H-Module Algebra Structures On $M_{2}(\mathbb{F})$

Fengxia GAO, Shilin YANG*
College of Applied Sciences, Beijing University of Technology, Beijing 100124, P. R. China

Abstract

Let \mathbb{F} be an algebraically closed field of characteristic $0, H$ be an eight-dimensional non-semisimple Hopf algebra which is neither pointed nor unimodular and $M_{2}(\mathbb{F})$ be the full matrix algebra of 2×2 over \mathbb{F}. In this paper, we discuss and classify all H-module algebra structures on $M_{2}(\mathbb{F})$.

Keywords H-module algebras; square root of matrix; Sweedler algebra
MR(2010) Subject Classification 16T05; 15A04; 15A24

1. Introduction

The notion of Hopf algebra actions on algebras was introduced by Beattie [1,2] in 1976. A duality theorem for Hopf module algebras was studied by Blattner and Montgomery [3] in 1985. It generalized the corresponding theorem of group actions. Later, many mathematicians were engaged in the theory of Hopf algebra actions [4-6]. In recent years, the classification of finite-dimensional Hopf algebra actions on algebras has drawn people's attention extensively. In [7], Chen and Zhang classified the Yetter-Drinfeld \mathbb{H}_{4}-module algebra structures on $M_{2}(k)$ over a field k of characteristic $\neq 2$. Gordieko [8] described and classified \mathbb{H}_{4}-module algebra structures on full matrix algebra $M_{n}(\mathbb{F})$ over an algebraically closed field of characteristic $\neq 2$.

The classification of all Hopf algebras with dimension ≤ 11 over algebraically closed field \mathbb{F} was done by Williams [9], and conformed by Stefan [10]. The result of eight-dimensional Hopf algebras tells us that there are six types of eight-dimensional nonsemisimple Hopf algebras up to isomorphism. Among these, the type $\left(H_{C_{4}}^{\prime \prime}\right)^{*}$ is neither pointed nor unimodular [11], which makes it much more difficult to describe completely the $\left(H_{C_{4}}^{\prime \prime}\right)^{*}$-actions on $M_{n}(\mathbb{F})$ for $n \geq 3$. The aim of this paper is to discuss and classify all $\left(H_{C_{4}}^{\prime \prime}\right)^{*}$-actions on $M_{2}(\mathbb{F})$ by the actions of a Hopf subalgebra and theory on square root of matrix.

2. Preliminaries

Firstly, we recall some basic concepts and results on Hopf algebra actions on algebras from [12].

[^0]Let H be a Hopf algebra. Denote the comultiplication and the counit Δ and ε, respectively. We also fix some notations as follows:

- \mathbb{N} : the set of natural numbers,
- $[\underline{n}]=\{1,2, \ldots, n-1, n\}$ for any $n \in \mathbb{N}$,
- $M_{n}(k)$: the full matrix algebra of $n \times n$-matrices over k,
- $E_{n}: n \times n$-identity matrix,
- $G L_{n}(k):$ the multiplicative group of the invertible matrices in $M_{n}(k)$,
- A standard basis of $M_{2}(k): E_{11}, E_{22}, E_{12}, E_{21}$,
- $S_{1} \times S_{2}$: the Cartesian product of two sets S_{1} and S_{2}.

Let A be an algebra over a field k. We call A a left H-module algebra if A is a left H-module, and

$$
h \cdot(a b)=\sum_{(h)}\left(h_{1} \cdot a\right)\left(h_{2} \cdot b\right), \quad h \cdot 1_{A}=\varepsilon(h) 1_{A}
$$

for all $h \in H$ and $a, b \in A$, where $\Delta(h)=\sum_{(h)}\left(h_{1} \otimes h_{2}\right)$. The reader can also refer to [13, 14] for more notions about Hopf algebras and Hopf algebra actions.

Let $P_{1}, P_{2} \in M_{n}(k)$. We say P_{1} and P_{2} are weakly similar if $P_{2}=\alpha O P_{1} O^{-1}$ for some $O \in G L_{n}(k)$ and $\alpha \in k^{*}=k \backslash\{0\}$. Obviously, two similar matrices are weakly similar, and weak similarity is an equivalence relation on $M_{n}(k)$. We have the following fact [15].

