o

(
n2−6H

)
.

Proof We first consider the term B1
k,l,n, the study of B2

k,l,n, B
4
k,l,n, B

7
k,l,n being similar. Using

Malliavin integration by parts formula, we can write

B1
k,l,n =n6HE

{
f ′′′

(
SH
k/n

)
g
(
SH
l/n

)(
∆SH

k/n

)2

I(δk/n)⟨εk/n, δl/n⟩3H
}

=n6HE
{
f (6)

(
SH
k/n

)
g
(
SH
l/n

)
⟨εk/n, δk/n⟩3H ⟨εk/n, δl/n⟩3H +

3f (5)
(
SH
k/n

)
g′
(
SH
l/n

)
⟨εk/n, δk/n⟩2H ⟨εl/n, δk/n⟩H ⟨εk/n, δl/n⟩3H +

3f (4)
(
SH
k/n

)
g′′

(
SH
l/n

)
⟨εl/n, δk/n⟩2H ⟨εk/n, δk/n⟩H ⟨εk/n, δl/n⟩3H +

3f (4)
(
SH
k/n

)
g
(
SH
l/n

)
⟨εk/n, δk/n⟩H ⟨δk/n, δk/n⟩H ⟨εk/n, δl/n⟩3H +

f ′′′
(
SH
k/n

)
g′′′

(
SH
l/n

)
⟨εl/n, δk/n⟩3H ⟨εk/n, δl/n⟩3H +

3f ′′′
(
SH
k/n

)
g′
(
SH
l/n

)
⟨εl/n, δk/n⟩H ⟨δk/n, δk/n⟩H ⟨εk/n, δl/n⟩3H

}
. (24)

Using that n2H
∣∣⟨εk/n, δl/n⟩H ∣∣ and ϕ(k) are bounded with respect to k, l, n, and using the con-

dition (H6), we have ∣∣B1
k,l,n

∣∣ ≤ C · n−4H⟨εk/n, δl/n⟩H .

According to Lemma 3.4, we deduce

n−1∑
k,l=0

∣∣B1
k,l,n

∣∣ = o
(
n2−6H

)
.

Now, let us consider the term B3
k,l,n. The study of the cases Bi

k,l,n, i = 5, 6, 12, is similar because

each of these terms contains the factor ⟨εk/n, δl/n⟩H ⟨δk/n, δl/n⟩H .

As previously, by Malliavin integration by parts formula, we can write

B3
k,l,n =9n6HE

{
f ′′

(
SH
k/n

)
g
(
SH
l/n

)
∆

(
SH
k/n

)
I(δk/n)⟨εk/n, δl/n⟩2H ⟨δk/n, δl/n⟩H

}
=9n6HE

{
f (4)

(
SH
k/n

)
g
(
SH
l/n

)
⟨εk/n, δk/n⟩2H ⟨εk/n, δl/n⟩H ⟨δk/n, δl/n⟩H +

2f ′′′
(
SH
k/n

)
g′
(
SH
l/n

)
⟨εl/n, δk/n⟩H ⟨εk/n, δk/n⟩H ⟨εk/n, δl/n⟩H ⟨δk/n, δl/n⟩H +

f ′′
(
SH
k/n

)
g′′

(
SH
l/n

)
⟨εl/n, δk/n⟩2H ⟨εk/n, δl/n⟩H ⟨δk/n, δl/n⟩H +

f ′′
(
SH
k/n

)
g
(
SH
l/n

)
⟨δk/n, δk/n⟩H ⟨εk/n, δl/n⟩H ⟨δk/n, δl/n⟩H

}
. (25)

Hence, using again that n2H⟨δk/n, δl/n⟩H is bounded and the condition (H4), we obtain

n−1∑
k,l=0

∣∣B3
k,l,n

∣∣ ≤ n−1∑
k,l=0

∣∣⟨εk/n, δl/n⟩H ∣∣ ,
which is o

(
n2−6H

)
by using the point (2) of Lemma 3.4.