Lemma 2.1 Let φ_{1} and φ_{2} be two inner automorphisms of $M_{n}(k)$. If $\varphi_{1}(a)=P_{1} a P_{1}^{-1}, \varphi_{2}(a)=$ $P_{2} a P_{2}^{-1}$ for all $a \in M_{n}(k)$, where $P_{1}, P_{2} \in G L_{n}(k)$, then $\varphi_{1}=\varphi_{2}$ if and only if P_{1} is weakly similar to P_{2}.

Let $\left(H_{C_{4}}^{\prime \prime}\right)^{*}=\mathbb{F}\langle g, x\rangle /\left(g^{4}-1, x^{2}, g x-\omega x g\right)$ be the eight-dimensional non-semisimple Hopf algebra which is neither pointed nor unimodular. Its Hopf algebra structure is given by

$$
\Delta(g)=g \otimes g-2 g^{3} x \otimes g x, \quad \Delta(x)=g^{2} \otimes x+x \otimes 1
$$

where $\omega \in \mathbb{F}$ is a primitive 4 -th root of unity.
From now on we denote $H_{\mathbb{C}_{4}}^{\prime \prime \prime \prime}$ by H. Let $K=\mathbb{F} 1 \oplus \mathbb{F} g^{2} \oplus \mathbb{F} x \oplus \mathbb{F} g^{2} x$ and $\mathbb{H}_{4}=\langle c, \nu| c^{2}=$ $\left.1, \nu^{2}=0, \nu g+g \nu=0\right\rangle$ be the four-dimensional Sweedler Hopf algebra. It is clear that K is a Hopf subalgebra of H and $K \cong \mathbb{H}_{4}$ as Hopf algebras. So we have the following lemma from [8].

Lemma 2.2 All K-module algebra structures on $M_{2}(\mathbb{F})$ are as follows. For any $C=\left(c_{i j}\right)_{2 \times 2} \in$ $M_{2}(\mathbb{F})$,
(i) $g^{2} \cdot C=C, x \cdot C=0$;
(ii) $g^{2} \cdot C=\operatorname{diag}(1,-1) C \operatorname{diag}(1,-1), x \cdot C=0$;
(iii) $g^{2} \cdot C=\operatorname{diag}(1,-1) C \operatorname{diag}(1,-1), x \cdot C=\left(\begin{array}{cc}a\left(c_{12}+c_{21}\right) & c_{11}-c_{22} \\ -a\left(c_{11}-c_{22}\right) & a\left(c_{12}+c_{21}\right)\end{array}\right)$, and these module algebras are not isomorphic for different $a \in \mathbb{F}$.

3. The main result and proof

In this section we mainly describe and classify all the H-module algebra structures on $M_{2}(\mathbb{F})$. First we give the main result of this paper as follows.

Theorem 3.1 Up to isomorphism, there are four H-module algebra structures on $M_{2}(\mathbb{F})$ such that for all $C \in M_{2}(\mathbb{F})$,
(i) $g \cdot C=C, x \cdot C=0$;
(ii) $g \cdot C=\operatorname{diag}(1,-1) C \operatorname{diag}(1,-1), x \cdot C=0$;
(iii) $g \cdot C=\operatorname{diag}(1, \omega) C \operatorname{diag}(1, \omega), x \cdot C=0$;
(iv) The matrices of g and x as linear transformations on the standard basis are $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \omega & 2 \omega \\ 0 & 0 & 0 & -\omega\end{array}\right)$ and $\left(\begin{array}{cccc}1 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$, respectively.
Proof By (i) and (ii) of the Lemma 2.2 in Section 2, we know all K-module structures on $M_{2}(\mathbb{F})$. That is, the action of g^{2} and x on $M_{2}(\mathbb{F})$ is clear. Therefore, to describe all H-module algebra structures on $M_{2}(\mathbb{F})$, we only need find the action of g satisfying the following conditions

$$
\begin{aligned}
& g x \cdot E_{i j}=\omega\left(x g \cdot E_{i j}\right) \\
& g \cdot\left(E_{i j} E_{k l}\right)=\left(g \cdot E_{i j}\right)\left(g \cdot E_{k l}\right)-2\left(g^{2} \cdot\left(g x \cdot E_{i j}\right)\right)\left(g x \cdot E_{k l}\right)
\end{aligned}
$$

for all $i, j, k, l \in[2]$. In particular, when the action of x on $M_{2}(\mathbb{F})$ is zero, we have

$$
g \cdot\left(E_{i j} E_{k l}\right)=\left(g \cdot E_{i j}\right)\left(g \cdot E_{k l}\right) \text { for all } i, j, k, l \in[2]
$$

Since $M_{2}(\mathbb{F})$ as an algebra can be generated by the standard basis, the action of g on $M_{2}(\mathbb{F})$ is an algebraic automorphism. Since all algebraic automorphisms of $M_{2}(\mathbb{F})$ are inner, we may assume $g \cdot C=P C P^{-1}$ for some $P \in G L_{2}(\mathbb{F})$. Thus $g^{2} \cdot C=P^{2} C P^{-2}$. In fact, by (i) and (ii) of Lemma 2.2, we have $g^{2} \cdot C=C$ or $g^{2} \cdot C=\operatorname{diag}(1,-1) C \operatorname{diag}(1,-1)$.

If $g^{2} \cdot C=C$, then $P^{2} C=C P^{2}$ for all $C \in M_{2}(\mathbb{F})$ and P must be weakly similar to $\operatorname{diag}(1,1)$ or $\operatorname{diag}(1,-1)$.

If $g^{2} \cdot C=\operatorname{diag}(1,-1) C \operatorname{diag}(1,-1)$, then P^{2} must be weakly similar to $P=\operatorname{diag}(1, \omega)$. Therefore, we have proven (i), (ii) and (iii). The proof of (iv) is much more complex, we need make some preparation.

When the action of x is not zero, the action of g need not be an algebraic automorphism. Hence, to describe the action of g on $M_{2}(\mathbb{F})$, we need find the matrix of g as linear transformation. By Lemma 2.2, the matrix of g^{2} on the standard basis is $B=\operatorname{diag}(1,1,-1,-1)$. Let

$$
D=\left(\begin{array}{llll}
d_{11} & d_{12} & d_{13} & d_{14} \\
d_{21} & d_{22} & d_{23} & d_{24} \\
d_{31} & d_{32} & d_{33} & d_{34} \\
d_{41} & d_{42} & d_{43} & d_{44}
\end{array}\right) \text { and } X=\left(\begin{array}{cccc}
0 & 0 & -a & -1 \\
0 & 0 & -a & -1 \\
1 & -1 & 0 & 0 \\
-a & a & 0 & 0
\end{array}\right)
$$

be the matrices of g and the matrix of x, respectively, where $a \in \mathbb{F}$.

First, we find those matrices D such that

$$
\begin{gather*}
D^{2}=B, \quad D X=\omega X D \tag{3.1}\\
g \cdot\left(E_{i j} E_{k l}\right)=\left(g \cdot E_{i j}\right)\left(g \cdot E_{k l}\right)-2\left(g^{2} \cdot\left(g x \cdot E_{i j}\right)\right)\left(g x \cdot E_{k l}\right) \text { for all } i, j, k, l \in[\underline{2}] . \tag{3.2}
\end{gather*}
$$

We know that a square root of a matrix $Y \in M_{n}(\mathbb{F})$ is a matrix $Z \in M_{n}(\mathbb{F})$ such that $Z^{2}=Y$. It is obvious that the square root of a diagonal matrix must exist. We also know that a square root of an invertible diagonal matrix Y must be diagonalizable, any eigenvalue of the square root is a square root of some eigenvalue of Y (see [15]).