For the term B8
k,l,n, we use (18) and the point (1) of Lemma 3.3 to write

⟨εk/n, δk/n⟩3H = − 1

8n6H
+ o

( 1

n6H

)
. (26)
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Substituting into the expression of B8
k,l,n, yields

n−1∑
k,l=0

B8
k,l,n =

n−1∑
k,l=0

n6HE
{
f
(
SH
k/n

)
g′′′

(
SH
l/n

)(
∆SH

k/n

)3

⟨εl/n, δl/n⟩3H
}

= − 1

8n3H

n−1∑
k,l=0

E
{
f
(
SH
k/n

)
g′′′

(
SH
l/n

)(
∆SH

k/n

)3 }
+ o

( 1

n3H

)
. (27)

Therefore, using Lemma 3.5, with g′′′ instead of g, we obtain

n−1∑
k,l=0

B8
k,l,n =

3

16n4H

n−1∑
k,l=0

E
{
f ′

(
SH
k/n

)
g′′′

(
SH
l/n

)}
+

1

64n6H

n−1∑
k,l=0

E
{
f ′′′

(
SH
k/n

)
g′′′

(
SH
l/n

)}
+ o

(
n2−6H

)
.

Now, let us consider the term B9
k,l,n. The study of the cases Bi

k,l,n, i = 10, 13, 14, are

similar because each of these terms contains the factor ⟨δk/n, δl/n⟩H . As previously, by Malliavin

integration by parts formula, we can write

B9
k,l,n =9n6HE

{
f
(
SH
k/n

)
g′′

(
SH
l/n

)
∆

(
SH
k/n

)
I(δk/n)⟨εl/n, δl/n⟩2H ⟨δk/n, δl/n⟩H

}
=9n6HE

{
f ′′

(
SH
k/n

)
g′′

(
SH
l/n

)
⟨εk/n, δk/n⟩2H ⟨εl/n, δl/n⟩2H ⟨δk/n, δl/n⟩H +

2f ′
(
SH
k/n

)
g′′′

(
SH
l/n

)
⟨εl/n, δk/n⟩H ⟨εk/n, δk/n⟩H ⟨εl/n, δl/n⟩2H ⟨δk/n, δl/n⟩H +

f
(
SH
k/n

)
g(4)

(
SH
l/n

)
⟨εl/n, δk/n⟩2H ⟨δl/n, δl/n⟩2H ⟨δk/n, δl/n⟩H +

f
(
SH
k/n

)
g′′

(
SH
l/n

)
⟨δk/n, δk/n⟩H ⟨εl/n, δl/n⟩2H ⟨δk/n, δl/n⟩H

}
:=(a)k,l,n + (b)k,l,n + (c)k,l,n + (d)k,l,n. (28)

We claim that

n−1∑
k,l=0

∣∣B9
k,l,n

∣∣ = o
(
n2−6H

)
.

Indeed, using again that n2H⟨δk/n, δl/n⟩H is bounded and the condition (H4), we obtain

n−1∑
k,l=0

|(a)k,l,n| ≤ C
(
n2H

n−1∑
k=0

E
{
f ′′

(
SH
k/n

)}
⟨εk/n, δk/n⟩H

)2

≤ Cn−4H
( n−1∑

k=0

n2H
∣∣⟨εk/n, δk/n⟩H ∣∣ )2

.

Since n2H⟨εk/n, δk/n⟩H = 1
2 [φ(k)− 1], 6H < 1 and Lemma 3.3, we have

n−4H
n−1∑
l=0

|ϕ(l)| = o
(
n2−6H

)
.
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Combining with n1−4H = o
(
n2−6H

)
since 2H < 1, it follows that

n−1∑
k,l=0

|(a)k,l,n| = o
(
n2−6H

)
.

Also, it is easy to check

n−1∑
k,l=0

(|(b)k,l,n|+ |(c)k,l,n|+ |(d)k,l,n|) = o
(
n2−6H

)
,

following the same lines as that for
∑n−1

k,l=0 |(a)k,l,n|.