Since B is invertible, every square root of B is diagonalizable. It is clear that every square root of B must be similar to one of the following nine types:

$$
\begin{array}{lll}
\text { I }: \operatorname{diag}(1,1, \omega, \omega), & \text { II }: \operatorname{diag}(1,1,-\omega,-\omega), & \text { III }: \operatorname{diag}(-1,-1, \omega, \omega), \\
\text { IV : } \operatorname{diag}(-1,-1,-\omega,-\omega), & \text { V }: \operatorname{diag}(1,1, \omega,-\omega), & \text { VI }: \operatorname{diag}(-1,-1, \omega,-\omega), \\
\text { VII }: \operatorname{diag}(1,-1, \omega, \omega), & \text { VIII }: \operatorname{diag}(1,-1,-\omega,-\omega), & \text { IX }: \operatorname{diag}(-1,1, \omega,-\omega) .
\end{array}
$$

Let W be the set of above nine types. Thus D has the form $P Q P^{-1}$ for some $P \in G L_{4}(\mathbb{F})$ and $Q \in W$, and $D^{2}=\left(P Q P^{-1}\right)^{2}=P Q^{2} P^{-1}=\operatorname{diag}(1,1,-1,-1)$. Thus $P \operatorname{diag}(1,1,-1,-1)=$ $\operatorname{diag}(1,1,-1,-1) P$. Direct calculation shows that $P=\left(\begin{array}{cc}P_{1} & 0 \\ 0 & P_{2}\end{array}\right)$ for some $P_{i} \in G L_{2}(\mathbb{F}), i \in[\underline{2}]$. Let $Q=\left(\begin{array}{cc}Q_{1} & 0 \\ 0 & Q_{2}\end{array}\right)$. Then $D=P Q P^{-1}=\left(\begin{array}{cc}P_{1} Q_{1} P_{1}^{-1} & 0 \\ 0 & P_{2} Q_{2} P_{2}^{-1}\end{array}\right)$. Since $\left|P_{i} P_{i}^{-1}\right|=1$, we may assume $\left|P_{i}\right|=1$.

Let $P_{1}=\left(\begin{array}{c}t_{1} \\ t_{3} \\ t_{3} \\ t_{4}\end{array}\right), P_{2}=\left(\begin{array}{c}t_{5} \\ t_{7} \\ t_{7} \\ t_{8}\end{array}\right)$ with $t_{1} t_{4}-t_{2} t_{3}=t_{5} t_{8}-t_{6} t_{7}=1, t_{i} \in \mathbb{F}$. Then all square roots of B consist of the following nine classes.
(I) : $\operatorname{diag}(1,1, \omega, \omega)$;
(II) $: \operatorname{diag}(1,1,-\omega,-\omega)$;
(III) : $\operatorname{diag}(-1,-1, \omega, \omega)$;
(IV) : $\operatorname{diag}(-1,-1,-\omega,-\omega)$;
$(\mathrm{V}):\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \omega\left(t_{5} t_{8}+t_{6} t_{7}\right) & -2 \omega t_{5} t_{6} \\ 0 & 0 & 2 \omega t_{7} t_{8} & -\omega\left(t_{5} t_{8}+t_{6} t_{7}\right)\end{array}\right) ;$
(VI) : $\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & \omega\left(t_{5} t_{8}+t_{6} t_{7}\right) & -2 \omega t_{5} t_{6} \\ 0 & 0 & 2 \omega t_{7} t_{8} & -\omega\left(t_{5} t_{8}+t_{6} t_{7}\right)\end{array}\right) ;$
(VII) : $\left(\begin{array}{cccc}t_{1} t_{4}+t_{2} t_{3} & -2 t_{1} t_{2} & 0 & 0 \\ 2 t_{3} t_{4} & -\left(t_{1} t_{4}+t_{2} t_{3}\right) & 0 & 0 \\ 0 & 0 & \omega & 0 \\ 0 & 0 & 0 & \omega\end{array}\right) ;$
(VIII) : $\left(\begin{array}{cccc}t_{1} t_{4}+t_{2} t_{3} & -2 t_{1} t_{2} & \\ 2 t_{3} t_{4} & -\left(t_{1} t_{4}+t_{2} t_{3}\right) & \\ 0 & 0 & -\omega & 0 \\ 0 & 0 & 0 & -\omega\end{array}\right) ;$
(IX) : $\left(\begin{array}{cccc}t_{1} t_{4}+t_{2} t_{3} & -2 t_{1} t_{2} & 0 & 0 \\ 2 t_{3} t_{4} & -\left(t_{1} t_{4}+t_{2} t_{3}\right) & 0 & 0 \\ 0 & 0 & \omega\left(t_{5} t_{8}+t_{6} t_{7}\right) & -2 \omega t_{5} t_{6} \\ 0 & 0 & 2 \omega t_{7} t_{8} & -\omega\left(t_{5} t_{8}+t_{6} t_{7}\right)\end{array}\right)$.

First it is easy to see that the matrices $\{D\}^{\prime} s$ in (I)-(IV) do not satisfy the condition $D X=\omega X D$.

In (V): Let

$$
X_{1}=\left(\begin{array}{cc}
-a & -1 \\
-a & -1
\end{array}\right), X_{2}=\left(\begin{array}{cc}
1 & -1 \\
-a & a
\end{array}\right) \text { and } D_{1}=\left(\begin{array}{cc}
t_{5} t_{8}+t_{6} t_{7} & -2 t_{5} t_{6} \\
2 t_{7} t_{8} & -\left(t_{5} t_{8}+t_{6} t_{7}\right)
\end{array}\right)
$$

Then $D X=\omega X D$ is equivalent to $X_{1}=-X_{1} D_{1}$ and $X_{2}=D_{1} X_{2}$. More precisely,

$$
\begin{aligned}
& X_{1}=\left(\begin{array}{cc}
a t_{5} t_{8}+a t_{6} t_{7}+2 t_{7} t_{8} & -2 a t_{5} t_{6}-t_{5} t_{8}-t_{6} t_{7} \\
a t_{5} t_{8}+a t_{6} t_{7}+2 t_{7} t_{8} & -2 a t_{5} t_{6}-t_{5} t_{8}-t_{6} t_{7}
\end{array}\right) \\
& X_{2}=\left(\begin{array}{cc}
t_{5} t_{8}+t_{6} t_{7}+2 a t_{5} t_{6} & -t_{5} t_{8}-t_{6} t_{7}-2 a t_{5} t_{6} \\
2 t_{7} t_{8}+a t_{5} t_{8}+a t_{6} t_{7} & -2 t_{7} t_{8}-a t_{5} t_{8}-a t_{6} t_{7}
\end{array}\right) .
\end{aligned}
$$

Thus

$$
\left\{\begin{array}{l}
a t_{5} t_{8}+a t_{6} t_{7}+2 t_{7} t_{8}=-a \\
t_{5} t_{8}+t_{6} t_{7}+2 a t_{5} t_{6}=1 \\
t_{5} t_{8}-t_{6} t_{7}=1
\end{array}\right.
$$

Now, we begin to solve the above equations. Firstly,
(1) If $a=0$, then $t_{7} t_{8}=0, t_{6} t_{7}=0$ and $t_{5} t_{8}=1$.
(2) If $a \neq 0$, then $t_{7} t_{8}=a^{2} t_{5} t_{6}-a, t_{5} t_{8}+t_{6} t_{7}=1-2 a t_{5} t_{6}$.

It follows that

$$
D=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \omega\left(1-2 a t_{5} t_{6}\right) & -2 \omega t_{5} t_{6} \\
0 & 0 & \omega\left(2 a^{2} t_{5} t_{6}-2 a\right) & -\omega\left(1-2 a t_{5} t_{6}\right)
\end{array}\right)
$$

We denote $t_{5} t_{6}$ by t, then

$$
D=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \omega(1-2 a t) & -2 \omega t \\
0 & 0 & \omega\left(2 a^{2} t-2 a\right) & -\omega(1-2 a t)
\end{array}\right) \text { with } t \in \mathbb{F}
$$

In (VI): $D X=\omega X D$ is equivalent to the following equations:

$$
\left\{\begin{array}{l}
a t_{5} t_{8}+a t_{6} t_{7}+2 t_{7} t_{8}=a \\
t_{5} t_{8}+t_{6} t_{7}+2 a t_{5} t_{6}=-1 \\
t_{5} t_{8}-t_{6} t_{7}=1
\end{array}\right.
$$