Finally we consider the last term
∑n−1

k,l=0 B
11
k,l,n. We use (17) and the point (1) of Lemma

3.3 to write

⟨εk/n, δk/n⟩H = − 1

2n2H
+ o

( 1

n2H

)
. (29)

Substituting into the expression of B11
k,l,n, yields

n−1∑
k,l=0

B11
k,l,n = 3

n−1∑
k,l=0

n6HE
{
f
(
SH
k/n

)
g′
(
SH
l/n

)(
∆SH

k/n

)3

⟨εl/n, δl/n⟩H ⟨δl/n, δl/n⟩H
}

= − 3

2n2H

n−1∑
k,l=0

E
{
f
(
SH
k/n

)
g′′′

(
SH
l/n

)(
∆SH

k/n

)3 }
+ o

( 1

n3H

)
. (30)

Therefore, using Lemma 3.5, with g′′′ instead of g, we obtain

n−1∑
k,l=0

B11
k,l,n =

9

4n2H

n−1∑
k,l=0

E
{
f ′

(
SH
k/n

)
g′
(
SH
l/n

)}
+

3

16n4H

n−1∑
k,l=0

E
{
f ′′′

(
SH
k/n

)
g′
(
SH
l/n

)}
+ o

(
n2−6H

)
.

This finished the proof of Lemma 3.7, and thus the proof of Lemma 3.6. �

Proof of Theorem 3.1 Combined with these two lemmas, the proof of the theorem can be

completed along the same lines as in Nourdin [9]. Indeed, by Lemmas 3.5 and 3.6, we have on

the one hand

E
{(

n3H−1
n−1∑
k=0

[
f
(
SH
k/n

)
n3H

(
∆SH

k/n

)3

+
3

2
f ′

(
SH
k/n

)
n−H

])2}
= n6H−2

n−1∑
k,l=0

E
{[

f
(
SH
k/n

)
n3H

(
∆SH

k/n

)3

+
3

2
f ′

(
SH
k/n

)
n−H

]
×

[
f
(
SH
l/n

)
n3H

(
∆SH

l/n

)3

+
3

2
f ′

(
SH
l/n

)
n−H

]}
=

1

64n2

n−1∑
k,l=0

E
{
f ′′′

(
SH
k/n

)
f ′′′

(
SH
l/n

)}
+ o(1). (31)
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On the other hand, we have by Lemma 3.5

E
{
n3H−1

n−1∑
k=0

[
f
(
SH
k/n

)
n3H

(
∆SH

k/n

)3

+
3

2
n−Hf ′

(
SH
k/n

) ](
− 1

8n

)∑
l

f ′′′
(
SH
l/n

)}
= −1

8
n3H−2

n−1∑
k,l=0

E
{
f
(
SH
k/n

)
f ′′′

(
SH
l/n

)
n3H

(
∆SH

k/n

)3

+
3

2nH
f ′

(
SH
k/n

)
f ′′′

(
SH
l/n

)}

=
1

64n2

n−1∑
k,l=0

E
{
f ′′′

(
SH
k/n

)
f ′′′

(
SH
l/n

)}
+ o(1). (32)

Now, we easily deduce (11). Indeed, thanks to (31) and (32), we obtain, by developing the square

and by remembering that H < 1/6, that

E
{(

n3H−1
n−1∑
k=0

[
f
(
SH
k/n

)
n3H

(
∆SH

k/n

)3

+
3

2nH
f ′

(
SH
k/n

) ]
+

1

8
n−1

n−1∑
k=0

f ′′′
(
SH
k/n

))2}
→ 0, (33)

as n tends to infinity. Since

−1

8
n−1

n−1∑
k=0

f ′′′
(
SH
k/n

)
L2

−−−−→
n→∞

−1

8

∫ 1

0

f ′′′(SH
s )ds,

we finally prove that (11) holds.
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