By solving the above equations we obtain that

$$
D=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & \omega(-1-2 a t) & -2 \omega t \\
0 & 0 & \omega\left(2 a^{2} t+2 a\right) & \omega(1+2 a t)
\end{array}\right) \text { with } t \in \mathbb{F}
$$

In (VII): $D X=\omega X D$ is equivalent to the following equations:

$$
\left\{\begin{array}{l}
t_{1} t_{4}+t_{2} t_{3}-2 t_{1} t_{2}=-1 \\
t_{1} t_{4}+t_{2} t_{3}-2 t_{3} t_{4}=1 \\
t_{1} t_{4}-t_{2} t_{3}=1
\end{array}\right.
$$

By solving the above equations we get

$$
D=\left(\begin{array}{cccc}
1+2 t & -2-2 t & 0 & 0 \\
2 t & -1-2 t & 0 & 0 \\
0 & 0 & \omega & 0 \\
0 & 0 & 0 & \omega
\end{array}\right) \text { with } t \in \mathbb{F}
$$

In (VIII): $D X=\omega X D$ is equivalent to the following equations:

$$
\left\{\begin{array}{l}
t_{1} t_{4}+t_{2} t_{3}-2 t_{1} t_{2}=1 \\
2 t_{3} t_{4}-t_{1} t_{4}-t_{2} t_{3}=1 \\
t_{1} t_{4}-t_{2} t_{3}=1
\end{array}\right.
$$

By solving the above equations we obtain

$$
D=\left(\begin{array}{cccc}
1+2 t & -2 t & 0 & 0 \\
2+2 t & -1-2 t & 0 & 0 \\
0 & 0 & -\omega & 0 \\
0 & 0 & 0 & -\omega
\end{array}\right) \text { with } t \in \mathbb{F}
$$

In (IX): $D X=\omega X D$ is equivalent to the following equations:

$$
\left\{\begin{array}{l}
t_{1} t_{4}+t_{2} t_{3}-2 t_{1} t_{2}-2 a t_{5} t_{6}-t_{5} t_{8}-t_{6} t_{7}=0 \\
-a t_{1} t_{4}-a t_{2} t_{3}+2 a t_{1} t_{2}-a t_{5} t_{8}-a t_{6} t_{7}-2 t_{7} t_{8}=0 \\
a t_{1} t_{4}+a t_{2} t_{3}-2 t_{3} t_{4}-a t_{5} t_{8}-a t_{6} t_{7}-2 t_{7} t_{8}=0 \\
2 t_{3} t_{4}-t_{1} t_{4}-t_{2} t_{3}-2 a t_{5} t_{6}-t_{5} t_{8}-t_{6} t_{7}=0 \\
t_{1} t_{4}+t_{2} t_{3}-2 t_{3} t_{4}-t_{5} t_{8}-t_{6} t_{7}-2 a t_{5} t_{6}=0 \\
t_{1} t_{4}+t_{2} t_{3}-2 t_{1} t_{2}+t_{5} t_{8}+t_{6} t_{7}+2 a t_{5} t_{6}=0 \\
-a t_{1} t_{4}-a t_{2} t_{3}+2 a t_{3} t_{4}-2 t_{7} t_{8}-a t_{5} t_{8}-a t_{6} t_{7}=0 \\
a t_{1} t_{4}+a t_{2} t_{3}-2 a t_{1} t_{2}-2 t_{7} t_{8}-a t_{5} t_{8}-a t_{6} t_{7}=0 \\
t_{1} t_{4}-t_{2} t_{3}=1 \\
t_{5} t_{8}-t_{6} t_{7}=1
\end{array}\right.
$$

Solving the above equations reveals that they are incompatible. That is, there is no such D which can satisfy simultaneously the conditions $D^{2}=B$ and $D X=\omega X D$. In conclusion, we have the following

Lemma 3.2 $D^{2}=B$ and $D X=\omega X D$ if and only if D is one of the following forms $(t \in \mathbb{F})$:
(i) $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \omega(1-2 a t) & -2 \omega t \\ 0 & 0 & \omega\left(2 a^{2} t-2 a\right) & -\omega(1-2 a t)\end{array}\right)$;
(ii) $\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -\omega(1+2 a t) & -2 \omega t \\ 0 & 0 & \omega\left(2 a+2 a^{2} t\right) & \omega(1+2 a t)\end{array}\right)$;
(iii) $\left(\begin{array}{cccc}1+2 t & -2-2 t & 0 & 0 \\ 2 t & -1-2 t & 0 & 0 \\ 0 & 0 & \omega & 0 \\ 0 & 0 & 0 & \omega\end{array}\right)$;
(iv) $\left(\begin{array}{cccc}1+2 t & -2 t & 0 & 0 \\ 2+2 t & -1-2 t & 0 & 0 \\ 0 & 0 & -\omega & 0 \\ 0 & 0 & 0 & -\omega\end{array}\right)$.

For convenience, for all $i, j, k, l \in[\underline{2}]$, we denote by $L(i, j, k, l)$ and $R(i, j, k, l)$ the left side and the right side of (3.2), respectively.

Lemma 3.3 Let D be any matrix from Lemma 3.2. Then the action of g attached to D satisfies $L(i, j, k, l)=R(i, j, k, l) \quad$ for all $i, j, k, l \in[\underline{2}]$ if and only if

$$
D=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \omega & 2 \omega \\
0 & 0 & 0 & -\omega
\end{array}\right)
$$

Moreover, the matrices of x and $g x$ on the standard basis are

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 \\
1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text { and }\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 \\
1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad \text { respectively. }
$$

Proof

Case 1 The matrices of g and $g x$ are

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \omega-2 \omega a t & -2 \omega t \\
0 & 0 & \omega\left(2 a^{2} t-2 a\right) & -\omega(1-2 a t)
\end{array}\right) \text { and }\left(\begin{array}{cccc}
0 & 0 & -\alpha & -1 \\
0 & 0 & -\alpha & -1 \\
\omega & -\omega & 0 & 0 \\
-\omega \alpha & \omega \alpha & 0 & 0
\end{array}\right) \text {, respectively, }
$$

where $\alpha, \beta \in \mathbb{F}$. On the one hand, we have

$$
\begin{aligned}
& L(1,1,1,1)=g \cdot\left(E_{11} E_{11}\right)=g \cdot E_{11}=E_{11} \\
& L(2,2,2,2)=g \cdot\left(E_{22} E_{22}\right)=g \cdot E_{22}=E_{22}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& R(1,1,1,1)=\left(g \cdot E_{11}\right)\left(g \cdot E_{11}\right)-2\left(g^{2} \cdot\left(g x \cdot E_{11}\right)\right)\left(g x \cdot E_{11}\right)=(1+2 a) E_{11}+2 a E_{22}, \\
& R(2,2,2,2)=\left(g \cdot E_{22}\right)\left(g \cdot E_{22}\right)-2\left(g^{2} \cdot\left(g x \cdot E_{22}\right)\right)\left(g x \cdot E_{22}\right)=2 a E_{11}+(1+2 a) E_{22} .
\end{aligned}
$$

Therefore, the equations

$$
L(1,1,1,1)=R(1,1,1,1) \text { and } L(2,2,2,2)=R(2,2,2,2)
$$

hold if and only if $1+2 a=1,2 a=0$. It is clear that $a=0$. In addition,

$$
\begin{aligned}
& L(1,1,2,1)=g\left(E_{11} E_{21}\right)=0, \\
& R(1,1,2,1)=\left(g \cdot E_{11}\right)\left(g \cdot E_{21}\right)-2\left(g^{2} \cdot\left(g x \cdot E_{11}\right)\right)\left(g x \cdot E_{21}\right)=-2 \omega(1+t) E_{12} .
\end{aligned}
$$

By $L(1,1,2,1)=R(1,1,2,1)$ we have $t=-1$. At the same time, the matrices of g and x are

$$
D=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \omega & 2 \omega \\
0 & 0 & 0 & -\omega
\end{array}\right) \text { and } X=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 \\
1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text {, respectively }
$$

Let $S=\{(1,1,1,1),(2,2,2,2),(1,1,2,1)\}, U=[\underline{2}] \times[\underline{2}] \times[\underline{2}] \times[\underline{2}]$ and $U \backslash S$ be the complement of S in U. Direct calculation shows that $L(i, j, k, l)=R(i, j, k, l)$ for all $(i, j, k, l) \in U \backslash S$.

Case 2 The matrices of g and $g x$ are

$$
D=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & \omega(-1-2 a t) & -\omega(2 t) \\
0 & 0 & \omega\left(2 a^{2} t+2 a\right) & \omega(1+2 a t)
\end{array}\right) \text { and } X=\left(\begin{array}{cccc}
0 & 0 & a & 1 \\
0 & 0 & a & 1 \\
-\omega & \omega & 0 & 0 \\
\omega a & -\omega a & 0 & 0
\end{array}\right) \text {, respectively. }
$$

It is easy to see that

$$
\begin{array}{ll}
L(1,1,1,1)=-E_{11}, & R(1,1,1,1)=(1+2 \alpha) E_{11}+(2 \alpha) E_{22} \\
L(2,2,2,2)=-E_{22}, & R(2,2,2,2)=(2 \alpha) E_{11}+(1+2 \alpha) E_{22}
\end{array}
$$

Therefore, the equations

$$
L(1,1,1,1)=R(1,1,1,1) \text { and } L(2,2,2,2)=R(2,2,2,2)
$$

hold if and only if $-1=1+2 a, \quad 0=2 a$. Obviously, such a does not exist.
Similarly, we can also prove that any D in (iii) and (iv) of Lemma 3.2 does not satisfy (3.2). The proof of Lemma is completed.

Acknowledgements We thank the referees for their time and comments.

References

[1] M. BEATTIE. A direct sum decomposition for the Brauer group of H-module algebras. J. Algebra, 1976, 43(2): 686-693.
[2] M. BEATTIE. Brauer groups of H-module and H-dimodule algebras. Thesis (Ph.D.)-Queen's University (Canada), 1977.
[3] R. J. BLATTNER, S. MONTGOMERY. A duality theorem for Hopf module algebras. J. Algebra, 1985, 95(1): 153-172.
[4] J. BERGEN, M. COHEN. Actions of commutative Hopf algebras. Bull. London Math. Soc., 1986, 18(2): 159-164.
[5] M. COHEN, D. FISCHMAN. Hopf algebra actions. J. Algebra, 1986, 100(2): 363-379.
[6] S. MONTGOMERY. Hopf Algebras and Their Actions on Rings. American Mathematical Society, Providence, RI, 1993.
[7] Huixiang CHEN, Yinhuo ZHANG. Four-dimensional Yetter-Drinfeld module algebras over H_{4}. J. Algebra, 2006, 296(2): 582-634.
[8] A. S. GORDIENKO. Algebras simple with respect to a Sweedler's algebra action. J. Algebra Appl, 2015, 14 (1): 1-15.
[9] R. WILLIAMS. Finite dimensional Hopf algebras. Thesis (Ph.D.)-The Florida State University. 1988.
[10] D. STEFAN. Hopf algebras of low dimension. J. Algebra, 1999, 211(1): 343-361.
[11] M. WAKUI. Various structures associated to the representation categories of eight-dimensional nonsemisimple Hopf algebras. Algebr. Represent. Theory, 2004, 7(5): 491-515.
[12] S. DĂSCĂLESCU, C. NĂSTĂSESCU, S. RAIANU. Hopf Algebras: An Introduction. New York, Marcel Dekker, Inc., 2001.
[13] M. E. SWEEDLER. Hopf Algebras. W. A. Benjamin, Inc., New York, 1969.
[14] C. NASTASESCU, F. VAN OYSTAEYEN. Methods of Graded Rings. Springer-Verlag, Berlin, 2004.
[15] A. I. MALCEV. Foundations of Linear Algebra. W. H. Freeman \& Co., San Francisco, Calif.-London, 1963.

[^0]: Received October 14, 2014; Accepted March 20, 2015
 Supported by the National Natural Science Foundation of China (Grant Nos. 11271043; 11471186).

 * Corresponding author

 E-mail address: gaofengxiahappy@163.com (Fengxia GAO); slyang@bjut.edu.cn (Shilin YANG)

